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Abstract—Convolved Gaussian process (CGP) is a type Gaus-
sian process modelling technique applicable for multiple-input
multiple-output systems. It employs convolution processes to
construct a covariance function that models the correlation
between outputs. Modelling using CGP involves learning the
hyperparameters of the latent function and the smoothing kernel.
Conventionally, learning involves the maximization of the log
likelihood function of the training samples using conjugate
gradient (CG) or particle swarm optimization (PSO) methods. We
propose to use PSO to minimize the model error. In this way, a
clearer direct indication of the quality of the current solution
during the optimization process can be obtained. Simulation
results on a dynamical system show that our method is able
to learn appropriate CGP models and achieve better predictive
performance compared with CG when the searching space is not
well defined.

I. INTRODUCTION

Gaussian Process (GP) modelling is a well established data
driven technique that has been successfully applied to many
areas of science and engineering [1], [2]. A major advantage of
GP is that it involves far less parameters compared with para-
metric models such as artificial neural networks (ANN) and
fuzzy models. These parameters, also called hyperparameters,
are obtained through a learning process using a training input-
output dataset. While GP modelling for multiple-input single-
output (MISO) systems is quite well established, they are not
easily extendable to multiple-input multiple-output (MIMO).

A GP model is specified by a covariance function that
captures the characteristics of the training dataset. This func-
tion has to be semi-definite. For MIMO systems, it must
capture the dependencies of all the observations by the auto-
covariance as well as the cross-covariance. While there are
many suitable choices of auto-covariance functions for MISO
systems, it is not clear how such a covariance function can be
determined for MIMO problems [3]. One approach is to con-
struct the covariance function using convolution processes [4].
This idea was first implemented using Dependent Gaussian
Process Models (DGPs) [5], where each output is the linear
convolution of a smoothing kernel (filter) and Gaussian white
noises (latent functions). Convolved Gaussian Process Models
(CGPs) generalize DGPs by allowing latent functions other
than Gaussian white noise [6], [7]. The hyperparameters of
the smoothing kernel and latent function are learnt from the
training dataset. Inferences are made in the same way as

standard GP models.
The hyperparameters can be obtained by maximizing the

log likelihood function. This optimization is commonly solved
using conjugate gradient (CG) methods. However, CG can
get stuck in local optimal instead of reaching the global
optimal. Particle Swarm Optimization (PSO) has been used
as an alternative to CG to overcome this problem [8], [9]. In
these works, the fitness (objective) function being optimized
is still the log likelihood function. In this paper, we propose
an alternative way to learn the hyperparameters of a CGP
model. Instead of maximizing the log likelihood function, we
minimize the error of the output produced by the model. The
optimization is performed through a PSO algorithm with the
mean squared error of the predicted and actual outputs as
its fitness function. Simulation results on a dynamical system
modelling problem suggest that our approach can be used to
learn CGP models effectively. The advantage of our method
is that it provides a clearer direct indication of the quality of
the current solution during the optimization process.

The rest of this paper is organized as follows. Section II
provides a brief overview of CGPs. In Section III, we discuss
our PSO algorithm for CGP hyperparameters learning. Simu-
lation results are then presented in Section IV to demonstrate
the effectiveness of our method. Finally, Section V concludes
the paper.

II. CONVOLVED GAUSSIAN PROCESS MODELS

A. Modelling

For a system with N inputs and M outputs, let x ∈ RN

and y(x) ∈ RM denote the vector-valued input and output
respectively. In CGP, each output yd(x) is modelled as

yd(x) = fd(x) + εd(x) (1)

for d = 1, 2, . . . ,M , where εd(x) is an independent Gaussian
white noise. The function fd(x) is the linear convolution of a
smoothing kernel Hd(x) and a latent function u(x):

fd(x) =

∫
Hd(x− τ)u(τ)dτ (2)

The correlation between outputs are derived from the la-
tent function u(x) which influences on all output functions.
Basically, this latent function can be any suitable random
process. If it is a Gaussian white noise process, then we have a
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DGPs model. CGPs allows a wider choice of latent functions
to match the modelling requirements of different physical or
dynamical systems [7].

