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Abstract—In this paper, a stable multivariable model

reference adaptive control (MRAC) scheme is proposed for a

four-rotor helicopter with unknown external disturbance.

Firstly, the disturbance observer is designed to well monitor

the unknown disturbance. And then, the adaptive controller

is developed based on the disturbance observer to

compensate the external disturbance and track the desired

system states. Finally, the simulation results illustrate the

effectiveness of the proposed adaptive control scheme.
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I. Introduction

Aviation safety under external interference has
attracted increasing research attention recently [1-5]. The
unknown external disturbance can cause variations to
system parameters, where adaptive control is a suitable
solution to this problem [6-11], with the capacity of
handling such system uncertainties. Model reference
adaptive control (MRAC) is one of the most important
adaptive control methods. It provides feedback controller
structures and adaptive laws to ensure closed-loop signals
bounded and asymptotic tracking the reference signals of
reference system, and much effort has been done to
develop it. In [6], a direct adaptive control scheme is
proposed for a faulty helicopter using the outer-loop
compensation technique. Reference [7] revisits the
multivariable MRAC with state feedback for output
tracking, and a stable adaptive control scheme is
developed based on LDS decomposition of high
frequency gain matrix, which ensures closed-loop
stability and asymptotic output tracking. In [8], a
Nussbaum gain based multivariable MRAC design is
proposed based on LDS decomposition, to relax the
assumption on the sign information of the high frequency
gain matrix.

Over the past few years, a lot of attention has been
paid to the design of disturbance observer to approximate
external disturbance and unknown model uncertainties
[12-15] . Applications have shown that disturbance
observers can enhance the disturbance attenuation and
performance robustness. In [12], robust tracking
controller is designed based on the output of disturbance
observer for uncertain nonlinear system. A general
framework for nonlinear systems subject to disturbance
using disturbance observer based control (DOBC)
techniques is presented in [13]. References [14-15]
propose fuzzy disturbance observers and their
applications.

In this paper, we develop an adaptive control scheme
with state feedback for state tracking based on the

disturbance observer. The structure of the paper is
organized as follows. Section 2 presents the system model
of a four-rotor helicopter system and the control
problems. Section 3 details the design of the disturbance
observer. The adaptive scheme for updating the controller
parameters and its stability analysis are developed in
Section 4. The simulation results are presented in Section
5, followed by some conclusions in Section 6.

II. Description of the System Model and Control

Problems statement

Four-rotor helicopter is an underactuated, dynamic
vehicle with four input forces and 6 DOF motion. The
helicopter has four propellers installed in a cross
configuration as shown in Fig. 1. Ignoring the gyroscopic
effect, bearing friction and atmospheric disturbance on
the propellers, a simple model consists of three
differential equations can be get based on the force
condition of the system,. When a positive voltage is
applied to a motor, a positive thrust is generated and this
causes the corresponding propeller assembly to rise. The
thrust force generated by the front, back, left and right

propellers is denoted as fV , bV , lV and rV respectively.

The thrust force generated by the front and back motors
primarily actuate motions about the pitch axis while the
right and left motors primarily move the hover about its
roll axis.

A. Pitch-axis Model

We define the Y axis of the body as pitch axis and the
rotation angle generated by the motion of the body
rounding the pitch axis as the pitch angle, and a positive
front motor voltage results in a positive pitch angle.
Assuming the roll angle is zero, the pitch axis torque is
controlled by the lift of the front and rear propellers.
According to moment of momentum theorem, the motion
equation of the pitch angle is

( )
f

f b

p

K
p l V V

J
� ��� , (1)

where p is the pitch angle, l is the distance between

the motors and the propeller centre, fK is the

thrust-force constant and pJ is the moment of inertia about

the pitch axis.

B. Roll-axis Model

We define the X axis of the body as roll axis and the
rotation angle generated by the motion of the body
rounding the roll axis as the roll angle, and a positive
right motor voltage results in a positive roll angle. Similar
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to the pitch-axis model, the motion equation of the roll
angle is

( )
f

r l

r

K
r l V V

J
� ��� , (2)

where r is the roll angle, rJ is the moment of inertia

about the roll axis.

Fig. 1. Mechanic model of the four-rotor helicopter.

