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Abstract— The decision function of support vector machine
(SVM) using the likelihood ratios (LRs) is successfully used
for statistical model-based voice activity detection (VAD). It
is known to incorporate an optimised nonlinear decision over
two different classes, instead of comparing the geometric
mean of the LRs for the individual frequency bands with a
given threshold for speech detection. However, the inter-frame
correlation of the voice activity is not taken into consideration.
In this paper, we explore a hybrid SVM/hidden Markov model
(HMM) approach for the VAD, which retains discriminative
and nonlinear properties of SVM, while modeling the inter-
frame correlation powerfully through a first-order HMM.
Experimental results show the significant improvement of the
performance of the proposed VAD in comparison with the SVM-
based VAD.

I. INTRODUCTION

Being an important module in many speech processing
applications [1], [2], VAD has attracted a lot of attention in
the research community over the last few decades. Different
statistical model-based strategies are adopted for detecting
speech in noise. The statistical model-based VAD approach
originates from the speech enhancement algorithm [3]. A
Gaussian statistical model [4] is applied to the VAD using the
decision-directed (DD) method-based parameter estimation.
On the other hand, VAD is essentially a binary classifica-
tion problem. Therefore, machine learning algorithms are
effective for solving it. In [5], SVM-based methods enable
us to obtain the optimised hyperplane to minimise decision
error, and speech is detected through the decision function
using the LRs. In [6], the inter-frame correlation information
of the voice activity is incorporated into the decision rule
based on a first-order HMM. In [9], the statistical approaches
and SVM with different features are combined for VAD.
In [7], an HMM-based segmentation procedure with two
model is used. Speech and non-speech are each modeled
by five-state, left-to-right HMMs with no skip states. In [8],
an improved voice activity detection (VAD) algorithm using
wavelet and support vector machine (SVM) is proposed. In
[10], A new voice activity detection (VAD) algorithm with
soft decision output in Mel-frequency domain is developed
based on hidden Markov model (HMM) and is incorporated
in an HMM-based speech enhancement system. In [11], a
robust voice activity detector (VAD) based on hidden Markov
models (HMM) is presented.
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In this paper, we present a new VAD algorithm based
on hybrid SVM/HMM architectures, which use a first-order
HMM for modeling the inter-frame correlation powerfully
and augment the HMM with the SVM, that is trained dis-
criminatively. The proposed VAD shows better performances
in various noise environments.

In Section 2 the SVM-based VAD is described briefly.
In Section 3 we show HMM-based MAP VAD concisely. In
Section 4 we elaborate the VAD based on hybrid SVM/HMM
architectures in detail. In Section 5 we describe experimental
conditions and experimental results on evaluating our algo-
rithm. In Section 6 the conclusions are drawn. Finally relation
to the prior work is introduced.

II. SVM-BASED VAD
According to [5], let the noise signal n(t) is added to the

speech signal x(t), with their sum being denoted by y(t) in
the time domain. By taking the discrete Fourier transform
(DFT), we obtain

Y (t) = X(t) +N(t) (1)

where Y (t) = [Y1(t), Y2(t), . . . , YL(t)],
X(t) = [X1(t), X2(t), . . . , XL(t)], and N(t) =
[N1(t), N2(t), . . . , NL(t)] denote the DFT coefficients
of the noisy speech signal, clean speech signal, and the
additive noise signal. Also, L is the total number of
frequency bins. Given two hypotheses, H0 and H1, which,
respectively, indicate speech absence and presence, it is
assumed that

H0 : speech absent : Yl(t) = Nl(t) (2)
H1 : speech present : Yl(t) = Xl(t) +Nl(t) (3)

Assuming that each spectral component of speech and noise
signals has complex Gaussian distribution, in which the noise
is uncorrelated with the speech signal, the distributions of the
noisy spectral components conditioned on both hypotheses
are obtained as follows:

p(Yl|H0) =
1

πλn,l
exp

{
−|Yl|

2

λn,l

}
(4)

p(Yl|H1) =
1

π [λn,l + λx,l]
exp

{
− |Yl|2

[λn,l + λx,l]

}
(5)

where λx,l and λn,l denote the variances of noise and
speech for the individual frequency band, respectively. The
likelihood ratio for the lth frequency band is

Λl ,
p(Yl|H1)

p(Yl|H0)
=

1

1 + ξl
exp

{
γlξl
1 + ξl

}
(6)
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where ξl =
λx,l

λn,l
and γ = Yl

λn,l
denote the a priori SNR and

a posteriori SNR, respectively. The a posteriori SNR γl is
estimated using λn,l, and the a priori SNR ξl is estimated by
the well-known DD method as follows:

ˆξl(t) = α

∣∣∣X̂l(t− 1)
∣∣∣2

λn,l(t− 1)
+ (1 + α)P [γl(t)− 1] (7)

where
∣∣∣X̂l(t− 1)