In general, more than one latent function can be used. Let
there be Q groups of latent functions and the qth group has
Rq smoothing kernels. Then the dth output function would
become

fd(x) =

Q∑
q=1

Rq∑
k=1

∫
Hk

d,q(x− τ)ukq (τ)dτ (3)

The covariance between output yd(x) and yd′(x
′) can be

expressed as:

cov [yd(x), yd′(x
′)] = cov [fd(x), fd′(x

′)] +

cov [εd(x), εd′(x
′)] δd,d′ (4)

where δd,d′ is the Kronecker delta function. The cross-
covariance between fd(x) and fd′(x′) is given by (5). Thus,
data modelling using CGPs basically involves obtaining the
appropriate smoothing kernels and latent functions that reflect
the covariance of the outputs.

The output function in (3) is a linear combination of
independent random functions. Hence if these functions are
Gaussian processes, then fd(x) will also be a Gaussian pro-
cess. In this case, the smoothing kernels are given by

Hk
d,q(γ) =

νkd,q

∣∣∣Pk
d,q

∣∣∣1/2
(2π)M/2

exp

[
−1

2
(γ)TPk

d,q(γ)

]
(6)

where νkd,q is a length-scale coefficient, Pk
d,q is an N × N

precision matrix for the smoothing kernel. To simplify the
model further, the covariance between latent functions in each
group, denoted kq(η) is assumed the same and is Gaussian:

kq(η) =
υq |Pq|1/2

(2π)M/2
exp

[
−1

2
(η)TPq(η)

]
(7)

where υq is the length-scale coefficient, Pk
d,q and Pq are N ×

N precision matrices.
In this paper, we shall assume that Rq = 1 for all Q

groups of latent functions. Moreover, the precision matrices
of the smoothing kernels are assumed to be the same for each
group of latent functions. Under this assumption, given the
smoothing kernel (6) and latent function covariance (7), the
covariance of the outputs can be expressed as:

Kfd,fd′ (x,x
′) = cov [fd(x), fd′(x

′)]

=

Q∑
q=1

νd,qνd′,qυq

(2π)M/2 |P |1/2
exp

[
−1

2
(x− x′)TP−1(x− x′)

]
(8)

where P = P−1d + P−1d′ + P−1q . Note that this multiple-
output covariance function maintains a Gaussian form, i.e.
Kfd,fd′ (x,x

′)∼N (x− x′|0,P).

B. Inference

Similar to standard GP models, given the set of observations
{xj ,yj}Jj=1, a Gaussian process prior can be defined for the
output functions, i.e.

f(x) ∼ GP(µ(x),Kf ,f (x,x
′)) (9)

where f(x) = [f1(x), f2(x), ..., fM(x)]
T and has entries

fd(x) = [fd(x1), fd(x2), ..., fd(xJ)]
T. Without loss of gen-

erality, we assume that these are zero mean processes. The
covariance matrix Kf ,f is a block partitioned matrix with
block entries given by (8). Computational complexity for the
covariance matrix is high because Kf ,f ∈ RNJ×NJ is high
dimensional. Sparse approximations have been proposed to
reduce the complexities of CGPs [6].

The key to using (8) to model the data is to correctly
learn the hyperparameters Θ. Approaches for learning these
hyperparameters is the main topic of this paper and will be
discussed in subsequent sections. Given the hyperparameters,
a prior distribution (the marginal likelihood) is given by

p(y|X,Θ) ∼ N (y|0,Kf ,f + Σ) (10)

where Σ is a diagonal matrix of noise variances
{
σ2
d

}M
d=1

.
The observed outputs y and the predicted outputs y∗ for an
input x∗ under the Gaussian prior have the following joint
distribution:[

y
y∗

]
∼ N

(
0,

[
Kf ,f +Σ Kf ,f∗

Kf∗,f Kf∗,f∗

] )
(11)

