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Abstract— In this paper, a neurodynamic optimization ap-
proach is proposed for robust eigenstructure assignment problem
of second-order descriptor systems via state feedback control.
With a novel robustness measure serving as the objective func-
tion, the robust eigenstructure assignment problem is formulated
as a pseudoconvex optimization problem. Two coupled recurrent
neural networks are applied for solving the optimization problem
with guaranteed optimality and exact pole assignment. Simula-
tion results are included to substantiate the effectiveness of the
proposed approach.

I. INTRODUCTION

Eigenstructure assignment is a vitally important problem
in linear control systems design. Since poles (eigenvalues)
and their associated eigenvectors of a closed-loop system
greatly impact on the control performance such as the stability
condition and the convergence speed, pole assignment is an
effective approach to place poles of the close-loop system at
any desired locations on the complex plane via a state feedback
law with appropriate gains. In practice, robust control is more
desirable as the systems cannot be precisely modeled or the
systems are subject to parameter uncertainties. The robust pole
assignment problem is to find the feedback gains such that the
robustness of the eigensystem is optimized. Kautsky et al. [20]
first formulated the robust pole (eigenstructure) assignment
by means of minimizing the spectral condition number of
the eigenvector matrix. Alternative robustness measures and
various optimization approaches in linear control systems
design were widely investigated [22], [24]–[26], [32], [35],
[41].

Second-order linear systems constitute an important class of
systems, as they can capture the dynamic behaviors of many
natural phenomena. There exist numerous applications in vari-
ous fields, such as vibration and structural analysis, spacecraft
control and robotics control [1], [2], [7]. Furthermore, as
second-order systems can be viewed as special cases of high-
order systems, synthesis approach to second-order systems
may be applied for higher-order systems. A few results on
robust pole assignment in second-order linear systems are
available in the literature [3], [5], [8], [9], [23], [30]. In
specific, [30] proposed a robustness measure for second-order
control by solving a generalized linear eigenvalue assignment
problem subject to structured perturbations. However, most
existing algorithms cannot guarantee the achievement of global
optimality due to the complexity and nonconvexity of the
applied measures. In addition, most proposed methods are not
applicable for on-line computing.

Neurodynamic optimization based on recurrent neural net-
works is competent for solving optimization problems in

real time. The essence of neurodynamic optimization lies
in its parallel and distributed information processing capa-
bility. Various neurodynamic optimization approaches have
been widely developed with guaranteed optimality, expended
applicability, improved convergence properties, and reduced
model complexity, e.g., [10], [11], [14], [15], [18], [21], [27]–
[29], [34], [36]–[38]. There have been some investigations on
developing neurodynamic optimization approaches to robust
pole assignment [12], [13], [16], [17], [19], [26]. Especially,
[12] achieved robust approximate pole assignment for second-
order systems using neural network computation.

This paper focuses on robust pole assignment in second-
order linear systems via proportional-plus-derivative coordi-
nate control. The robust pole assignment problem is formu-
lated as a pseudoconvex optimization problem with a novel
robustness measure as the objective to be minimized. Different
from existing results, the proposed neurodynamic optimization
approach is able to solve the problem on-line with guaranteed
optimality and exact pole assignment. The rest of this paper is
organized as follows. In Section II, the optimization problem
is formulated. In Section III, a neural network approach used
in the optimization of robust control is presented. Section IV
shows the simulation results. Finally, Section V concludes the
paper.

II. PROBLEM FORMULATION

A. Second-order Descriptor System

Consider the following second-order descriptor linear con-
trol system:

𝑀𝑥̈+𝐷𝑥̇+𝐾𝑥 = 𝐵𝑢, (1)

where 𝑥 ∈ ℜ𝑛 and 𝑢 ∈ ℜ𝑟 are respectively state vector and
input vector, and 𝑀,𝐷,𝐾 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑟 are system
coefficient matrices. 𝑀 may be singular or nonsingular. The
system (1) is assumed to satisfy the following conditions:

rank(𝑀) = 𝑛0, 0 < 𝑛0 ≤ 𝑛,
rank[𝑠2𝑀 + 𝑠𝐷 +𝐾𝐵] = 𝑛, for all 𝑠 ∈ ℂ.

