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Abstract—the problem of asymptotic stability for Takagi-
Sugeno (T-S) fuzzy Hopfield neural networks with time-
varying delays is studied in this paper. Based on the 
Lyapunov functional method, new delay-dependent stability 
criteria are derived in terms of Linear Matrix Inequalities 
(LMIs) that can be calculated easily by the LMI Toolbox in 
MATLAB. The proposed approach does not involve free 
weighting matrices and can provide less conservative results 
than some existing ones. Besides, numerical examples are 
given to show the effectiveness of the proposed approach. 

Keywords—asymptotic stability; T-S fuzzy model; Hopfield 
neural networks; time-varying delay; uncertainty 

I.  INTRODUCTION  
Hopfield neural networks (HNNs) were first 

introduced by Hopfield [1]. The dynamic behavior of 
HNNs has been widely studied due to their potential 
applications in signal processing, combinatorial 
optimization and pattern recognition [2]-[4]. These 
applications are mostly dependent on the stability of the 
equilibrium of neural networks. Thus, the stability 
analysis is a necessary step for the design and applications 
of neural networks. Sometimes, neural networks have to 
be designed such that there is only global stable 
equilibrium. For example, when a neural network is 
applied to solve the optimization problem, it must have 
unique equilibrium which is globally stable. 

Both in biological and artificial neural networks, the 
interactions between neurons are generally asynchronous 
which inevitably result in time delays. Time-delay is often 
the main factor of instability and poor performance of 
neural network systems [5]. Therefore, lots of efforts have 
been made on stability analysis of neural networks with 
time-varying delays in recent years [6]-[9]. The free-
weighting matrix method was proposed to investigate the 
delay-dependent stability [10], and some less conservative 
delay-dependent stability criteria for systems with time-
varying delay were presented [11]-[16]. However, 
Researchers have realized that too many slack variables 
introduced will make the system synthesis complicated, 
lead to a significant increase in the computational burden, 
and cannot result in less conservative results indeed [17]-
[19]. In practical systems, there always are some uncertain 
elements, and these uncertainties may come from 
unknown internal or external noise, environmental 
influence, and so on. Hence, robust stability analysis for 

uncertain time-delay systems has been the focus of 
intensive research in recent years [10], [12], [20]. 

It is well-known that the T-S fuzzy models have been 
very important in academic research and practical 
applications, and the fuzzy logic theory has shown to be 
an efficient method to dealing with the analysis and 
synthesis issues for complex nonlinear systems [21]-[24]. 
Very recently, some results have been produced in the 
study of stability analysis of T-S fuzzy Hopfield neural 
networks systems with time-varying delays [25]-[27], To 
the best of our knowledge, the robust stability problem for 
uncertain fuzzy HNNs with time-varying interval delays 
has not been fully investigated, which remains as an open 
and challenging issue. 

In this paper, the problem of stability analysis for T-S 
fuzzy HNNs with time-varying delays is considered. Based 
on Jensen integral inequality and some important Lemma, 
new sufficient conditions are derived in terms of LMIs. By 
constructing a Lyapunov-Krasovskii function without free-
weighting matrices approach, the proposed criteria in this 
paper are much less conservative than some existing 
results. Numerical examples are given to show the 
applicability of the obtained results. The rest of this paper 
is arranged as follows. Section Ⅱ gives problem statement 
and some preliminaries used in later sections. Section Ⅲ 
presents our main results. Section Ⅳ provides the 
numerical examples and Section Ⅴ concludes the paper. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

Throughout this paper, nR  and n m×R  denote the n -
dimensional Euclidean space and the set of all n m×  real 
matrices, respectively. A real symmetric matrix 

0( 0)X > ≥  denotes X  being a positive definite 
(positive semi-definite) matrix, and ( )X Y> ≥  means 
X Y− ( )0> ≥ . The superscript T  denotes the 

transpose. The notation * represents the symmetric terms 
in a symmetric matrix. I  is used to denote an identity 
matrix with proper dimension. 

The model of Hopfield neural networks can be 
expressed as follows: 

( ) ( ) ( ( ))y t Ay t Bg y t J= − + +           (1) 

where 1 2( ) ( ( ), ( ), , ( ))T n
ny t y t y t y t= ∈ R  is the 
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state vector associated with the neurons, 

1 2( , , , ) 0nA diag a a a= >  is a positive diagonal 

matrix, ( ) n n
ij n nB b ×

×= ∈ R  is the interconnection 
matrix, 

1 1 2 2( ( )) ( ( ( )), ( ( )), , ( ( )))T
n ng y t g y t g y t g y t=  is 

the neuron activation function vector, 

1 2( , , , )T
nJ J J J=  is a constant external input vector. 

