2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

Feature Ensemble Learning based on Sparse
Autoencoders for Image Classification

Yaping Lu Li Zhang
School of Computer Science School of Computer Science
and Technology & and Technology &

Provincial Key Laboratory
for Computer Information
Processing Technology,
Soochow University,
Suzhou 215006, Jiangsu,

Provincial Key Laboratory
for Computer Information
Processing Technology,
Soochow University,
Suzhou 215006, Jiangsu,

China China
20134227010@stu.suda.edu zhangliml@suda.edu.cn
.cn

Abstract—Deep networks are well known for their powerful
function approximations. To train a deep network efficiently,
greedy layer-wise pre-training and fine tuning are required.
Typically, pre-training, aiming to initialize a deep network, is
implemented via unsupervised feature learning, with multiple
feature representations generated. However, in general only the
last layer representation is to be employed because of its
abstraction and compactness being the best with comparisons to
the ones of lower layers. To make full use of the representations
of all layers, this paper proposes a feature ensemble learning
method based on sparse autoencoders for image classification.
Specifically, we train three softmax classifiers by using the
representations of different layers, instead of one classifier
trained by applying the last layer representation. Of the three
softmax classifiers, two are obtained by training stacked auto-
encoders with fine tuning, and the other one is obtained by
directly using a concatenation of two representations. To
improve accuracy and stability of a single softmax classifier, the
ensemble of multiple classifiers is considered, and some Naive
Bayes combination rules are introduced to integrate the three
classifiers. Experimental results on the MNIST and COIL
datasets are presented, with comparisons to other classification
methods.

Keywords—deep network; feature representation; feature
ensemble; autoencoder; softmax; Naive Bayes

L INTRODUCTION

Deep networks can compactly represent a significantly
larger set of highly nonlinear and highly varying functions than
shallow networks. Consequently, there has been significantly
recent interest in multilayered or deep models for represent-
ation of general data [1], such as deep belief networks (DBNs)
[2], convolutional restricted Boltzmann machines (RBMs) [3]
and hierarchical sparse autoencoders [4], with a particular
focus on imagery and audio signals. For these deep models,
upper layers are supposed to represent high-level abstractions
that explain the input observation, whereas lower layers extract
low-level features from it [5]. While the theoretical benefits of
deep networks in terms of their compactness and expressive

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1739

Bangjun Wang Jiwen Yang
School of Computer Science School of Computer Science
and Technology & and Technology &

Provincial Key Laboratory
for Computer Information
Processing Technology,
Soochow University,
Suzhou 215006, Jiangsu,
China
wangbanjun@suda.edu.cn

Provincial Key Laboratory
for Computer Information
Processing Technology,
Soochow University,
Suzhou 215006, Jiangsu,
China
jwyang@suda.edu.cn

power have been appreciated for many decades, until recently
it was not clear how to train such deep networks [6]. Since
gradient-based optimization starting from random initialization
appears to often get stuck in poor solutions [5]. In 2006, Hinton
et al. proposed a fast, greedy layer-wise unsupervised learning
algorithm to train DBNs efficiently [7], of which the key point
is that, first train one layer at a time in a greedy way, namely
pre-training, and then tune the whole network in terms of the
final criterion, namely fine tuning. By means of this strategy, a
satisfied and stable result is obtained for deep networks. As a
way to implement pre-training, unsupervised feature learning
plays a very important role in the training of deep networks,
and is often used to produce pre-processors and feature
extractors for image analysis systems [8]. In general, multiple
feature representations would be generated when training a
deep network, whereas only the last layer representation is to
be employed because of its abstraction and compactness being
the best with comparisons to the ones of lower layers.

Sparse autoencoder (SAE) [9], being a kind of model for
unsupervised feature learning, is an autoencoder, imposed with
a sparseness constraint on the hidden units, that tries to learn an
approximation to the identity function so as to output is similar
to input. Typically, a representation, instead of raw data,
learned via a sparse autoencoder is used as the input to train a
classifier. Softmax regression [10] is a common classifier that
generalizes logistic regression to classification problems where
the class label can take on more than two possible values. A
deep network that combines multiple sparse autoencoders and
a softmax classifier as a whole network is called stacked
autoencoders [11], on which we perform fine tuning so as to
obtain a final classifier with higher performance.