As usual, the following control law can be applied to control
the states of the system:

𝑢 = 𝐹0𝑥+ 𝐹1𝑥̇, 𝐹0, 𝐹1 ∈ ℜ𝑟×𝑛. (2)

The closed-loop system via state feedback is then as follows:

𝑀𝑥̈+ (𝐷 −𝐵𝐹1)𝑥̇+ (𝐾 −𝐵𝐹0)𝑥 = 0. (3)
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The dynamics of this closed-loop system are governed by
the eigenvalues and eigenvectors of the closed-loop quadratic
pencil:

𝑃𝑐(𝜆) = 𝜆
2𝑀 + 𝜆(𝐷 −𝐵𝐹1) + (𝐾 −𝐵𝐹0). (4)

The generalized eigenvalues of the quadratic polynomial are
given by the 𝑛+𝑛0 values of 𝜆 ∈ ℂ for which det(Pc(𝜆)) =
0. The corresponding right and left eigenvectors are defined,
respectively, to be nonzero vectors 𝑧 and 𝑤 satisfying

(𝜆2𝑀 + 𝜆(𝐷 −𝐵𝐹1) + (𝐾 −𝐵𝐹0))𝑧 = 0, (5)

𝑤𝐻(𝜆2𝑀 + 𝜆(𝐷 −𝐵𝐹1) + (𝐾 −𝐵𝐹0)) = 0. (6)

There exist full rank matrices 𝑍, 𝑊 ∈ ℜ(𝑛+𝑛0)×𝑛 that
simultaneously satisfy

𝑀𝑍Λ2 + (𝐷 −𝐵𝐹1)𝑍Λ + (𝐾 −𝐵𝐹0)𝑍 = 0, (7)

Λ2𝑊𝐻𝑀 + Λ𝑊𝐻(𝐷 −𝐵𝐹1) +𝑊
𝐻(𝐾 −𝐵𝐹0) = 0, (8)

where the columns of 𝑍 and 𝑊 are the right and left
eigenvectors, respectively, and Λ ∈ ℂ

(𝑛+𝑛0)×(𝑛+𝑛0) is in
Jordan canonical form with the eigenvalues of 𝑃 (𝜆) on the
diagonal; i.e., Λ = diag(𝜆1, 𝜆2, ..., 𝜆𝑛+𝑛0

).
Open-loop system (1) and closed-loop system (3) can be

rewritten in the first-order state space model:

𝑀𝑐𝑧̇ = 𝐴𝑐𝑧 +𝐵𝑐𝑢, (9)

where

𝑀𝑐 =

[

𝐼𝑛 0
0 𝑀

]

, 𝐴𝑐 =

[

0 𝐼𝑛
−𝐾 −𝐷

]

,

𝐵𝑐 =

[

0
𝐵

]

, 𝑧 =

[

𝑥
𝑥̇

]

.

The closed-loop control system is then as follows:

𝑀𝑐𝑧̇ = 𝐴𝑐𝑐𝑧, where 𝐴𝑐𝑐 =

[

0 𝐼𝑛
−𝐾 +𝐵𝐹0 −𝐷 +𝐵𝐹1

]

.

(10)

According to the conclusion in [8], for the closed-loop
system (3), the right normal eigenvector matrix 𝑍∞ associated
with the infinite eigenvalues is denoted by [0 𝑍∞]𝑇 , where 𝑍∞
satisfies:

𝑀𝑍∞ = 0; rank(𝑍∞) = 𝑛− 𝑛0. (11)

Then, right eigenvectors 𝑍 for the first-order system can be
express as:

𝑍 =

[

𝑍 0
𝑍Λ 𝑍∞

]

. (12)

Given an arbitrary parameter matrix 𝐺∞ ∈ ℜ𝑛×(𝑛−𝑛0), the
left eigenvalue matrix 𝑊𝐻 can be expressed as follows:

𝑊𝐻 = [𝐼𝑛+𝑛0 0]

[

𝑍 𝑍∞
𝑀𝑍Λ −𝐷𝑍∞ +𝐵𝐺∞

]−1
. (13)

Pole assignment for second-order system is to find feedback
matrix 𝐹0 and 𝐹1 satisfying (7) and (8), which can be found
as follows:

[𝐹0 𝐹1] = 𝐺

[

𝑍
𝑍Λ

]†
,

𝑀𝑍Λ2 +𝐷𝑍Λ +𝐾 = 𝐵𝐺,

(14)