Hopfield neural networks with time-varying delays 
have been widely investigated in recent years, and several 
stability criteria have been obtained [13-15], for instances. 
Meanwhile, the stability of Hopfield neural networks with 
uncertainties has received much research attention [23], 
for example. The model of Hopfield neural networks with 
time-varying delays can be described as follows: 

( ) ( ) ( ) ( ) ( ( ))y t A A y t B B g y t= − + Δ + + Δ  

( ) ( ( ( )))C C g y t d t J+ + Δ − +                (2) 

It is reasonable to assume that the neural network (2) 
has only one equilibrium point, denoted 
by *y = * *

1 2( , ,y y  *, )T
ny . By making a 

transformation *( ) ( )x t y t y= − , system (2) can be 
rewritten as 

( ) ( ) ( ) ( ) ( ( ))x t A A x t B B f x t= − + Δ + + Δ  
( ) ( ( ( )))C C f x t d t+ + Δ −      

where

1 1 2 2( ( )) ( ( ( )), ( ( )), , ( ( )))T
n nf x t f x t f x t f x t= , and 

* *( ( )) ( ( ) ) ( )i i i i i i if x t g x t y g y= + − , 

( ( ( )))f x t d t− 1 1( ( ( ( ))),f x t d t= −

2 2( ( ( ))),f x t d t− , ( ( ( ))))T
n nf x t d t−   

and 
* *( ( ( ))) ( ( ( )) ) ( )i i i i i i if x t d t g x t d t y g y− = − + − . 

In this brief, we will consider the following HNNs 
with uncertainties represented by a T-S fuzzy model, and 
the i th rule of the T-S fuzzy model is of the following 
form: 

Plant rule i : 

IF  1 1 2 2( ) ( ) , , ( )i i i
n nz t is M and z t is M and z t is M  

THEN  ( ) ( ) ( ) ( ) ( ( ))i i i ix t A A x t B B f x t= − + Δ + + Δ  

                         ( ) ( ( ( )))i iC C f x t d t+ + Δ −                    
(3) 

2( ) ( ), [ ,0], 1,2, ,x t t t h i qϕ= ∈ − =  

where ( 1,2, , )i
jM j n=  is the fuzzy set, 

1 2( ) [ ( ), ( ), , ( )]nz t z t z t z t=  is the premise variable 

vector, ( ) nx t ∈ R  is the system state variable, the time 

delay 1 20 ( )h d t h≤ ≤ ≤  is the time-varying delay with 

an upper bound of 2h , ( )d t μ≤  and q  is the number of 

IF-THEN rules. iAΔ ， iBΔ  and iCΔ  are unknown 

matrices that represent the time-varying parameter 
uncertainties and are assumed to be of the form 

1 2 3[ ] ( )[ ]i i i i i i i iA B C H F t E E EΔ Δ Δ =           (4) 

where iH , 1iE ， 2iE  and 3iE  are known real 

constant matrices, and ( )iF t denotes unknown time-
varying matrix functions. It is assumed that all elements 

( )iF t  are Lebesgue measurable satisfying 

( ) ( )T
i iF t F t I≤ . 

Using a standard fuzzy inference method, the system 
(1) is inferred as follows: 

1
( ) ( ( ))[ ( ) ( ) ( ) ( ( ))

q

i i i i i
i

x t z t A A x t B B f x tμ
=

= − + Δ + + Δ∑
                                     ( ) ( ( ( )))]i iC C f x t d t+ + Δ −  (5) 

where 

1

1

( ( ))( ( )) , ( ( )) ( ( )),
( ( ))

n
ii

i i jq
j

j
j

w z tz t w z t M z t
w z t

μ
=

=

= = ∏
∑

  (6) 

from the fuzzy sets theory, we have ( ( )) 0,i z tμ ≥  

1
( ( )) 1

q

i
i

z tμ
=

=∑ for all t . 

To obtain our main results, we introduce the following 
lemmas. 