It is well known that an ensemble of multiple classifiers is
widely considered to be an effective technique for improving
accuracy and stability, with comparisons to a single classifier.
However, to ensure to get better performance, there are two
important issues needed to be taken into account, namely, one
being the diversity and accuracy of each classifier, and the
other being the combination rules or fusion rules [12]. There

are two methods to implement the diversity for ensemble
learning [13], one of which is to train multiple classifiers by
employing different feature sets [14, 15], just being the method
used in this paper. Moreover, the accuracy of an individual
classifier is also very important, since the poor classifiers can
suppress correct predictions of good classifiers [12]. Then, the
final issue is the combination rules of multiple classifiers.
Provided the labels are available, a simple voting rule [16] and
the Naive Bayes combination methods including MAX rule,
MIN rule and AVG rule can be used.

As discussed above, only the representation of last layer,
instead of raw data, is used to train a classifier. However, it is
true that multiple representations can be obtained when a deep
network is trained. Is there a way to utilize all the represent-
ations, instead of the last one? Thus, in this paper, as an
improvement, we propose a feature ensemble learning method
based on sparse autoencoders for image classification.
Specifically, we take fully all these representations learned by
pre-training two sparse autoencoders into account in the way
that utilizing the two representations to train three softmax
classifiers, namely, the so-called feature ensemble. In detail,
the first and the second softmax classifiers are achieved by
respectively exploiting the corresponding two representations
learned via sparse autoencoders, of course, with fine tuning
used for the classification performance, and as to the third
softmax classifier, we directly employ the concatenation of two
representations as the input of softmax classification model.
Note that although the stacked autoencoder that corresponds to
the first representation is a shallow network, we would still
perform fine tuning on it, since this can significantly improve
the performance of classifier. The reason why we choose the
present architecture is that we expect to use the way of feature
ensemble to fully utilize all the representations so as to finally
improve the classification performance. As for the deep
motivations, it is because the representations with different
abstraction levels have different advantages for classification,
so the feature ensemble method can integrate this advantages
so as to improve the performance finally.

After we have finished the training of three softmax
classifiers via feature ensemble, next, what we need to consider
is that how to integrate these classifiers so as to improve
recognition performance efficiently. Here we implement
diversity for classifiers by employing different feature sets to
train the three softmax classifiers, and in some ways fine
tuning and concatenation make the accuracies of the three
softmax classifiers be guaranteed. Therefore, combining the
three softmax classifiers to predict new data is feasible and
promising. Finally, we choose the Naive Bayes combination
methods as our combination rule, including MAX rule, MIN
rule and AVG rule.

The remainder of the paper is organized as follows. In
Section 2, we overview some related works about sparse
autoencoder, softmax regression and deep network. The
detailed processes of training the three softmax classifiers are
discussed in Section 3. Experimental results on the MNIST and
COIL datasets are presented in Section 4, with conclusions
provided in Section 5.

1740

II.

In this section, we briefly introduce some models used in
our paper, including sparse autoencoder used to obtain feature
representations, softmax regression used to classify images,
and deep network composed of the previous two models.

RELATED WORKS

Input Layer

Output Layer

Hidden Layer

Fig. 1. An autoencoder. The circles labeled “+1” are bias units correspond-

ing to the intercept terms. By, (X) is an activation function, which the

autoencoder tries to learn so as to the output L. is similar to the input x;.f) .
j

In general, we call the process from input layer to hidden layer as “encode”,
from hidden layer to output layer as “decode”.

A. Sparse Autoencoder

Sparse autoencoder is an autoencoder, an unsupervised
learning method that applies back propagation and sets the
target values to be equal to the inputs, imposed with a
sparseness constraint on the hidden units. In other words, a
sparse autoencoder is trying to learn an approximation to the
identity function, so as to output is similar to input.

Suppose the i th sample x” with label y is represented
as (x,y") where x” e R,y €{1,2,...,k}, and d denotes
the dimensionality of samples and % is the number of classes.

@M .
Let x;”,j€{l,2,...d} represent the j th feature for the
0)

sample X m samples are denoted as {(x”,y")\", .