The predictive distribution is Gaussian with mean µ̂(x∗) and
variance v̂ar(x∗). Thus,

y∗|X,y,x∗ ∼ N (µ̂(x∗), v̂ar(x∗)) (12)

µ̂(x∗) = Kf∗,f [Kf ,f + Σ]
−1

y (13)

v̂ar(x∗) = Kf∗,f∗ −Kf∗,f [Kf ,f + Σ]
−1

Kf ,f∗ (14)

where yT = [(y11...y1J1
) (y21...y2J2

) ... (yM1...yMJM
)].

cov [fd(x), fd′(x
′)] = E

 Q∑
q=1

Rq∑
k=1

∫
Hk

d,q(x− τ)ukq (τ)dτ

Q∑
q=1

Rq∑
k=1

∫
Hk

d′,q(x′ − τ ′)ukq (τ ′)dτ ′


=

Q∑
q=1

Rq∑
k=1

kq(τ, τ ′)

∫
Hk

d,q(x− τ)Hk
d′,q(x′ − τ)dτ (5)
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C. Learning

From the Bayesian viewpoint, learning a convolved Gaus-
sian process model involves computing the predictive distri-
bution of a new target value y∗,

P (y∗|X,y,x∗) =

∫
P (y∗|Θ,X,y,x∗) P (Θ|X,y) dΘ

(15)
given a set of observations (x,y) and a new test value x∗.
In most situations, this integral is analytically intractable. A
possible solution is to use numerical integration approaches
such as Monte-Carlo methods. However, the computational
burden is very high.

An alternative approach is to perform maximum likelihood
optimization where the log of the marginal likelihood, given
by

L (Θ) = −1

2
yTK−1y,yy − 1

2
log |Ky,y| −

MJ

2
log2π (16)

is the cost function for optimization. Here, Ky,y = Kf ,f + Σ.
The set of hyperparameters Θ can then be obtained by
using conjugate gradient (CG) optimization. However, it is
well known that CG techniques produce results that are very
dependent on the initial values for cost functions that have
many local optima. Thus the optimization often needs to be
repeated with different initial values. Evolutionary optimiza-
tion techniques can be used to overcome this shortcoming.

III. PSO FOR CGPS LEARNING

Particle Swarm Optimization (PSO) is an evolutionary
computation technique inspired by the social behaviour of
organisms [10]. Many particles are initialized simultaneously
where each individual one represents a solution to the prob-
lem. A particle then moves around in the search space and
optimizes itself according to its own experience as well as
that of the whole population. A fitness function is used to
evaluate each particle and only ‘qualified’ particles survive in
the competition. After several iterations, with the accumulation
of “experience”, the optimal or near optimal solution can be
obtained.

PSO has previously been used to replace CG as a more
robust optimization method for maximizing the log-likelihood
function given by (16) [8], [9]. The experimental results in
both of these papers indicate that PSO is able to avoid getting
stuck in local optima and finds the near-optimal values.

In this paper, we use PSO to obtain the hyperparameters in
a more direct way. Instead of maximizing the log-likelihood
function, we seek to minimize the model error. This model er-
ror can be measured by the mean squared error (MSE) between
the actual output and that produced from the model. MSE
is a common and reasonable measure of assessing predictive
performance when the number of observations is large enough.
Given a current set of hyperparameters, the covariance matrix
Ky,y of the outputs can be obtained. This covariance matrix
is then used to compute the predicted outputs using (13).
For a system with multiple outputs, the MSE values of each
individual output are calculated independently. This learning

Algorithm 1 CGPs Learning using PSO

Require:
1: Particles Θ, PSO parameters;

Ensure:
2: while t < Tmax and err(t− 1) > Err do
3: for i = 1→ Np do
4: Evaluation particles fitness:f(xt

i);
5: if f(xt

i) > f(pbestt−1i ) then
6: pbestti = pbestt−1i

7: else
8: pbestti = xt

i

9: end if
10: if f(pbestti) > f(gbestt−1) then
11: gbestt = pbestti
12: end if
13: Update Particles:xt+1

i and vt+1
i

14: end for
15: iteration = t+ 1;
16: Compute err(t);
17: end while
18: Output: the optimized particle Θopt.

approach is similar to that for training an ANN. The advantage
is that it is able to provide a clearer direct indication of the
quality of the current solution during the optimization process.