Lemma 1 [28] Let , ,M P Q  be the given matrices such 
that 0Q > , then 

10 0
T

TP M
P M Q M

M Q
−⎡ ⎤

< ⇔ + <⎢ ⎥−⎣ ⎦
 

Lemma 2 [29] For any constant matrix m mM ×∈ R , 
TM M= 0, 0γ> >  is a scalar, : mω →R R  is a 

vector function, then the following inequality holds: 

0 0 0
( ( ) ) ( ( ) ) ( ) ( )T Ts ds M s ds s M s ds

γ γ γ
ω ω γ ω ω≤∫ ∫ ∫  

Lemma 3 [18] For any scalars 1 0,W ≥ 2 0,W ≥ ( )d t  is 

a continuous function and satisfies 1 2( )h d t h< < , then 

1 2 1 2 1 2

1 2 2 1 2 1

3 3min ,
( ) ( )
W W W W W W

d t h h d t h h h h
⎧ ⎫+ ++ ≥ ⎨ ⎬− − − −⎩ ⎭

 

Lemma 4 [30] Assume that Ψ , M  and E are real 
matrices with appropriate dimensions and ( )F t  is a 

matrix function satisfying ( ) ( )TF t F t I≤ . Then, 

( )MF t NΨ +  [ ( ) ] 0TMF t N+ <  holds if and only if 
there exists a scalar 0ε >  satisfying 

1 0T TMM N Nε ε−Ψ + + < . 
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III. MAIN RESULTS 

A. Time-varying Delay Systems without Uncertainties 
To discuss asymptotically stable for the system (5), we 

first consider the case without uncertainties, that is 

iAΔ =0, iBΔ =0 and iCΔ =0. For this case, the 
asymptotically stable condition is obtained in the 
following theorem. 

Theorem 1.  For given scalars 1 20 h h≤ <  and 

12 2 1h h h= − , system (5) is asymptotically stable if there 

exist matrices 0P > , 0( 1,2,3)iQ i> = , 1 0R > , 

2 0R >  with appropriate dimensions such that the 
following LMIs hold: 

00 0 12 13

, 1

2

* 0 , 1,2, , 1,2,3,4.
* *

i j i i

i j R i q j
R

Φ +Φ Φ Φ⎡ ⎤
⎢ ⎥Φ = − = =⎢ ⎥
⎢ ⎥−⎣ ⎦

(7) 

where 

00

1

2
00

3

0 0 0
* 0 0 0 0
* * 0 0 0
* * * (1 ) 0 0
* * * * 0 0
* * * * * 0

i i i

i

PB PC
Q

Q
Qμ

Ψ⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

Φ = ⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(8) 

00 1 2 3i
T

i iA P PA Q Q QΨ = − − + + +                         (9) 

1 1

12

1 1

1 1

0
0
0

T
i

i

T
i

T
i

h A R

h B R

h C R

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                (10) 

12 2

13

12 12

12 12

0
0
0

T
i

i

T
i

T
i

h A R

h B R

h C R

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                              (11) 

1 1

1 1

1 2 1 2

1 12 1 12

2 2
01

12 12

1 2

1 12

0 0 0 0

3 3 3 3* 0 0 0

* * 0 0

4 4* * * 0 0

* * * * 0 0
* * * * * 0

R R
h h

R R R R
h h h h

R R
h h

R R
h h

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

−Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

(12) 

1 1

1 1

1 2 1 2

1 12 1 12

2 2
02

12 12

1 2

1 12

0 0 0 0

3 3* 0 0 0

3 3* * 0 0

4 4* * * 0 0

* * * * 0 0
* * * * * 0

R R
h h

R R R R
h h h h

R R
h h

R R
h h

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

−Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(13) 

1 1

1 1

1 2 1 2

1 12 1 12

2 2
03

12 12

1 2

1 12

3 30 0 0 0

3 3* 0 0 0

* * 0 0

4 4* * * 0 0

* * * * 0 0
* * * * * 0

R R
h h

R R R R
h h h h

R R
h h

R R
h h

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

−Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(14) 

1 1

1 1

1 2 1 2

1 12 1 12

2 2
04

12 12

1 2

1 12

3 30 0 0 0

* 0 0 0

3 3* * 0 0

4 4* * * 0 0

* * * * 0 0
* * * * * 0

R R
h h

R R R R
h h h h

R R
h h

R R
h h

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

−Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(15) 
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Proof. Choose a Lyapunov-Krasovskii functional 
candidate as follows: 

