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Abstract— Low-rank representation (LRR) efficiently per-
forms the subspace segmentation and feature extraction from
corrupted data. However, there are three disadvantages in exist-
ing LRR techniques. First, the inference algorithm of LRR (as
a generative model) is computationally expensive. Second, LRR
ignores the discriminative information for image classification.
Third, although the robust representation is implemented by
recovering the low-rank components and the sparse noises,
it has been limited due to the constrained assumption that
noises is sparse. To solve these problems, and inspired by
Denoising Autoencoders (DAE) and Contractive Autoencoders
(CAE), this paper proposes a discriminative low-rank rep-
resentations framework (DLRR) for image classification. We
directly learn a discriminative projection dictionary that results
in fast inference. Simultaneously, DLRR can obtain a robust
representation from any corrupted input. Our implementation
of DLRR achieves state-of-the-art results on artificial dataset
and dataset of Olivetti Face Patches.

I. INTRODUCTION

LOW-RANK representation (LRR) has received increas-
ing attention because of their successful applications in

computer vision and machine learning. In general, LRR [12],
[13], [11] is to find the lowest-rank representation among all
the data, which can be represented as a linear combination of
the bases in a dictionary. Obviously, LRR efficiently performs
the subspace segmentation and feature extraction from cor-
rupted data. To study the insufficient and/or grossly corrupted
data matrix (dictionary), [13] proposes a latent low-rank
representation and inspired by matrix factorization, [14]
proposes fixed-rank representation as a unified framework
for unsupervised visual learning. [25] exploits the low-rank
nature of particle representations for robust visual tracking.
[28] proposes a novel non-negative low-rank and sparse
graph for semi-supervised learning. [3] presents multi-task
low-rank affinity pursuit for image segmentation. Recently,
[23], [19], [26] and [27] learn low-rank representations for
classification tasks1. However, there have two disadvantages
that restrict the applications of LRR.

First, a major disadvantage with LRR (as a generative
model) is that the inference algorithm is somewhat expensive.
In particular, it has been limited due to prohibitive cost of
calculating the low-rank representations for image classifica-
tion [26], [27]. In order to make inference efficient in sparse
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1The corresponding representations from train and test sets are learned
by using LRR and a classifier is constructed by the representations from
training set for classification

coding, [7], [8], [5] and [20] train a parameterized non-
linear function that maps input data to the representations.
Inspired by the fast sparse coding [7], [5], we directly train
a projection dictionary.

Second, LRR ignores the discriminative information for
image classification. The applications of LRR heavily depend
on the dictionary, which usually chooses the observed data
matrix itself [12] and dose not have discriminative informa-
tion. In order to obtain the discrimination capabilities, the
dictionary is learned by the training data reconstruction error
per class [16], [15] and all training data reconstruction error
[17], [26].

Motivated by these considerations, a projection dictio-
nary is directly learned for reducing the expensive cost
of inference algorithm. To have discriminative capabilities,
label information from training data is incorporated into the
projection dictionary learning process by adding a label-
constraint term. Therefore, this paper proposes a discrimina-
tive low-rank representations framework (DLRR) for image
classification.

On the other hand, it is a highly desirable property
to extract invariant representations for classification tasks
[4], [22], [18]. The concept of invariance implies that a
representation is robust to the variant input of a class object.
Many methods [13], [11], [26], [27] of LRR2 learn the
robust representations by separating both the low-rank rep-
resentations and the sparse noises. From the reconstruction
criterion, Denoising Autoencoders (DAE) [21], [22] can be
obtained robustly from a corrupted input and recover the
corresponding clean input. By penalizing the Frobenius norm
of the Jacobian matrix of the representation activations with
respect to the input, Contractive Autoencoders (CAE) [18]
is also more invariant to the vast majority of directions
orthogonal to the manifold. Such representation will yield a
better performing classifier [21], [22], [18]. Here we employ
two strategies: corrupted input and penalizing the Frobenius
norm of the Jacobian matrix [21], [22], [18] to learn a robust
representation. Therefore, we learn a robust representation by
using the low rank method to train a projection dictionary
from a corrupted input. Unlike LRR, we do not separate
the noises. Unlike DAE and CAE, we do not recover the
corresponding clean input.

The rest of this paper is organized as follows: Section
II reviews three popular low-rank matrix recovery models
and introduce the classification process used LRR. Section

2Suppose we have a data matrix, which is the superposition of a low-rank
component and a sparse component [2], [11].
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III propose a discriminative low-rank representations for
image classification. Some experiments results are presented
in Section IV to show its performance. Finally, Section V
concludes the paper.