∣∣∣ is the speech spectral amplitude estimate
of the previous frame obtained using the minimum mean-
square error (MMSE) estimator. Also, α is a weight that is
usually determined in the range (0.95, 0.99). The function
P [x] = x if x ≥ 0 and P [x] = 0 otherwise. For
the decision rule of the VAD, the LRs are incorporated
as elements of feature vector characterised by SVM. Let
Λ(t) = [Λ1(t),Λ2(t), . . . ,ΛL(t)]

T be the LRs obtained by
(6) and Λ∗m be the mth support vector of LRs obtained by
training. Then

f(Λ(t)) = (w∗ · Λ(t)) + b∗

=
M∑
i=1

α∗i zi(Λ
∗
i · Λ(t)) + b∗

H1

R
H0

η
(8)

where w∗ is the optimal weight vector, b∗ is the bias, α∗i
is Lagrange multiplier, zi is the corresponding class label,
M is the number of support vector, and η is the threshold
value. Comparing (8) and a given threshold value reveals the
SVM-based decision statistic. It can be seen that decision
statistic is derived by the use of the dot product between the
given LR vector and the support vectors. In order to consider
nonlinear input space, the various kernel function K has been
addressed [12] rather than the linear kernel such that

K(Λ∗i ,Λ) = Φ(Λ∗i ) · Φ(Λ) (9)

Once the kernel function is specified as in (9), the decision
statistic finally results in the following form

f(Λ(t)) =
M∑
i=1

α∗i ziK(Λ∗i · Λ(t)) + b∗ (10)

The radius basis function (RBF) kernel is incorporated for
the VAD due to the superior performance [13]

KRBF (Λ
∗
i ,Λ(t)) = exp

(
− 1

2σ2
||Λ∗i − Λ(t)||2

)
(11)

where σ is the kernel width.

III. HMM-BASED MAP VAD

According to [6], the inter-frame correlation is strong. The
sequence of voice activity states is modeled by a first-order
HMM. The transition probability is defined as

aij = P (H(t) = Hj |H(t− 1) = Hi) (12)

for i, j = 0, 1, and the initialize probabilities are P (H(1) =
H0) = P (H(1) = H1) = 1/2. The likelihood ratio of the

observation Yg(t) at the tth frame is given by

Λg(t) =
P (Yg(t)|H(t) = H1)

P (Yg(t)|H(t) = H0)

=

(
L∏
l=1

P (Yl(t)|H(t) = H1)

P (Yl(t)|H(t) = H0)

)1/L (13)

The posterior probabilities of H1 and H0 given Yg(t) are
derived as follows:

P (H(t) = H1|Yg(t)) =
Λg(t)P (H(t) = H1)

P (H(t) = H0) + Λg(t)P (H(t) = H1)

P (H(t) = H0|Yg(t)) =
P (H(t) = H0)

P (H(t) = H0) + Λg(t)P (H(t) = H1)
(14)

where P (H(t) = Hi) is the a priori probability. Based on
the first-order HMM, the a priori probability is given by

P (H(t) = Hi) =
∑
j

ajiP (H(t−1) = Hj |Yg(t−1)) (15)

for i, j = 0, 1, and P (H(1) = H0) = π0, P (H(1) = H1) =
π1 at the initial state. Finally, the decision rule is derived as

Λg(t)
H1

R
H0

ηP (H(t) = H0)

(1− η)P (H(t) = H1)
(16)

where η ∈ [1/2, 1) is the compensation factor.

IV. THE PROPOSED VAD BASED ON HYBRID SVM/HMM
ARCHITECTURES

An important issue that had to be addressed in this hybrid
system is the fact that SVM outputs a distance measure, while
the decision rule uses likelihood ratio at (16). We therefore
maps SVM distances to posterior probabilities based on
a warping function. A simple approach to estimating the
posterior is to assume that posterior takes the form of a
sigmoid, and directly estimate the sigmoid [14] as

p(H(t)| f) = 1

1 + exp(Af +B)
(17)

In order to avoid severe bias in the distances for the training
data, the free parameters, A and B are estimated on a cross-
validation set. Once we have the posteriors, we obtain

Λsvm(t) =
P (H(t) = H1| f)
P (H(t) = H0| f)

(18)

By replacing the likelihood ratio Λg in (19) with Λsvm, the
new decision rule is

Λsvm(t)
H1

R
H0

ηP (H(t) = H0)

(1− η)P (H(t) = H1)
(19)

where P (H(t)) is derived by (15).
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Fig. 1. ROC curves of the VAD approaches in (a) factory (SNR = 15 dB), (b) babble (SNR = 5 dB), and (c) street (SNR = 0 dB) noises.