Assume that d is 3, and the number of hidden units is 2, and

0 ; .
x;” denotes the j th output of output layer for the i th sample,
so the illustration of an autoencoder is given in Fig. 1.

For a sparse autoencoder, its cost function J(W,b)
requires minimizing

OO P C e | I,
+% (W) + ﬂﬁ;KL(p I ,S_,.]

where Ay, (X) is an activation function, W and b denote the

weights and biases of network respectively, also being our
optimal parameters. The first term tries to minimize the
difference between the output and the input. The second term
represents weight decay term in order to avoid over-fitting,

where A, is a weight decay parameter, and L is the number of
autoencoder network layers (in the context of this paper, L is
set to be 3), and s, represents the number of units for the / th
layer. W/.(,.I) denotes the weight between the i th unit of layer /

and the j th unit of layer /+1, and 5" is the bias associated
with unit ; in layer /+1. The last term is a sparse penalty term
where [controls the weight of this term, and p is a
sparseness parameter, and ;;j denotes the average activation

of hidden unit j , namely , _ lz[a®] in which a?
e

represents the activation of the j th unit of hidden layer for the

i th sample, and KL(-) is the Kullback-Leible (KL) divergence

given by

e 17
KL(pn p,]= plog£-+(1- p)log—~-
p,‘ l_p,'

Typically, p is set to be a small value close to 0. In other

words, we would like the average activation of each hidden
unit j to be close to 0. To satisfy this constraint, the hidden

unit’s activations must mostly be near 0. To achieve this, we
add an extra penalty term (namely the last term) to our cost
function that penalizes , deviating significantly from p .

The reason why we choose KL divergence as our penalty term
is that KL divergence is a standard function for measuring how
different two different distributions are, and it has the property

that KL[pH ;.S]:G if 5/ =p , and otherwise it increases

monotonically as ij diverges from p . Thus, minimizing this

~

penalty term has the effect of causing

to be close to p .

The optimization problem (1) can be solved by using the
back propagation algorithm, and the L-BFGS (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno) method is used
to update the parameters W and b .

B. Sofimax Regression

Softmax Regression is a classification model generalizing
logistic regression to classification problems where the class
label y can take on more than two possible values. Again,

suppose d and k are 3, then the softmax model is as Fig. 2.

@ \J—V P(y=1|x)
\J Q’—P P(y=2[x)
N

W P(y=3|x)

Input Layer Output Layer

Fig. 2. Softmax model. This model outputs the possibility of each class given

a sample x?.

1741

For a softmax classifier, the probability output function has
the form

i 0. o/ x
p(" =1x";0) e
i 0. Ty
h (X(i)): p(y()=2|x(),0) _ 1 eoz
’ . 07x”) :
p(y(i) =k | X(i);(_)) = ee,fx")
where @ € R"“"Vis the parameters of softmax model (bias unit

considered together), and 0, means the j th row of matrix 0

which could be found by minimizing
function J(0):

the following cost

J(0)=- iZl{y“):]’}log,—i +ﬁZA 6: (2)

i=l j=1

I |-

where 6, denotes the weight between the j th unit of input
layer and the i th unit of output layer, and 4, is also a weight

decay parameter, and 1{y”’ = j} is the indicator function with

1{y<.~>:j}:{l, if ' =j
0, if yW#j

Once we have the cost function of the softmax model, the
similar minimization procedure to SAE model is performed,
resulting in the optimal parameters 0 . For more details, refer
to [10].

C. Deep Network

Recall that after using the feature representations learned
by pre-training a sparse autoencoder as the input to train a
softmax model, to enhance the classification performance, a
fine tuning process is done on the whole network, typically
being a deep network.

"/7\0———>

N

P(y=1[x)

Input Layer ~ Hidden Layer 1 HiddenLayer2 Output Layer
(Raw Data) (Feature Set 1) (Feature Set 2) (Softmax)

Fig. 3. Stacked Autoencoders. Here, as we can see, the whole deep network
contains four layers, specifically, input layer with three units, two hidden

layers with two units for each, and output layer with three units. Namely, d

is assumed to be 3 as well as & .