The PSO algorithm used here is shown in Algorithm 1. Each
particle Θ is given by

Θ = {ΘK1, ...,ΘKM ,ΘL1, ...,ΘLQ, } (17)

where ΘKd = {νd1, νd2, ..., νdQ,Pd} for d = 1, . . . ,M are
the hyperparameters of the smoothing kernels in (6), and
ΘLq = {υq,Pq} for q = 1, . . . , Q are the hyperparameters
of the latent function covariances in (7). In each iteration, the
fitness value of all Np particles are evaluated. The position
xt
i and velocity vt

i of each particle is then updated according
to local and global best ’experience’ given by pbestti and
gbestt respectively.

At the beginning of the process, we generally want better
global search ability and therefore a larger inertia factor is
preferred. Towards the end of optimization, a smaller inertia
factor will provide better local search ability. This is achieved
by using a nonlinear time-varying inertia factor:

ωt = ωend + (ωstart − ωend)exp(−k × (
t

Tmax
)) (18)

where ωstart and ωend are pre-determined start and final
values of the inertia factor respectively. k is a factor controlling
the shape of the equation and Tmax is the maximum number
of iterations. The algorithm terminates when the maximum
number of iterations Tmax is reached or the model error err(·)
falls below a preset threshold Err. Θopt denotes the final
solution.
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Fig. 1: Average MAE for single-output dynamical system
modelling.

TABLE I: Comparison of two PSO approaches with different
population sizes

Np
MAE Var

PSO/1 PSO/2 PSO/1 PSO/2
10 0.2297 0.2355 1.52e-02 2.44e-02
25 0.0054 0.0047 9.05e-03 3.64e-03
50 0.0022 0.0021 8.66e-03 4.37e-03

100 0.0011 0.0012 9.14e-03 9.74e-04

IV. SIMULATION RESULTS

A. Single-Output Modelling

The modelling of a non-linear dynamical system is used to
evaluate the effectiveness of our approach to learning CGPs.
This system is described by the following difference equation:

y(k) = 0.893y(k − 1) + 0.037y2(k − 1)

−0.05y(k − 2) + 0.157u(k − 1)

−0.05u(k − 1)y(k − 1) (19)

where u(k) is the input and y(k) is the output. Although
this dynamical system has only one input and one output, the
inputs to the CGPs will be u(k − 1), y(k − 1) and y(k − 2),
making it a three-input model. 1000 observations are generated
using random inputs u ∼ U(−2, 4). For the noise term in (1),
zero-mean Gaussian white noise with unit variance is used.

In the first experiment, we aim to verify that our approach
in using PSO to optimize the model error is effective. Here,
PSO/1 denotes our approach and PSO/2 denotes using PSO
to maximize the log-likelihood function. Only a single output
is used here for modelling to simplify the comparison. Ten
simulations are performed for each population size with the
same 200 training and 50 test data from the 1000 observations
randomly generated. Table I shows the results in terms of mean
absolute error (MAE) and average variance (Var). Overall,
both approaches result in models that produce similar MAE
and variances in the predicted outputs. Moreover the results
suggest that a population of 25 to 50 is a suitable choice for
this problem.