B. Robustness Measure

For linear control systems, several robustness measures have
been investigated [6]. Among these measures, Kautsky et
al. [20] first proposed a robust measure using the spectral
condition number of the eigenvector matrix, as the closed-loop
poles move at a rate no greater than the condition number per
unit change in the norm of the variation of the closed-loop
system matrix. Later, Lam and Yan [22] used the Frobenius
norm to replace the spectral norm in the condition number and
its additive substitutes. For second-order system, [30] proposed
a measure as follows:

𝑐(𝜆) =

√∣𝜆∣4 + ∣𝜆∣2 + 1∥𝑤𝐻𝑀∥2∥𝑧∥2
∣𝜆∣∣𝑤𝐻(2𝜆𝑀 −𝐷)𝑧∣ . (15)

Due to the complexity and nonconvexity of (15), it may not be
applied widely. Meanwhile, a robustness measure is proposed
in [33] for descriptor systems inspired by the idea in linear
control systems. A robustness measure is given as follows:

𝐽 :=
1

2
(∥𝑍∥𝐹2 + ∥𝑍−1∥𝐹2 + ∥𝑊∥𝐹2 + ∥𝑊−1∥𝐹2 ). (16)

As a measure of the sensitivity of closed-loop eigenvalues,
we use the condition numbers 𝜅2(𝑍) and 𝜅2(𝑊 ) of 𝑍 and 𝑊
with respect to the spectral norm. In view of the fact that 𝑊
can be represented by 𝑍, 𝜅2(𝑍) can be considered as a suitable
robustness performance index for computational convenience,
where

𝑍 =

[

𝑍 0
𝑍Λ 𝑍∞

]

.

Therefore, the robust pole assignment can be formulated as
follows:

min 𝐽 := 𝜅22(𝑍)

s.t. 𝑀𝑍Λ2 +𝐷𝑍Λ +𝐾 = 𝐵𝐺,

𝑀𝑍∞ = 0, (17)

where 𝜅22(𝑍) = 𝜆max/𝜆min, and 𝜆max and 𝜆min represent the
nonzero largest and the smallest eigenvalues of 𝑍𝑇𝑍.

According to [4] (Theorem 3. 2. 10), any rational function
is pseudoconvex if its numerator is nonnegative (positive)
and convex and its denominator is positive and concave.
As 𝜆max(𝑍

𝑇𝑍) is positive and convex, and 𝜆min(𝑍
𝑇𝑍) is

positive and concave, the objective function 𝜅22(𝑍) is shown
to be pseudoconvex. (17) can be reformulated as follows
with a pseudoconvex objective function and a linear constraint
𝐴𝑧 = 0.

min 𝜅̄(𝑧)

s.t. 𝐴𝑧 = 0, (18)

2771



where 𝑧 = [vec(𝑍)𝑇 vec(𝐺)𝑇 ]𝑇 ∈ ℜ𝑛(𝑛+𝑛0+𝑚), 𝐴 = [Λ2 ⊗
𝑀 +Λ⊗𝐷+ 𝐼 ⊗𝐾 ∣ 𝐼 ⊗𝐵] ∈ ℜ𝑛(𝑛+𝑛0)×𝑛(𝑛+𝑛0+𝑚); 𝜅̄(𝑧)
is equal to to 𝜅22(𝑍) in terms of 𝑧.

III. NEURODYNAMIC APPROACH

A. Condition Number Minimization

Neurodynamic optimization approaches were successfully
applied for convex optimization problems. It was until recent
years that several recurrent neural networks were developed
for solving pseudoconvex or nonconvex optimization problems
[11], [15], [18], [27]–[29]. In particular, a one-layer recurrent
neural network [11] is suitable for solving linearly constrained
pseudoconvex optimization problems such as the problem (18)
formulated in the preceding section:

𝜖1
𝑑𝑧

𝑑𝑡
= −(𝐼 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴)∇𝜅̄(𝑧)−𝐴𝑇 𝑔(𝐴𝑧), (19)

where 𝜖1 is a positive scaling constant, ∇𝜅̄(𝑧) is the gradient
of the given objective function 𝜅̄(𝑧), 𝑔(𝑦) is a vector valued
discontinuous activation function with its components defined
as

𝑔(𝑦) =

⎧

⎨

⎩

1, 𝑦 > 0;
0, 𝑦 = 0;
−1, 𝑦 < 0.