1 2 3 4( ) ( ) ( ) ( ) ( )t t t t tV x V x V x V x V x= + + +  

where  

1( ) ( ) ( )T
tV x x t Px t=  

1 2
2 1 2( ) ( ) ( ) ( ) ( )

t tT T
t t h t h

V x x s Q x s ds x s Q x s ds
− −

= +∫ ∫  

3 3( )
( ) ( ) ( )

t T
t t d t

V x x s Q x s ds
−

= ∫  

1

0

4 1( ) ( ) ( )
t T

t h t
V x x s R x s dsd

θ
θ

+
= ∫ ∫  

1

2
2( ) ( )

h t T

h t
x s R x s dsd

θ
θ

−

− +
+∫ ∫  

Then, the time derivative of ( )tV x  along the trajectory 
of system (5) yields 

1( ) 2 ( ) ( )T
tV x x t Px t=                                                   

(16) 

2 1 2( ) ( )( ) ( )T
tV x x t Q Q x t= +  

1 1 1( ) ( )Tx t h Q x t h− − −  

2 2 2( ) ( )Tx t h Q x t h− − −                        (17) 

3 3( ) ( ) ( )T
tV x x t Q x t=  

3(1 ) ( ( )) ( ( ))Tx t d t Q x t d tμ− − − −      (18) 

4 1 1 12 2( ) ( )( ) ( )T
tV x x t h R h R x t= +  

1
1( ) ( )

t T

t h
x s R x s ds

−
−∫

1

2
2( ) ( )

t h T

t h
x s R x s ds

−

−
−∫             

(19) 

By using Lemma 2 and Lemma 3, we have 

1
1( ) ( )

t T

t h
x s R x s ds

−
−∫  

= 1( )
( ) ( )

t T

t d t
x s R x s ds

−
−∫

1

( )

1( ) ( )
t d t T

t h
x s R x s ds

−

−
−∫  

1( ) ( )
{[( ( ) ) ( ) ] / ( )

t tT

t d t t d t
x s ds R x s ds d t

− −
≤ − ∫ ∫  

1 1

( ) ( )

1 1[( ( ) ) ( ) ] / ( ( ))}
t d t t d tT

t h t h
x s ds R x s ds h d t

− −

− −
+ −∫ ∫  

1 2 1 2

1 1

3 3max{ , }W W W W
h h
+ +≤ −                            (20) 

where 

1 1
1

1

( ) ( )
*( ( )) ( ( ))

T R Rx t x t
W

Rx t d t x t d t
−⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦
 

1 1
2

1 1 1

( ( )) ( ( ))
( ) * ( )

Tx t d t R R x t d t
W

x t h R x t h
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

and 

1

2
2( ) ( )

t h T

t h
x s R x s ds

−

−
−∫  

=
1

2

( )

2 2( )
( ) ( ) ( ) ( )

t h t d tT T

t d t t h
x s R x s ds x s R x s ds

− −

− −
− −∫ ∫  

1 1

2 1( ) ( )
{[ ( ) ) ( ) ] / ( ( ) )

t h t hT

t d t t d t
x s ds R x s ds d t h

− −

− −
≤ − −∫ ∫  

2 2

( ) ( )

2 2[ ( ) ) ( ) ] / ( ( ))}
t d t t d tT

t h t h
x s ds R x s ds h d t

− −

− −
+ −∫ ∫  

3 4 3 4

12 12

3 3max{ , }W W W W
h h
+ +≤ −                         (21) 

where 

2 21 1
3

2

( ) ( )
*( ( )) ( ( ))

T R Rx t h x t h
W

Rx t d t x t d t
−− −⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦
 

2 2
4

2 2 2

( ( )) ( ( ))
( ) * ( )

Tx t d t R R x t d t
W

x t h R x t h
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

It can be shown from (7),(15)-(20) and Lemma 1 that 

1 2 3 4( ) ( ) ( ) ( ) ( )t t t t tV x V x V x V x V x= + + +  

≤ ,
1

( ( )) ( ) ( )
q

T T
i i j

i
z t t tμ ξ ξ

=
Φ∑ 0≤ ， 1, 2,3,4.j =  

where ( )T tξ = 

1 2[ ( ) ( ) ( ) ( ( ) ( ( )) ( ( ( )))]x t x t h x t h x t d t f x t f x t d t− − − −
 

Hence, system (5) is asymptotically stable. This completes 
the proof. 