II. LOW-RANK REPRESENTATION FOR IMAGE

CLASSIFICATION

In this section, we first review three popular low-rank
matrix recovery models, classical principal component anal-
ysis (PCA), robust principal component analysis (RPCA) and
low-rank representation (LRR). Second, we introduce the
classification process used LRR.

A. Low-rank Matrix Recovery

For better capturing the intrinsic low-dimensional structure
of data, we assume that the observed data matrix 𝑋 is the
superposition of a low-rank matrix 𝐴 and a noise matrix
𝐸. If 𝐸 is a small perturbation matrix, classical principal
component analysis (PCA) [6] is to find the 𝑘-constraint rank
matrix 𝐴 by solving:

min
𝐴
∥𝑋 −𝐴∥2 s.t. 𝑟𝑎𝑛𝑘(𝐴) < 𝑘 (1)

where ∥ ⋅ ∥ denotes the 2-norm. If 𝐸 can be arbitrary in
magnitude, [2] supposes that it is a sparse matrix. Robust
PCA aims at exactly recovering the low-rank 𝐴 and the
sparse 𝐸. It can be viewed as a regularized rank minimization
problem:

min
𝐴

𝑟𝑎𝑛𝑘(𝐴) + 𝜆∥𝐸∥0 s.t. 𝑋 = 𝐴+ 𝐸 (2)

where 𝑟𝑎𝑛𝑘 is the rank of 𝐴, ∥⋅∥0 is the 0-norm and 𝜆 > 0 is
a parameter. Consider that the underlying data structures are
multiple low-rank subspaces, such as face recognition. LRR
[11] shows that a more general rank minimization problem
is as following:

min
𝐷,𝑍,𝐸

𝑟𝑎𝑛𝑘(𝑍) + 𝜆∥𝐸∥0 s.t. 𝑋 = 𝐷𝑍 + 𝐸 (3)

where 𝐷 is a dictionary matrix that linearly spans the data
space and 𝑍 is the lowest-rank representation of data 𝑋 . Un-
fortunately, (3) is a highly non convex optimization problem.
By relaxing the 0-norm and the rank, (3) becomes a tractable
optimization problem. They are respectively replaced by the
1-norm and the nuclear norm. The optimization problem (3)
of LRR is equivalent to:

min
𝐷,𝑍,𝐸

∥𝑍∥∗ + 𝜆∥𝐸∥1 s.t. 𝑋 = 𝐷𝑍 + 𝐸 (4)

where ∥ ⋅ ∥∗ is the nuclear norm and ∥ ⋅ ∥1 is the 1-norm.
Generally, the linearized alternating direction method with
adaptive penalty (LADMAP) [9], [10] is used to solve the
(4).

Algorithm 1 A Linear Classifier
1: Input: Data 𝑍, Label 𝑄 and Parameters 𝜏
2: Initialize: all parameters 𝜃 of the DLRR
3: Given 𝑍,𝑄, 𝜏 and update 𝐾 by:

𝐾 = 𝑄𝑍𝑇 (𝑍𝑍𝑇 + 𝜏𝐼)−1

4: return solution 𝐾 to problem (7).

Suppose the clear data 𝑋† = 𝑋 − 𝐸, 𝑋 = 𝐷𝑍 + 𝐸 can
be rewritten as:

(
𝑋†1 , 𝑋

†
2 , ⋅ ⋅ ⋅ , 𝑋†𝑘

)
=
(
𝐷1, 𝐷2, ⋅ ⋅ ⋅ , 𝐷𝑘

)

⎛

⎜
⎜
⎜
⎝

𝑍1 0 ⋅ ⋅ ⋅ 0
0 𝑍2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝑍𝑘

⎞

⎟
⎟
⎟
⎠

(5)

for 𝑘 independent subspaces. some general properties of the
minimizer to problem (5) are as followings:

Theorem 1 [11]: Assume 𝐷𝑖 ∕= 0 and 𝑋†𝑖 = 𝐷𝑖𝑍𝑖 have
feasible solution(s), i.e., 𝑋†𝑖 ∈ 𝑠𝑝𝑎𝑛(𝐷𝑖). Then for all 𝑖(1 ≤
𝑖 ≤ 𝑘),

𝑍𝑖 = 𝐷†𝑖𝑋
†
𝑖 (6)

is the unique minimizer to problem (5), where 𝐷†𝑖 is the
pseudoinverse of 𝐷𝑖. Clearly, 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑋†𝑖 ) and
𝑍𝑖 is also a minimal rank solution to the problem.