It is proved in [11] that the state vector 𝑧 of the recurrent
neural network in (19) is globally convergent to the feasible
region 𝑆 = {𝑧∣𝐴𝑧 = 0} in finite time 𝑡𝑆 and stays there
thereafter, where 𝑡𝑆 is given by

𝑡𝑆 =
𝜖1∥𝐴𝑧0∥1
𝜆min(𝐴𝐴𝑇 )

, (20)

where 𝑧0 is the initial state vector. It is also proved in [11]
that the recurrent network is globally convergent to the unique
optimal solution of a pseudoconvex optimization problem with
linear equality constraints.

The gradient of the objective function 𝜅̄(𝑧) can be expressed
as:

∇𝜅̄(𝑧) = vec(∂𝜅22(𝑍)/∂𝑍), (21)

according to the chain rule:

∂𝜅22(𝑍)

∂𝑍
=
∂𝜆max(𝑍

𝑇𝑍)/𝜆min(𝑍
𝑇𝑍)

∂𝑍𝑇𝑍

∂𝑍𝑇𝑍

∂𝑍

∂𝑍

∂𝑍

= 2
∂𝑍

∂𝑍
𝑍
𝜆min𝑣max𝑣

𝑇
max − 𝜆max𝑣min𝑣

𝑇
min

𝜆2min

, (22)

where 𝜆max and 𝜆min are the largest and smallest eigenval-
ues of 𝑍𝑇𝑍, respectively; 𝑣max and 𝑣min are corresponding
eigenvectors of 𝜆max and 𝜆min, respectively. It is found that

∂vec(𝑍𝑇 )

∂vec(𝑍𝑇 )
= [𝐼 𝐼 ⊗ Λ], (23)

∇𝜅̄(𝑧) is then expressed as

∇𝜅̄(𝑧) =2vec([𝐼 𝐼 ⊗ Λ]⋅

vec(𝑍
𝜆min𝑣max𝑣

𝑇
max − 𝜆max𝑣min𝑣

𝑇
min

𝜆2min

]𝑇 ))𝑇 . (24)

B. Eigenvector Computation

In (24), ∇𝜅̄(𝑧) contains the eigenvalues and eigenvectors
of 𝑍𝑇𝑍. Noting that explicitly computing the eigenvalues
and eigenvectors is intractable, it is desirable to apply a
neural network to compute the eigenvalues and eigenvectors
in real time. Recently, several neurodynamic approaches were
developed for computing eigenvalues and eigenvectors of
symmetric positive definite matrices; e.g., [31], [39], [40].
In particular, the state and output equations of a simple
and concise model for computing the largest and smallest
eigenvalues and corresponding eigenvectors can be applied as
follows [40].

𝜖2
𝑑

𝑑𝑡

(
𝑢max

𝑢min

)
=

(
𝑍𝑇𝑍𝑢max − 𝑢𝑇

max𝑢max𝑢max

−(𝑍𝑇𝑍 − 𝜆max𝐼)𝑢min − 𝑢𝑇
min𝑢min𝑢min

)
,

(25)

where 𝑢max, 𝑢min ∈ ℜ𝑛 are state vectors corresponding to
the eigenvectors of maximum and minimum eigenvalues. 𝜖2
is a positive scaling constant such that 𝜖2 ≪ 𝜖1. RNN1 is
supposed to converge more rapidly than the control system in
a smaller time scale, whereas RNN2 is supposed to converge
more rapidly than RNN1 in an even smaller time scale. The
convergence of the recurrent neural networks (RNN1 and
RNN2) can be proportionally expedited by using small time
constants 𝜖1 and 𝜖2. The multiple time-scales characteristics
will be well illustrated in the illustrative example. The output
equation of (25) are

𝜆max = 𝑢̄
𝑇
max𝑢̄max, 𝑣max =

𝑢̄max√
𝜆max

, (26)

𝜆min = −𝑢̄𝑇min𝑢̄min + 𝜆max, 𝑣min =
𝑢̄min√
𝜆min

, (27)

where 𝑢̄max and 𝑢̄min are respectively the equilibrium of
𝑢max and 𝑢min. According to [40], the convergence of the
recurrent neural network can be guaranteed with any nonzero
𝑢max(0) and 𝑢min(0). The robust pole assignment processes
for synthesizing second-order descriptor control system is de-
lineated in Fig. 1, where one recurrent neural network (RNN1)
described in (19) is responsible for conditioning optimization
and another recurrent neural network (RNN2) described in (25)
is used for computing the largest and smallest eigenvalues and
corresponding eigenvectors.