Generally, if a neural network contains more than two
hidden layers, then we call it a deep network. Trying to train
such a deep network with an efficient method is called deep
learning. As we know, in 2006, Hinton et al. has proposed a
feasible and satisfying strategy to implement the training on
DBNSs in [7]. Instead of DBNs, here, we would train or fine
tune stacked autoencoders network, also being a deep network.
We give an illustration about this model in Fig. 3.

If we want to fine tune such a deep network, essentially a
multilayered softmax classifier with the cost function of (2),
the parameters learned by pre-training, instead of random
generation, are selected to initialize the deep model. What’s
more important, when calculate the partial derivatives of cost
function with respect to weights and biases, pay attentions to
that the activation function of two hidden layers is different
from output layer. After fine tuning is finished, a better and
more stable softmax classifier is generated.

III. FEATURE ENSEMBLE LEARNING

Generally, only the feature representation of last layer,
instead of raw data, is used to train a classifier. To utilize the
representations of all layers, we integrate them by training
multiple classifiers and employ some combination rules to
make the final decision. Specifically, we discuss the case of
two sparse autoencoders. Actually, our method can be
extended to more than two.

As discussed above, in this paper, we would train two
sparse autoencoders so as to get two representations of the raw
data. The first representation is used as the input of the second
sparse autoencoder in order to get the second representation.
Then, the two representations are concatenated to form the
third representation of the raw data. Now, we have all the
conditions to train the three classifiers corresponding to the
three representations. Note that for the first and second
classifiers, we need to perform fine tuning on the whole
network (stacked autoencoders) composed of the input layer,
feature representation layers and the softmax layer so as to
improve the performance of the classifiers. Even if the whole
network for the first classifier is a shallow network, we would
still do so. For the clear understanding of the whole process,

Fig. 4 gives an overview of the process of the feature ensemble.
Note that the fine tuning process does not illustrate in the Fig. 4.

Next, detailed descriptions for the training of three classifiers
are to be presented, respectively.

A. Softmax 2 Classifier

To make the whole system easy to understand, we shall
begin with the training of the softmax 2 classifier. According to
Fig. 4, we can get two kinds of feature representations
corresponding to raw input. Specifically, we first train a sparse
autoencoder (SAE 1 in Fig. 4) with HS, hidden units on raw
input x e R’
input layer and the hidden layer, represented as W™ €1
and b"" e R”*' . Then the raw data x can be transformed
into its first feature representation f, in the Feature Set I,
which could be represented by

in order to obtain the parameters between the
o HS, =d
RS

1742

‘/Feature Set 1 SAE 2
\\
— —

<__ Concatenate

—

1

Softmax 1 = m—

- ~
(Feature Set3)
\\ //

——

Softmax 3

Softmax 2

Fig. 4. Overview of Feature Ensemble, where rectangle represents the model
such as sparse autoencoder or softmax, and ellipse denotes the input or output
of a model, and the rhombus means some operation.

1,1 1,1
£, = Iy oo (WX D)

Next, again, we train the other sparse autoencoder (SAE 2
in Fig. 4) with HS, hidden units on the Feature Set 1 so as to
get the parameters between hidden layers, represented as
WD e R and b*P e R™™ | Similarly, x can be
transformed into its second feature representation f, in the
Feature Set 2, which could be represented by

2,1 2,1
f,= hW(ZJ)’h(ZJ) (W()f] +b')) .

In the end, we would train a classification model Softmax 1

(see Fig. 4) on the input Feature Set 2 to obtain the optimal
7 kx(HS; +1)

parameters 0 in (2), denoted as 0, e [®

Now, by the pre-trainings above, we have got the first
classifier Softmax 2 based on the Feature Set 2. However, its
classification performance is unsatisfying for the way of
greedy layer-wise pre-training, so that we need to operate fine
tuning on the whole network consisting of the input layer of
SAE 1, the hidden layer of SAE 1, the hidden layer of SAE 2
and the output layer of Softmax 1 in Fig. 3. Before fine tuning,
the initial parameters between two layers of the whole network

from left to right are set to be {W®*" b""}, (WD p>"
and and 0, . Then, with the raw data as input, the back

propagation algorithm is employed, based on which the final
optimal parameters about the whole network or deep network
are calculated. Finally, we obtain the first classifier Softmax 2.
Recall that the activation functions for two hidden layers and
output layer are different so that we should pay attentions to
the process of back propagation.