B. Classification Process

To classification tasks, clearly, we can obtain the low-
rank representations 𝑍𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and the dictionary 𝐷 from
the training data 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . [27] uses the regression model
to train a linear classifier:

𝐾 = argmin
𝐾
∥𝑄−𝐾𝑍𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔∥2𝐹 + 𝜏∥𝐾∥2𝐹 (7)

where 𝑄 is the class label matrix of data 𝑋 and 𝜏 > 0 is a
parameter. The learning process is showed in Algorithm (1).

Next, using the 𝐷, the low-rank representations 𝑍𝑡𝑒𝑠𝑡
of test data 𝑋𝑡𝑒𝑠𝑡 can be obtained by optimizing the (4).
(However, solving 𝑍𝑡𝑒𝑠𝑡 is somewhat expensive.) Then label
for sample 𝑖 is given by:

𝑙 = argmax
𝑠

(𝑠 = 𝐾𝑍𝑖𝑡𝑒𝑠𝑡) (8)

where 𝑠 is the test label vector.

III. DISCRIMINATIVE LOW-RANK REPRESENTATIONS

FOR IMAGE CLASSIFICATION

In this section, we propose a discriminative low-rank
representations framework for image classification.

314



A. Motivation

Given a data 𝑋 and a dictionary matrix 𝐷, solving the
low-rank representations 𝑍 is somewhat expensive. From
Theorem 1, however, we know that a closed form of 𝑍 is
𝐴†𝑋†. So, we can directly learn a projection dictionary 𝐵
and quickly obtain 𝑍 = 𝐵𝑋†.

For classification tasks when all the label data points are
stacked as column vectors of a matrix, the label matrix should
have low rank. Thus, we add the label information to obtain
the discrimination capabilities of projection dictionary.

To classification tasks the robust representation is a highly
desirable property. Inspired by DAE [21], [22] and CAE [18],
robust representation is obtained by training a projection
dictionary from any corrupted input and penalizing the
Frobenius norm of the Jacobian matrix of the representation
activations.

B. Problem Statement

The key idea of DLRR is to directly learn a projection
dictionary.

min
𝐵,𝑍,𝑊

𝑟𝑎𝑛𝑘(𝑍) +
𝛼

2
∥𝑍 −𝐵𝑋∥2𝐹 s.t. 𝑄 =𝑊𝑍 (9)

where 𝛼 is the parameter, 𝑄 is the label matrix, 𝐵 is a
projection dictionary matrix and 𝑊 is the projection matrix
from the low-rank representations to label matrix. However,
direct optimization of (9) is NP-hard. When the rank is
replaced by the nuclear norm, the optimization problem (9)
is equivalent to:

min
𝐵,𝑍,𝑊

∥𝑍∥∗ + 𝛼

2
∥𝑍 −𝐵𝑋∥2𝐹 s.t. 𝑄 =𝑊𝑍 (10)

where ∥𝑍∥∗ is the nuclear norm (i.e., the sum of the singular
values) of 𝑍. It approximates the rank of 𝑍.

Although [24] also uses discriminative projection method
to train LRR, it seeks a linear transformation by using the 𝑍
of (4). We directly learn the linear transformation.

C. Alternating Direction Method

Solving the optimization problem (10) by Alternating
Direction Method. We first convert (10) to the following
equivalent problem:

min
𝐽,𝐵,𝑍,𝑊

∥𝐽∥∗+𝛼

2
∥𝑍 −𝐵𝑋∥2𝐹 (11)

s.t. 𝑍 = 𝐽

𝑄 = 𝑊𝑍

The optimization problem (11) is convex and can be solved
by various methods. For efficiency, we adopt in this paper
the LADMAP [9], [10]. The augmented Lagrangian function
of (11) is

L =∥𝐽∥∗ + 𝛼

2
∥𝑍 −𝐵𝑋∥2𝐹+

tr
(
𝑌 𝑇1 (𝑍 − 𝐽))+ tr

(
𝑌 𝑇2 (𝑄−𝑊𝑍)

)
+

𝜇

2
(∥𝑍 − 𝐽∥2𝐹 + ∥𝑄−𝑊𝑍∥2𝐹 ) (12)