C. Yaw-axis Model

We define the Z axis of the body as yaw axis and the
rotation angle generated by the motion of the body
rounding the yaw axis as the yaw angle, and the yaw
angle is defined as positive for a counter-clockwise
rotation (when looking down on the system from above).
The motion of the yaw is a function of the sum of the
torques generated by the four propellers

, ,
( ) ( )

t c t n

f b r l

y y

K K
y V V V V

J J
� � � ��� , (3)

where y is the yaw angle, ,t cK is the counter-clockwise

thrust-torque constant and ,t nK is the normal thrust-torque

constant, rJ is the moment of inertia about the yaw axis.

From Eqs. (1)-(3), we can get the state-space
equations of the three degrees of freedom quad-rotor
helicopter as

x Ax Bu

y Cx

� ��
�

��

�

(4)

with the sate [ , , , , , ]Tx y p r y p r� � � � , control input

[ , , , ]Tf b r lu V V V V� and output [ , , ]Ty y p r� .

In this paper, we consider the four-rotor helicopter
associated with external disturbance, which can be shown
as

( ) ( ) ( ) ( )x t Ax t Bu t B t��� � �� (5)

where ( )x t is the state space vector, ( )u t is the control

input, ( )t� represents the bounded piecewise

continuous external disturbance. n nA R �	 , n mB R �	

and
n n

B R �

�
�	 are parameter matrices.

The control objective is to design an adaptive
feedback control law for the plant (5) such that all

closed-loop signals are bounded and the plant state vector

( )x t asymptotically tracks a reference state vector

( )mx t , which generated from the reference model

( ) ( ) ( )m m m mx t A x t B r t� �� , (6)

where
n n

mA R �	 ,
n l

mB R �	 are known constant

matrices and all the eigenvalues of mA are in the

left-half complex plane, all columns of mB are

independent, and ( ) lr t R	 is bounded and has

piecewise continuous components.

The following standard assumptions are given:

Assumption 1. There exists a matrix
*

1

n mK R �	

satisfying

*

1

T

mA BK A� � , (7)

and a matrix
*

2

l mK R �	 satisfying

*

2 mBK B� . (8)

Assumption 2. There is a known matrix m lS R �	

such that
*

2K S is symmetric and positive definite:

* * *

2 2 2( ) 0.T T T

sM K S K S S K� � � 
 (9)

Assumption 3. The change rate of the external
disturbance is much less than the disturbance observer
dynamic’s, that is to say

0� �� . (10)

III. Nonlinear Disturbance Observer

The disturbance observer [12-15] will be designed for
the system (5) in this section. Define

( )t B�� �� , (11)

then from Eq. (5), we have

( ) ( ) ( ) ( )t x t Ax t Bu t� � � �� . (12)

The nonlinear observer is designed as following first:

ˆ ˆ( ) ( ) ( )[ ( ) ( )]t L x L x x Ax t Bu t� �� � � � �
�

� , (13)

where ( )L x is the gain of the nonlinear observer to be

designed. Define

ˆ� � �� �� , (14)

differentiating Eq. (14) and substituting Eqs. (12) and
(13), we have

ˆ = ( )L x� � � �� � �
��� � � . (15)

If ( )L x is designed to make the equation

( ) 0L x� �� ��� � (16)

exponentially stable for all x , then ˆ
d can

approach d exponentially as t� .

Since x� is not available, the observer described by Eq.
(13) can not be realized. Here, an auxiliary variable is
introduced,
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ˆ ( )z p x�� � , (17)

where ( )p x should meet the following equation:

( ) ( )p x L x x� �� � . (18)

Differentiating Eq. (17) and substituting Eqs. (13) and
(18), the error dynamic of the observer can be expressed
as following:

ˆ ( )

ˆ( ) ( )[ ( ) ( )]

( )[ ( ) ( ) ( )]

z p x

L x L x Ax t Bu t

L x z p x Ax t Bu t

�

�

� �

� � � �

� � � � �

�
��

(19)

Following Eq. (17), we get

ˆ ( )z p x� � � . (20)

Therefore, the designed disturbance observer consisted of

Eqs. (19) and (20) can make �̂ follow � if

( ) ( ) /L x p x x� � � is chosen such that �� is globally

exponentially convergent for all nx R	 in Eq. (16).

Remark 1: When ( ) ( ) / 0L x p x x� � � 
 for all
nx R	 , then �� is globally exponentially convergent.

IV. Adaptive Controller

The system control chart is shown in Fig. 2.