When there is no fuzzy and no uncertainties in (5), the 
system is reduced to 

( ) ( ) ( ( )) ( ( ( )))x t Ax t Bf x t Cf x t d t= − + + −    (22) 

Corollary 1 For given scalars 1 20 h h≤ <  and 

12 2 1h h h= − , system (22) is asymptotically stable if 

there exist matrices 0P > , 0( 1,2,3)iQ i> = , 1 0R > , 

2 0R >  with appropriate dimensions such that the 
following LMIs hold: 

00 0 12 13

1

2

* 0 , 1, 2,3,4.
* *

j

j R j
R

Φ + Φ Φ Φ⎡ ⎤
⎢ ⎥Φ = − =⎢ ⎥
⎢ ⎥−⎣ ⎦

   (23) 

where 

00

1

2
00

3

0 0 0
* 0 0 0 0
* * 0 0 0
* * * (1 ) 0 0
* * * * 0 0
* * * * * 0

PB PC
Q

Q
Qμ

Ψ⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

Φ = ⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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00 1 2 3
TA P PA Q Q QΨ = − − + + +  

0 jΦ  are defined as in theorem 1. 

B. Time-varying Delay Systems with Uncertainty 
Now, we shall discuss the feasible robust stability 

criteria for time-varying delay systems with uncertainty. 

Theorem 2.  For given scalars 2 1 0h h> ≥  

( 12 2 1h h h= − ) and 0ε > , the system(5) is robust 
stability if there exist matrices 

0,P > 0( 1,2,3),iQ i> = 1 0,R > 2 0R > of 
appropriate dimensions and scalar 0ε >  such that the 
following LMIs hold: 

,

* 0 0,
* *

T
i j i iM N

I
I

ε
ε

⎡ ⎤Φ
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

1, 2, , ,i q= 1, 2,3, 4j =    

(24) 

where ,i jΦ  is defined in (7), and 

1 1

12 2

0
0
0
0
0

i

i

T T
i

T T
i

PH

M

h H R

h H R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,   

0
0
0

0
0

i

i

i

T
A

T
i T

B

T
C

E

N
E

E

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Proof. Assume that inequalities (24) hold, from Lemma 1 
and Lemma 4, 

, ( ) [ ( ) ] 0T
i j i i i iM F t N M F t NΦ + + <  

( 1, 2, , ;i q= 1, 2,3, 4)j =  

hold.  

When ( ) ,
ii i i AA A H F t E= +  ( )

ii i i BB B H F t E= +  

and ( )
ii i i CC C H F t E= +  in (7), it can be verified that 

, ( ) [ ( ) ]T
i j i i i iM F t N M F t NΦ + +  are exactly the left-

hand side of (7).Hence, system (5) is robust stability from 
theorem 1. 

When there is no fuzzy in (5), the system is reduced to 

( ) ( ) ( ) ( ) ( ( ))x t A A x t B B f x t= − + Δ + + Δ  
( ) ( ( ( )))C C f x t d t+ + Δ −                             

(25) 

Corollary 2 For given scalars 1 20 h h≤ <  and 

12 2 1h h h= − , system (25) is asymptotically stable if 

there exist matrices 0P > , 0( 1,2,3)iQ i> = , 1 0R > , 

2 0R >  with appropriate dimensions and scalar 0ε >  
such that the following LMIs hold: 

* 0 0,
* *

T
j M N

I
I

ε
ε

⎡ ⎤Φ
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

1, 2,3, 4j = ,              (26) 

where jΦ  is defined in (23), and 

1 1

12 2

0
0
0
0
0

T T

T T

PH

M

h H R

h H R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0
0
0

0
0

T
A

T
T
B
T
C

E

N
E
E

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

IV. NUMERICAL EXAMPLES 
In this section, three numerical examples are given to 

illustrate the effectiveness of the proposed methods. 

Example 1 In this example, we consider the DNNs (5) 
with 

1

3 0
0 2

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

0.4 0.3
0.4 0.6

B
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0.5 0.1
0.2 0.5

C
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

2

2 0
0 3

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
2

0.9 0.4
0.5 0.7

B
−⎡ ⎤= ⎢ ⎥−⎣ ⎦

, 2

0.7 0.6
0.3 0.1

C
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

2μ = , 0i i iA B CΔ = Δ = Δ = , 1, 2,i =  
The time-varying delays are taken as 

( )d t = 20.1 sin t+  and the activation function is 

described by ( )f x =  
x x

x x

e e
e e

−

−

−
+

 , the membership 

function is 2
1 1( ( )) sinz t xμ = , 2

2 1( ( )) cosz t xμ = , 
using MATLAB LMI Toolbox to solve the LMIs in 
theorem 1, some positive definite feasible matrices are 
given as follows 