Algorithm 2 Inner loop of DLRR
1: Input: Data 𝑋 , Projection Dictionary 𝐵, Projection

Matrix 𝑊 and parameter 𝛼.
2: Initialize: all parameters 𝜃 of the DLRR
3: While not converged do
4: Step 1: Given 𝑍, 𝑌1, 𝜇 and update 𝐽 by:

(𝑈,Σ, 𝑉 ) = 𝑆𝑉 𝐷(𝐽 − 𝑌1/𝜇)
𝐽 = 𝑈𝒮 1

𝜇
(Σ)𝑉

5: Step 2: Given 𝐽,𝐵,𝑊,𝑄,𝑋, 𝑌1, 𝑌2, 𝜇 and update 𝑍
by:

𝑍 =

(
𝜇+ 𝛼

𝜇
𝐼 +𝑊𝑇𝑊

)−1

(

𝑊𝑇𝑄+
𝛼

𝜇
𝐵𝑋 + 𝐽 + (𝑊𝑇𝑌2 − 𝑌1)/𝜇

)

6: Step 3 Given 𝑍,𝑄, 𝑌2, 𝜇, 𝜂 and update 𝑊 by:

𝑊 = (𝑄+ 𝑌2/𝜇)𝑍
𝑇 (𝑍𝑍𝑇 + 𝜂𝐼)−1

7: Step 4: Given 𝑍,𝑋, 𝜂 and update 𝐵 by:

𝐵 = 𝑍𝑋𝑇 (𝑋𝑋𝑇 + 𝜂𝐼)−1

8: Step 5: Given 𝑍, 𝐽, 𝑍,𝑄, 𝜇 and update 𝑌1, 𝑌2 by:

𝑌1 =𝑌1 + 𝜇(𝑍 − 𝐽)
𝑌2 =𝑌2 + 𝜇(𝑄−𝑊𝑍)

9: until a stopping criterion is satisfied
10: return solution 𝑍,𝐵,𝑊 to problem (11).

The augmented Lagrangian function (12) can be rewritten
as:

L =∥𝐽∥∗ + 𝛼

2
∥𝑍 −𝐵𝑋∥2𝐹+

𝜇

2
(∥𝑍 − 𝐽 + 𝑌1/𝜇∥2𝐹 + ∥𝑄−𝑊𝑍 + 𝑌2/𝜇∥2𝐹 )

− 1

2𝜇
(∥𝑌1∥2𝐹 + ∥𝑌2∥2𝐹 ) (13)

The function is minimized by updating each of the vari-
ables one 𝐽, 𝑍,𝑊,𝐵 at a time. The scheme is as follows:

𝐽 =argmin
𝐽

1

𝜇
∥𝐽∥∗ + 1

2
∥𝐽 − (𝑍 + 𝑌1/𝜇)∥2𝐹 (14)

𝑍 =argmin
𝑍

𝛼

2𝜇
∥𝑍 −𝐵𝑋∥2𝐹+

1

2
(∥𝑍 − 𝐽 + 𝑌1/𝜇∥2𝐹 + ∥𝑄−𝑊𝑍 + 𝑌2/𝜇∥2𝐹 ) (15)

𝐵 =argmin
𝐵
∥𝑍 −𝐵𝑋∥2𝐹 (16)

𝑊 =argmin
𝑊
∥𝑄−𝑊𝑍 + 𝑌2/𝜇∥2𝐹 (17)

In order to obtain the robust representation 𝑍(𝑋) from
a training input 𝑋 we propose to penalize its sensitivity to
that input, measured as the Frobenius norm of the Jacobian
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Algorithm 3 Outer loop of DLRR

1: Input: Data {𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑛}, Projection Dictionary
𝐵, Projection Matrix 𝑊 and Parameters 𝛼, 𝜁, 𝜈, 𝜖

2: Initialize: all parameters 𝜃 of the DLRR
3: do
4: for batch data 𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑛 in the training set
5: Step 1: compute corrupted input data:
6: 𝑋 = 𝑋𝑖. ∗ (𝑋𝑖 > 𝜈)
7: Step 2 (inner loop): solve the linearized convex opti-

mization: (𝑍★, 𝐵★,𝑊 ★)←
arg min

𝐵,𝑍,𝑊
∥𝑍∥∗ + 𝛼

2
∥𝑍 −𝐵𝑖𝑋∥2𝐹 s.t. 𝑄 =𝑊 𝑖𝑍

8: Step 4: update transformations:
9: 𝐵𝑖+1 = 𝜁𝐵𝑖 + (1− 𝜁)𝐵★

10: 𝑊 𝑖+1 = 𝜁𝑊 𝑖 + (1− 𝜁)𝑊 ★

11: until a stopping criterion is satisfied
12: ∥𝐵𝑖+1 −𝐵𝑖∥∞ < 𝜖
13: ∥𝑊 𝑖+1 −𝑊 𝑖∥∞ < 𝜖
14: return solution 𝑍,𝐵,𝑊 to problem (10).