Fig. 2. The chart of direct adaptive control with disturbance observer

The controller is designed using direct adaptive
control with state feedback for state tracking in this paper,
and its structure is

1 2 3( ) ( ) ( ) ( ) ( ) ( ),Tu t K t x t K t r t K t� � � (21)

where 1( )K t and 2 ( )K t are the estimates of
*

1K ,
*

2K ,

which are the constant matrices of the control laws when

parameters of A and B are known. 3 ( )K t is used to

compensate the external disturbance, which can be
designed based on the above disturbance observer:

3
ˆ( )K B ��� � , (22)

where ( )�� denotes the pseudo-inverse operation. To

design adaptive update laws for 1( )K t and 2 ( )K t

which ensure the stability of the closed-loop system, we
first define the parameter errors

*

1 1 1( ) ( )K t K t K� �� , (23)

*

2 2 2( ) ( )K t K t K� �� , (24)

and the tracking error

( ) ( ) ( )me t x t x t� � . (25)

Then the dynamics of the tracking error can be written
in the form

1 2 3

1

3

* 1 * 1

2 1 2 2

3

( ) ( ) ( )

( ) [ ( ) ( ) ( ) ( )+ ]

( ) ( ) ( )

( ) ( ) [ ( ) ( ) ( ) ( )]

( ) ( ) ( )

( ) [ ( ) ( )+ ( ) ( )]

( ).

m

T

m m m

T

m m

m m m

T

m m

e t x t x t

Ax t B K t x t K t r t K

B t A x t B r t

A x t B r t B K t x t K t r t

A x t B r t BK B t

A e t B K K t x t K K t r t

BK B t

�

�

�

�

�

�

� �

� �

� � �

� � �

� � � �

� � � �

� �

� �

� � �

� �

� �

(26)

Here, the adaptive laws for 1( )K t and 2 ( )K t can be

chosen as [11]:

1 1( ) ( ) ( )T T T T T

mK t K t S B Pe t x� � ��� � , (27)

2 2( ) ( ) ( ) ( )T T T

mK t K t S B Pe t r t� � ��� � , (28)

where n nP R �	 is such that 0TP P� 
 and satisfies

T

m mPA A P Q� � � (29)

for some constant matrix
n nQ R �	 such that

0TQ Q� 
 , 0T

s sM M� 
 satisfy the assumption 2 and

1(0)K , 2 (0)K being arbitrary. Then we have the

following theorem:

Theorem 1. The reconfiguration controller (21), with
the disturbance observer (19)-(20), control law (22) and
the adaptive laws (27)-(28), applied to system (5) with
external disturbance � , guarantees that all closed-loop

signals are bounded and lim ( ( ) ( )) 0t mx t x t� � � .

Proof:

Let 11 1 21 2( ) ( ( ), ( ), , ( ), ( ), , ( ))T T T T T T

c n me t e t k t k t k t k t� � � � �� � ,

where 1 ( )
m

ik t R	� is the ith column of 1 ( ),
TK t i ��

1,2, ,n� , and 2 ( )
l

jk t R	� is the jth column of

2 ( )
TK t� , 1,2, ,j m� � , firstly, we define a Lyapunov

function candidates as:

1 1

1 1 2 2( ) [ ] [ ]T T T

c s sV e e Pe tr K M K tr K M K� �� � �� � � � . (30)

Then, according to Eqs. (26) and (29), the time derivative

of pV is

1

1 1

1

1

2 2

1

1

1 1

1

2 2

* 1 * 1

2 1 2 2

3

2 ( ) ( ) 2 ( ) ( )

2 ( ) ( )

2 ( ) ( ) 2 [ ( ) ( )]

2 [ ( ) ( )]

2 ( ) { ( )

[ ( ) ( )+ ( ) ( )]

( )} 2 [

n
T T

i s i

i

m
T

j s j

j

T T

s

T

s

T

m

T

m

V e t Pe t k t M k t

k t M k t

e t Pe t tr K t M K t

tr K t M K t

e t P A e t

B K K t x t K K t r t

BK B t tr��

�

�

�

�

�

�

� �

� �

�

� �

�

�

�

� � �

�

�

�� �� �

�� �

�� ��

�� �

� �

� 1

1 1

1

2 2

( ) ( )]

2 [ ( ) ( )]

T

s

T

s

K t M K t

tr K t M K t

�

��

��

�� �
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* 1

2 1

* 1

2 2

3

1 1

1 1 2 2

( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( )

2 ( ) [ ( )]

2 [ ( ) ( )] 2 [ ( ) ( )].