In the second experiment, we want to determine the effect of
the size of hyperparameters search space. Two different cases

TABLE II: Results of Linear Relationship

MAE SE
PSO CG PSO CG

y1 1.41E-04 4.46E-04 0084 0.0327
y2 1.11E-04 2.18E-04 0.147 0.0446

TABLE III: Results of Nonlinear Relationship

MAE SE
PSO CG PSO CG

y1 4.41E-04 5.36E-04 0.0065 0.043
y2 3.57E-04 8.11E-04 0.0064 0.0356

are considered here. In the first case, we assume that we have
prior knowledge of the range of values for the parameters in
(17). More specifically, they are

νd,i, υq ∈ {1, 2}
αi, βj ∈ {0, 1}

(20)

where αi and βj are the elements of the diagonal precision
matrices Pd and Pq respectively. In the second case, we
do not assume any prior knowledge of the range of values.
The average MAE obtained using our PSO algorithm and
those using CG are shown in Figure 1 over 10 independent
simulations. The results show that when the search space
is constrained, models obtained using PSO and CG both
perform equally well. Figure 2a confirms that the predicted
results are very close to the actual values. However, when the
search space is unconstrained, PSO outperforms CG by a wide
margin. Figure 2b shows that while the output predicted by the
PSO model is still very close to the actual values, there are
some clear deviations with the CG model.

B. Two-output Modelling

Systems with multiple-outputs can be modelled in two
different ways. One is to use multiple single-output models
and the other is to provide a single model for all outputs at
the same time. While the first approach is often simpler, the
latter approach is able to capture correlation between outputs.
For example, a robot arm system with multiple degrees of
freedom has multiple outputs that are strongly correlated. An-
other example is the prediction of steel mechanical properties
in [11], where the yield and tensile strength are predicted from
the chemical compositions and grain size. These two “outputs”
are highly correlated.

We shall continue to use the dynamical system in (19). Since
it has only one output y (denoted y1 here), a second output y2
will be created which is a function of y1. Two such functions
are considered, one linear and the other nonlinear, given by
y2 = −y1 and y2 = exp(y1) respectively. Two different sets
of data, each has 200 samples, are selected from the 1000
randomly generated observations for training. The test data
consists of 50 samples which are different from the training
samples.

Tables II and III show the performances of using PSO and
CG, averaged over 10 simulations. The same results are also
shown in Figure.3 with an indication of the deviations. For
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(a) Models with Certain Search Space (b) Models with Uncertain Search Space

Fig. 2: Predicted outputs of the single-output simulations. “yreal”, “CGpre” and “PSOpre” refer to the actual output and the
predicted outputs of CGPs produced using CG and PSO respectively.

(a) y2 = −y1 (b) y2 = exp(y1)

Fig. 3: Multiple-Output dynamical system modelling results: average mean absolute error and 2 standard errors (divided by
0.01).

both outputs in both systems, the models produced by using
PSO exhibit smaller average MAE and standard error (SE)
values.

The benefit of using multiple-output models is illustrated
when there are missing data in one of the two outputs. When
we have full knowledge for both outputs, there is almost no
difference in using independent single-output GP models (IGP)
and CGP models, as shown in Figures 4a and 4c. However, if
a section of 27 samples is taken out of y2 while 70 samples
of y1 in the same interval, then IGP fails to capture the output
in the missing interval. On the other hand, CGP is able to

learn the correlation between the outputs and make use of
that knowledge to fill in the gap for y2.

V. CONCLUSION

We proposed a new approach to using PSO for learning CGP
models based on minimizing the model error. This is different
from previous works which apply PSO to maximize the log-
likelihood function. The advantage of our method is that it
provides a clearer direct indication of the quality of the current
solution during the optimization process. Through simulations,
we have shown that our method is able to produce the same
quality of results as previous PSO methods. The results also
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(a) Output y1 for IGP model (b) Output y2 for IGP model

(c) Output y1 of CGP model (d) Output y2 of CGP model

Fig. 4: Effects of missing data for Independent single-output GP models and CGP model.

demonstrate that CGP with our PSO produces better models
compared with CG when the parameter search space is large
or uncertain. Furthermore, we demonstrated that for MIMO
system modelling, CGP is able to learn the output correlations
and therefore should be used when there are missing data in
one of the outputs.
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