IV. SIMULATION RESULTS

In this section, the simulation results of an illustrative exam-
ple will be discussed in detail to demonstrate the effectiveness
and characteristics of the proposed method. Consider a system
with the following system parameters

𝑀 =

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ , 𝐷 =

⎡

⎣

2.5 −1 0
−1 2.5 −2
0 −2 2

⎤

⎦ ,

𝐾 =

⎡

⎣

10 −5 0
−5 25 −20
0 −20 20

⎤

⎦ , 𝐵 =

⎡

⎣

1 0
0 0.5
0 1

⎤

⎦ .

The objective is to synthesize a robust state feedback controller
such that the closed-loop system poles are -1, -2, -3, -4, and
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+ M, D, K, B

F0, F1

RNN1

(z)

u x

RNN2

(vmax,vmin)

r

Fig. 1. Block diagram of the neurodynamics-based second-order descriptor
control system via robust pole assignment.
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Fig. 2. Transient behavior of the condition number 𝜅 in the second-order
descriptor system.

-5. So,

Λ =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0
0 −2 0 0 0
0 0 −3 0 0
0 0 0 −4 0
0 0 0 0 −5

⎤

⎥

⎥

⎥

⎥

⎦

,

Let 𝜖1 be 10−4 for RNN1 and 𝜖2 be 10−10 for RNN2 .
The minimum condition number of the eigensystem is 41.07.
Define 𝑍∞ = [0 0 1]𝑇 . Fig. 2 depicts the transient behavior of
the spectral condition number from random initiate states. Fig
3 illustrates the convergence of the constraint norm ∥𝑀𝑍Λ2+
𝐷𝑍Λ +𝐾 − 𝐵𝐺1∥2, which substantiates that the exact pole
assignment is achieved. The convergent values of 𝑍 and 𝐺

0 1 2 3 4 5 6 7

x 10
−7

0

5

10

15

20

25

30

35

t(s)

E
rr

or
 N

or
m

Fig. 3. Transient behavior of the constraint error norm in the second-order
descriptor system.

and corresponding 𝐹0 and 𝐹1 are presented as follows:

𝑍 =

⎡
⎣ 0.2882 0.1668 −0.3661 0.2788 0.0367

0.2868 0.2829 −0.0036 0.0009 0.0664
0.3023 0.3827 0.0847 −0.0674 0.2398

⎤
⎦ ,

𝐺 =

[
1.1595 0.3698 −4.1973 4.4576 0.6597
0.2800 1.5960 1.2359 −0.8191 1.7343

]
,

𝐹0 =

[ −1.0539 2.1755 3.5529
−4.4340 0.8462 2.1895

]
,

𝐹1 =

[ −4.6870 6.3693 −0.7977
−0.6921 −0.7588 −0.7814

]
,

Fig. 4 depicts the transient behaviors of state variables 𝑢max

and 𝑢min in RNN2 in second-order descriptor system, which
substantiates that the recurrent neural networks RNN2 will
converge within 0.1 nanoseconds. Figs. 5, 6, and 7 illustrate
the transient behaviors of the state vector 𝑧, 𝐺 of RNN1 and
the corresponding feedback gain matrix 𝐹0 and 𝐹1 in the
second-order descriptor system, respectively. Fig. 8 represents
the transient behaviors of the states 𝑥 and derivative states 𝑥̇
in second-order descriptor system.

V. CONCLUDING REMARKS

In this paper, a novel neurodynamic optimization approach
is proposed for synthesizing second-order descriptor control
systems via robust pole assignment. A novel robustness mea-
sure is defined and optimized. By minimizing the spectral
condition number of the eigensystem in real time, the pro-
posed approach is shown to be capable of making exact pole
assignment as well as obtaining the global optimal solution re-
gardless of initial conditions. In addition to guaranteed global
convergence, the proposed approach can compute the solutions
in real time, which renders its online tuning capability. Further
investigations of neurodynamics-based robust pole assignment
will be aimed at the extension of the present results for
synthesizing high-order systems and linear parameter-varying
systems.
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Fig. 4. Transient behaviors of state variables 𝑢max and 𝑢min in RNN2 in
second-order descriptor system.
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Fig. 5. Transient behaviors of the state vector 𝑍 in the second-order
descriptor system.
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Fig. 6. Transient behaviors of the state vector 𝐺 in the second-order
descriptor system.
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Fig. 7. Transient behaviors of the state feedback variables 𝐹0 and 𝐹1 in the
second-order descriptor system.
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Fig. 8. Transient behaviors of the states 𝑥 and derivative states (̇𝑥) in the
second-order descriptor system.
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