T T T

m

T T

m

T

T T

s s

e t Qe t e t PB K K t x t

e t PB K K t r t

e t P BK B t

tr K t M K t tr K t M K t

��

�

�

� �

� � �

�

� �

� �

�

�

� �� � � �

(31)

Substituting Eqs. (11) and (22) in (31), we have

* 1

2 1

* 1

2 2

1 1

1 1 2 2

( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( )

ˆ2 ( ) [ ( ) ]

2 [ ( ) ( )] 2 [ ( ) ( )].

T T T

m

T T

m

T

T T

s s

V e t Qe t e t PB K K t x t

e t PB K K t r t

e t P B B

tr K t M K t tr K t M K t

� �

�

�

�

� �

� � �

�

� � �

� �

� �

�

� �� � � �

(32)

Ignore the dynamic response, according to the design
process of the disturbance observer, Eq. (32) can be
written as

* 1

2 1

* 1

2 2

1 1

1 1 2 2

1

1

1

2

1

( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( )

2 [ ( ) ( )] 2 [ ( ) ( )]

( ) ( ) 2 [ ( ) ( ) ( )]

2 [ ( ) ( ) ( )]

2 [ ( )

T T T

m

T T

m

T T

s s

T T T T

s m

T T T T

s m

V e t Qe t e t PB K K t x t

e t PB K K t r t

tr K t M K t tr K t M K t

e t Qe t tr K t M S B Pe t x t

tr K t M S B Pe t r t

tr K t

�

�

� �

�

�

� � �

�

� �

� � �

�

�

� �

�

� �� � � �

�

�

� 1 1

1 2 2( )] 2 [ ( ) ( )].T T

s sM K t tr K t M K t� ��� �� � �

(33)

By Eqs. (27)-(28), we have

2
( ) 0T

p mV e Qe q e t� � � � �� , (34)

where 0mq 
 is the minimum eigenvalue of Q . Hence

the equilibrium state 0ce � of the closed-loop system

consisting of Eqs. (19)-(20) and Eqs. (26)-(28) is

uniformly stable and its solution ( )ce t is uniformly

bounded. Furthermore Eq. (34) implies
2( )e t L	 and so

lim ( ) 0t e t� � .

V. Numerical Simulation

The coefficient matrices of system (5) are

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

A

� �
� �
� �
� �

� � �
� �
� �
� �
� �� �

,

0 0 0 0

0 0 0 0

0 0 0 0

0.0327 0.0327 0.0327 0.0327

0.424 0.424 0 0

0 0 0.424 0.424

B

� �
� �
� �
� �

� � �
� �� �
� ��
� �

�� �� �

,

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

C

� �
� �� � �
� �� �

.

Here, the values of mA , mB in Eq. (6) are chosen as:

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

8.005 0 0 4.0025 0 0

0 94.8064 0 0 23.4048 0

0 0 94.8093 0 0 23.4048

mA

� �
� �
� �
� �

� � �
� �� �
� �� �
� �

� �� �� �

110*mB b� ,

where mA is from an LQR design. 1b is the first

column of the plant actuation matrix B .

The simulations are given with the following
parameters:

4 4B I� �� , ( ) [0, 0, 0, 0.8 1.4 2.2]Tt� � ， ， , 40t � , 10r � ,

610*Q I� , [10, 10,10,10]TS � .

The initial values are set to:

(0) (0) [0,0,0,0,0,0]Tmx x� � , 1 (0) [0, 0, 0, 0, 0, 0]Tik � ,

2 (0) [5, 5, 5, 5]ik � � � ,.

With the initial values, the attitude tracking errors of
the four-rotor helicopter are shown in Fig. 3.
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Fig. 3. The simulation results of the helicopter system with external

disturbance

From the simulation results, it can be seen that there
are transient tracking errors of the attitude angles at the
time instants at 40s, but with the effect of the designed
controller, the tracking errors can go to zero
asymptotically in a very short time.

VI. Conclusions

In this paper, an adaptive control scheme is proposed
for the MIMO flight control system with unknown
disturbance based on a disturbance observer, which is
proposed to approximate the external disturbance. Due to
the fact that the direct adaptive control has some
limitations at dealing with the modeling error and
external disturbance, the disturbance observer we
introduced can greatly improve the system’s
anti-interference capability. Simulation results also
demonstrate the effectiveness of the proposed scheme in
this paper.
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