B. Softmax 1 Classifier

After the first classifier Softmax 2 has been achieved, we
have got what it takes to train the second one. In other words,
on the basis of the first classifier, all the parameters employed
to train the second one are available. Specifically, the Feature
Set 1 is used as the input to train Softmax 1 classifier (see Fig.

4), resulting in the model optimal parameters 0 in (2), denoted

o kel HS +1
as 0, e RMSD

, obtained.

So far, the second classifier Softmax 1 is generated,
corresponding to the Feature Set 1. Nevertheless, aiming for
the better classification performance, we also perform the fine
tuning on the whole network composed of the input layer of
SAE 1, the hidden layer of SAE 1 and the output layer of
Softmax 1, just like the model in Fig. 3 without the second
hidden layer. Before fine tuning, the initial parameters between
the input layer and the hidden layer, and the ones between the

hidden layer and the output layer are set to be {W"" b""}

and O, respectively. After fine tuning, the second classifier

Softmax 1 can be achieved finally. Also, we must be careful to
the activation functions of the hidden layer and output layer
when executing the back propagation.

Here, as we can see, the whole network fine-tuned with
three layers is a shallow network instead of a deep network.
Although the fine tuning is not employed to a shallow network
generally, we still do it just because this is able to improve the
accuracy and stability of the second classifier, so as to
contribute to the performance of the following ensemble of
multiple classifiers [12].

C. Softmax 3 Classifier

The two classifiers Softmax 1 and Softmax 2 with fine
tuning above are trained on the Feature Set 1 and Feature Set 2,
respectively. After taking into full account the representations,
namely Feature Set 1 and Feature Set 2, we use the
concatenation of these two representations as the input of our
third classifier Softmax 3 that is to be trained (see, Fig.4).
Specifically, Feature Set 1 and Feature Set 2 are concatenated
into one column, denoted as Feature Set 3. Namely, the

T
corresponding feature of x can be represented as [flr,sz J .

Then, the Softmax 3 is trained by using the softmax model
like Fig. 2 with the representation Feature Set 3 being the input.

After minimizing the cost function, we obtain the last classifier,

Softmax 3 with parameters 0, e [R*"5

D. Naive Bayes Combination Methods for Voting

After all the work above done, the final thing is to give the
voting rule for the ensemble of the three softmax classifiers.
Here, the Naive Bayes combination methods are considered, in
which assume that individual classifiers are mutually
independent; hence the name ‘“naive” [16, 17]. Three naive
Bayes methods, namely MAX rule, MIN rule and AVG rule,
are given below.

For a new sample x that is to be tested, when its label y
takes on the different possible values j e{l,2,....k}, we can

1743

get the corresponding predicted probabilities for the softmax
classifier ne{1,2,3}, here denoted as P, (x) which can be

expressed as

o, (1)

hoz (f2)’
h03 ([flrafzr]r)s lf n=3

The final value of label y is determined by the following
rules.

1) MAX Rule
Given a new sample x, the MAX rule is to get its label y

by

if n=1

P, (x)= ifn=2"

y=arg max max PW. (x) . (3)

jell,2,...k} ne{l,2,3}

2) MIN Rule

Given a new sample x, the MIN rule is to get its label y
by

max min P".(x).
jeil,2,..k} nefl,2,34 "V

4)

y=arg

3) AVG Rule
Given a new sample x, the AVG rule is to get its label y
by

N

y=arg max ZPW. (x)/N 5)

je{l,2,...k} oy

where N =3 here.

IV. EXPERIMENTAL RESULTS

In the examples below, we take into account two datasets,
MNIST dataset [18] and COIL dataset [19], to verify our
strategy proposed here. Moreover, K-nearest neighbor (KNN)
method is used as the comparison under the same datasets.

All numerical experiments are performed on the personal
computer with a 3.40GHz Intel(R) Core(TM) i3-3240 CPU and
3.15G bytes of memory. This computer runs on Windows 7,
with MATLAB 8.1.0.