𝒥𝑍(𝑋). Formally, this penalization term is as follow:

𝒥𝑍(𝑋) = ∥∂𝑍(𝑋)

∂𝑋
∥2𝐹 = ∥𝐵∥2𝐹 (18)

Penalizing 𝒥𝑍(𝑋) encourages the projection to the feature
space to be contractive in the neighborhood of the training
data. So, solving 𝐵 is rewritten as

𝐵 =argmin
𝐵
∥𝑍 −𝐵𝑋∥2𝐹 + 𝜂∥𝐵∥2𝐹 (19)

where 𝜂 is a hyper-parameter controls the strength of the
regularization. Similarly, solving 𝑊 is rewritten as

𝑊 =argmin
𝑊
∥𝑄−𝑊𝑍 + 𝑌2/𝜇∥2𝐹 + 𝜂∥𝑊∥2𝐹 (20)

The projection dictionary learning process is outlined in
Algorithm (2).

D. Extracting Robust Representation from Corrupted Input

A robust representation is invariant to the corrupted data.
Under the so-called manifold assumption [1], the natural
high dimensional data concentrates close to a linear low-
dimensional manifold in this paper. A geometric interpreta-
tion of the corrupted data is illustrated in Figure 2 of [22]. We
do experiments to a simple corruption processes: a fraction
𝜈 of the elements of data 𝑋 (chosen at random for each
example) is forced to 0. The corruption learning process is
also outlined in Algorithm (3).

IV. EXPERIMENTS

In this paper we present experimental results on two
datasets: a artificial dataset and a dataset of Olivetti Face
Patches. Our approach is compared with LRR algorithms.
Artificial Dataset: [11] We construct 5 independent sub-
spaces, each of which has a rank of 10, sample 200 points
of dimension 100 from each subspace, and randomly choose
some points to corrupt. Using this method, the dataset has

TABLE I

INFERENCE TIME (SECOND) ON LRR AND DLRR

datasets LRR DLRR
Artificial Dataset 60 0.008
Olivetti Face Patches 837 0.17

TABLE II

TEST ERRORS ON LRR AND DLRR

datasets LRR DLRR
Olivetti Face Patches 21.69% 16.78 %

1000 training simples and 1000 test simples. Olivetti Face
Patches:3 The Olivetti face dataset from which we obtain
the face patches contains ten 64×64 images of each of forty
different people. We construct a dataset of 7200 25 × 25
images by rotating (−45∘ to +45∘) and scaling (1.5) the
original 400 images. The dataset is randomly subdivided into
3600 training images and 3600 test images. Figure (1) shows
10 randomly selected Olivetti Face and 25 randomly selected
Olivetti Face Patches.

A. Comparison of Fast inference algorithm

We compare our approach with LRR. The comparative
results of inference time are shown in (I). Our method is
faster than LRR because DLRR only does linearly project.

B. Comparison of Classification Performance

An advantage of DLRR is that it can fast infer and has
discriminative capabilities. We have also shown that it per-
forms better than LRR. Table II compares our classification
performance of DLRR to LRR. Surprisingly, for Olivetti Face
Patches, our performance of DLRR achieves superior perfor-
mance. Figure 2 illustrates the representations for Artificial
Dataset. Figure 3 also shows the representations for Olivetti
Face Patches. For comparison, DLRR has discriminative
capabilities.

V. CONCLUSION

We propose a discriminative low-rank representations
framework for image classification. This method can directly
learn a projection dictionary that results in fast inference.
The dictionary also has some discrimination capabilities.
Inspired by DAE [21], [22] and CAE [18], moreover, robust
representation is obtained by training the dictionary from any
corrupted input and penalizing the Frobenius norm of the
Jacobian matrix of the representation activations. Finally, ex-
periments show that DLRR achieves state-of-the-art results.
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