0.3777 -0.1747
-0.1747 1.2997

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

0.3915 -0.2512
-0.2512 0.9871

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

2

0.3077 -0.2371
-0.2371 1.0812

Q ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 3

0.0263 -0.0238
-0.0238 0.1124

Q ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

0.5338 -0.2606
-0.2606 0.5518

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

0.1196 -0.0438
-0.0438 0.4276

R ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and the state trajectories of the systems with different 
initial conditions are showed as follows (Figs. 1-3) 
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Fig. 1. The state trajectories with initial state [ ](0) 1 2 Tx = −  

 
Fig. 2. The state trajectories with initial state [ ](0) 2 4 Tx = −  

 
Fig. 3. The state trajectories with initial state [ ](0) 2 4 Tx = −  

Figs.1-3 show that the state trajectories of the systems 
are converging to zero with different initial state, that is to 
say, system (5) is asymptotically stable when theorem 1 
holds. 

Example 2  In this example, we consider the DNNs (22) 
and  corollary 1 with 

2 0
,

0 2
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0.7 0.8
,

0.5 0.3
B ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

0.2 0.2
0.1 0.2

C
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

2μ = . 

The activation function is described by 

( )
x x

x x

e ef x
e e

−

−

−=
+

, the maximum allowable upper bound 

of 2h  with given 1h  is showed in table Ⅰ. 

TABLE I.  MAXIMUM ALLOWABLE UPPER BOUND OF 2h  WITH 

GIVEN 1h  

1h  0.0001 0.001 0.01 0.05 0.1 

Muralisankar 
et al. [15] <16.17 <16.17 <16.17 <16.17 16.1614 

Wu et al.[20] <11.08 <11.08 <11.08 <11.08 11.0727 

Corollary 1 16.4021 15.8384 14.1293 11.3221 9.4548 

According to the table Ⅰ, this example shows that our 
results are better than those results discussed in[15,20] 
when 1h  is small enough, although free-weighting matrix 
approach is adopted in [15,20]. 

Example 3 In this example, we consider the DNNs (25) 
and corollary 2 with 

2 0
,

0 2
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0.7 0.8
,

0.5 0.3
B

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

0.2 0.2
0.1 0.2

C
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
，

0.02 0
,

0 0.02A B cE E E
⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

 

sin 0
( )

0 cos
t

F t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, ,H I= 2μ = , 

the activation function is described by ( )
x x

x x

e ef x
e e

−

−

−=
+

, 

the maximum allowable upper bound of 2h  with given 

1h  is showed in table Ⅱ. 

TABLE II.  MAXIMUM ALLOWABLE UPPER BOUND OF 2h  WITH 

GIVEN 1h  

1h  0.01 0.05 0.1 0.15 0.2 

Corollary 2 0.3224 0.2833 0.2177 0.1998 0.2194 

The time-varying delays are taken as 
( )d t = 0.05 +  20.2sin t , using MATLAB LMI 

Toolbox to solve the LMIs in corollary 2, some positive 
definite feasible matrices are given as follows: 

0.0364 0.0039
0.0039 0.0371

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

0.0621 0.0213
0.0213 0.0600

Q ⎡ ⎤= ⎢ ⎥
⎣ ⎦

, 

2

0.0272 0.0090
0.0090 0.0263

Q ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 3

0.0025 0.0009
0.0009 0.0021

Q ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

1

0.1196 0.0157
0.0157 0.1450

R ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2

0.0372 0.0012
0.0012 0.0493

R ⎡ ⎤= ⎢ ⎥
⎣ ⎦

, 

and the state trajectories of the systems with different 
initial conditions are showed as follows(Figs. 4-6) 
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Fig. 4. The state trajectories with initial state [ ](0) 2 4 Tx = −  

 
Fig. 5. The state trajectories with initial state [ ](0) 2 2 Tx = −  

 
Fig. 6. The state trajectories with initial state [ ](0) 2 4 Tx = −  

Table Ⅱ shows the maximum allowable upper bound 
of time-delay with given the allowable lower bound. From 
figs.4-6, it can be seen that the state trajectories of the 
systems are converging to zero with different initial state, 
that is to say, system (5) is robust stable when corollary 2 
holds. 

V. CONCLUSION 
In this paper, we present improved criteria to test 

robust stability of delay HNNs with time-varying delay 
and uncertainties. The obtained stability conditions are 
expressed with LMIs. By comparing the experimental 
results from numerical examples, it is demonstrated the 
improvement of our proposed criteria over some existing 
ones. 
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