A. Parameter Settings

As we can see, the sparse autoencoder construction in (1)
and the softmax classifier construction in (2) may appear
relatively complex, while the number of parameters that need
to be set is not particularly large, and they are initialized so as
to allow the sparse autoencoder to get good filters. Specifically,

for the two sparse autoencoders 4 =3e-3, f=3, p=0.1,

L=3, HS =100, HS, =100 and the activation function is

set to be sigmoid function, namely Ay, , (X) =1/1+e™™)

with W and b initialized randomly for the first time, and for
the softmax classifier 4, =le—4 and 0 is also initialized

randomly for the first time. The same parameters are used in all
examples and in all layers of the “deep” network, essentially a

deep softmax classifier. The values of m, k& and d depend on
the specific dataset, and these parameters are specified for the
specific examples. In all experiments, we consider the L-BFGS
as optimization algorithm with 400 iterations for sparse auto-
encoders and deep networks, and 100 iterations for softmax
classifiers.

B. Experiments on the MNIST Dataset

Consider the widely studied MNIST data, which has a total
of 60,000 training images and 10,000 testing images, each
28 x 28, for handwritten digits 0 through 9 (this means &£ =10).
In Fig. 5, we randomly give 100 images of the MNIST dataset.

In our experiments, 23,000 sequential images from the
beginning of the whole training set are selected as our
unlabeled training set to pre-train our two sparse autoencoders

so as to get the optimal parameters {W®"” b""} and

{WE b*" corresponding to the two representations, and

the last 20,000 images of the whole training set are selected as
training set to train our softmax classifiers. Note that, before
training the classifier, the training set with labels needs to be
transformed to another corresponding representation via the

parameters {W"" b""} and {W?*" b*"} learned through
the unlabeled data.

After the three softmax classifiers have been trained with
the unlabeled training set and labeled training set above, we
use the whole 10,000 testing images of MNIST data to test
them and report the recognition rates for these three classifiers.
In our method, by the Naive Bayes combination methods
discussed above, we can obtain the corresponding ensemble
results. For comparison, KNN classifier is performed by using
the same training set with labels and the same testing set. We
vary the parameter K from 1 to 10, and get the best recognition
rate of KNN classifier with K=4. All experimental results are
listed in TABLE L.

e L= Xiw\a

OGN RO Q YO
v—ad2 eox WL

2
7
A
5
9‘
b4
5
o
&
0

SN O NS N o

K
& |
/4
70
73
A
ou
63
&7
6 3

L
N
-

Fig. 5. Images from MNIST dataset.

As we can see in TABLE I, our methods get better
recognition rates with comparison to other 4 classifiers.
Moreover, when we utilize the Naive Bayes rules to make
decision, the AVG rule performs more efficiently than the MIN
rule and the MAX rule. For a new sample, if Softmax 2
misclassifies it, while the other 2 classifiers get the expected

prediction, then the AVG method has a good chance of
correcting the output of Softmax 2, and finally improves the
performance.

=
1‘:
<
?
2
‘
e

NGB b ey

Leibo® Hpeay
WHFAG 0 S Leewm

.
&
i
-
P
3
»
_¢

1744

Fig. 6. Images from COIL dataset.

C. Experiments on the COIL Dataset

The COIL dataset is considered next. It has a total of 7,200
examples, each 32x32, with 100 classes (this means & =100),
72 examples for each class. The original images of COIL
dataset are color ones, and here we change them into grayscale
ones. Fig. 6 shows 100 images from the COIL dataset, one for
each class.

In our experiments, since the limitation of the number of
examples, we select 6,000 samples, namely 60 examples for
each class, as our training set to pre-train the two sparse
autoencoders and train the three classifiers. In other words,
being different from above method, here the unlabeled training
set and the labeled training set are the same. The remainder
1,200 examples, namely 12 examples for each class, are used
as the test set. Similar to the MNIST dataset, we report the
results of KNN, three softmax classifiers and their ensemble in
TABLE II. From TABLE II, we have the same conclusion as
TABLE 1. The feature ensemble methods achieve the best
classification performance.