Noise SNR Sohn’s VAD HMM-based MAP VAD Jo’s SVM VAD SVM/HMM VAD

Factory

0 dB 58.07 57.50 46.36 40.17

5 dB 48.06 47.50 38.19 32.84

15 dB 32.05 30.16 25.28 18.66

Babble

0 dB 60.41 59.95 58.50 54.49

5 dB 48.50 47.02 44.98 38.64

15 dB 32.84 30.91 29.67 24.94

Street

0 dB 45.59 42.37 43.91 36.88

5 dB 38.91 35.58 37.98 30.24

15 dB 30.31 26.55 27.06 22.85

TABLE I
COMPARISON OF SPEECH DETECTION ERROR PROBABILITY (Pe = (1− Pd) + Pf , %) IN DIFFERENT NOISE CONDITIONS.

V. EXPERIMENTS AND RESULTS

A. Experimental condition

For evaluating the proposed algorithm, experiments were
conducted in various noisy environments including the facto-
ry, babble, and street noises at different signal-to-noise ratios
(SNRs). The factory noise and babble noise are from the
NOISEX-92 corpus [15], while the street noise was recorded
by us on a busy street. The test set consists of 20 individual
speakers’ utterances in TIMIT test corpus [16]. These utter-
ances are split into randomly into three groups for training,
developing, and testing. These sentences in each group are
concatenated, silence is inserted between sentences. As a
result, 220 s, 200 s, and 180 s long clean utterances are
obtained as the final training set, developing set, and testing
set, respectively. These referenced labels are determined at
every 10 ms frame by combining manual labels and energy-
based VAD. Manual labels help to remove breath regions,
while energy-based VAD helps to remove very low energy
regions. The percentage of the marked speech frames in the

training set is 66.69%, which consists of 31.47% voiced
sound and 35.22% unvoiced sound frames, the percentage of
the marked speech frames in the developing set is 65.91%,
which consists of 31.04% voiced sound and 34.88% unvoiced
sound frames, and the percentage of the marked speech
frames in the testing set is 64.80%, which consists of 31.30%
voiced sound and 33.50% unvoiced sound frames. Then,
noise of each category was added at three different SNR
levels (0 dB, 5 dB, 15 dB) to the three materials. We
define Pd as the ratio of correct speech decisions to the
marked speech frames, while Pf as that of false speech
decisions to the marked noise frames. We investigate the
receiver operating characteristic (ROC) curves, which shows
the trade-off characteristic between the speech detection and
false-alarm probabilities (Pd and Pf ).

For the parameters in the SVM model, the best perfor-
mance on the development set is picked up from the search of
the parameters. The parameters C is set to 212 and the kernel
width σ is set to the average Euclidean distance from all
feature samples. In the first-order HMM model, the transition
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probabilities are obtained from training speech and the initial
probabilities P (H(1) = H0) = P (H(1) = H1) = 1/2.

B. Results

For fair comparison, we do not consider any hangover
scheme, as this can be added after the design of the decision
rule.

By and large, Figure 1 (a)-(c) shows the proposed VAD
based on SVM/HMM architectures yielded higher perfor-
mance over all referenced VADs. As for the street noise (SNR
= 0 dB), the performance of the proposed technique is not
promoted significantly when only (Pf < 0.06). This means
that the posterior probabilities derived by SVM are used
appropriately, are fused into HMM architectures successfully,
and contribute to the VAD performance improvement greatly.

In addition, the performance of the proposed VAD algo-
rithm is evaluated by fixing the threshold. The operating
point of the VAD is fixed to make the false-alarm probability
of the proposed VAD sightly less than or equal to that of
the conventional methods. As showed in Table I for various
SNRs, the results confirm that the proposed VAD with hybrid
SVM/HMM architectures outperforms other approaches in
terms of the speech detection error probability (Pe), where
both the false alarms and missing errors are incorporated.

VI. CONCLUSIONS

In this paper, we propose a VAD technique based on hybrid
SVM/HMM architectures. The advantages of this work not
only lie in making full use of powerful classifiers, SVMs,
that are trained discriminatively, but also rest with modeling
temporal evolution of data more effectively by the HMM.
The experimental results show that the hybrid SVM/HMM
VAD achieves an enhanced ability to discriminate speech and
silences over the SVM-based VAD system in various noisy
environments.

VII. RELATION TO PRIOR WORK

On the one hand, SVM-based VADs [5] consider nonlinear
properties of the input data. However, one significant draw-
back in the SVMs is that, they are inherently static classifiers.
They do not implicitly model temporal evolution of data.
On the other hand, in [6], though nonlinear properties of
SVM are not considered, the inter-frame correlation is taken
into account by the VAD based on HMM, which have the
advantage of handling dynamic data with certain assumptions
about stationarity and independence. The algorithm presented
here has focused on constructing the hybrid VAD system
is to win both worlds by combining the discriminative
strength and nonlinear properties of SVM-based VAD [5]
with the ability of modeling the inter-frame correlation of
voice activity based on the HMM. The advantages of hybrid
SVM/HMM VAD are not considered in early studies. By
these steps, we can obtain superior performance for VAD
over the SVM-based VAD system.
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