For the two tables above, since the representations learned
by SAEs have different abstraction levels, the diversity for the
three softmax classifiers is guaranteed. As a result, the Naive
Bayes methods can be employed to improve the recognition
performance. Specifically, Feature Set 2 in Fig. 4 is more
abstract than Feature Set 1 so that Softmax 2 being a deep
network should work better than Softmax 1 that is a shallow
network, but we have the opposite result in our experiments.
This is because the number of unlabeled training set for SAE is
not enough. Since a deep network with fine tuning is more
powerful in the function approximation than a softmax
regression model, Softmax 2 performs better than Softmax 3.
Besides, although Feature Set 1 is related to Feature Set 2, we
still consider to use their concatenation to train our third
classifier because compared with the classifier that trained
directly with only one feature set as input, Softmax 3 indeed
has a better recognition rate so as to improve the whole
performance of feature ensemble.

TABLE I. CLASSIFICATION PERFORMANCE FOR THE MNIST DATA SET WITH COMPARISONS TO OTHER METHODS

Classifier KNN(K=4) Softmax 1 Softmax 2 Softmax 3 Our Method
MAX MIN AVG
Accuracy (%) 95.92 96.07 95.87 95.22 96.53 96.50 | 96.70

TABLE II. CLASSIFICATION PERFORMANCE FOR THE COIL DATA SET WITH COMPARISONS TO OTHER METHODS

Classifier KNN(K=4) Softmax 1 Softmax 2 Softmax 3 Our Method
MAX MIN AVG
Accuracy (%) 84.00 89.41 86.75 86.75 90.50 91.42 | 91.67

V. CONCLUSION

This paper proposes a feature ensemble method based on
sparse autoencoders for image classification. In our method,
there are three softmax classifiers, each of which is to train a
different feature set. Finally, some Naive Bayes combination
rules can be used for ensemble the outputs of these classifiers.
From the results of the experiments on the MNIST dataset and
COIL dataset, we can see that feature ensemble learning based
on sparse autoencoder has better classification performance,
with comparisons to KNN classifier and the other three
softmax classifiers.

Although, here, we need to train multiple classifiers with
the cost of time, fortunately, this can be tolerated for neural
network (here, sparse autoencoder, softmax model and deep
network) since the prediction for a new sample would be fast.
For the future work, we may try to improve the representation
of Feature Set 2 to the raw data so as to enhance the
performance of Softmax 3, since the Feature Set 2 is obtained
by greedy layer-wise pre-training and can’t reconstruct to the
raw data well. Additionally, the proposed algorithm is only
compared with individual classifiers, but, for the future work, it
is indeed promising to compare the results with the ones of
using other classifiers with the same ensemble strategy.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61373093 and
61033013, by the Natural Science Foundation of Jiangsu
Province of China under Grant Nos. BK2011284 and
BK201222725, by the Natural Science Foundation of the
Jiangsu Higher Education Institutions of China under Grant
No.13KJA520001, and by the Qing Lan Project.

REFERENCES

[1] B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin,
“Deep learning with hierarchical convolutional factor analysis,” IEEE
Tran. Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp.
1887-1901, 2013.

1745

[2]
(3]

(4]

[3]
(6]
(7
[8]

[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, n0.5786, pp. 504-507, 2006.

M.R.M. Norouzi and G. Mori, “Stacks of convolutional restricted
boltzmann machines for shift-invariant feature learning,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2009.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” Proc. Int’l
Conf. Machine Learning, 2008.

Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, “Greedy layer-
wise rraining of deep networks,” NIPS, 2007.

Y. Bengio, “Learning deep architectures for AL” Foundations and
Trends in Machine Learning 21(6), pp. 1601-1621, 2009.

G. Hinton, S. Osindero, and Y. The, “A fast learning algorithm for deep
belief nets,” Neural Computation, 18, pp. 1527-1554, 2006.

M. A. Ranzato, C. Poultney, S. Chopra, and Y LeCun, “Efficient
learning of sparse representations with an energy-based model,” NIPS,
2006.

A. Ng, “Sparse autoencoder,” CS294A Lecture Notes for Stanford
University, 2011.

A. Ng, “Generalized linear models,” CS229 Lecture Notes for Stanford
University, part 3, 2003.

A. Ng, J. Ngiam, C.Y. Foo, Y. Mai, and C. Suen, “UFLDL tutorial:
building deep networks for classification,” an online tutorial, 2013.

L. Zhang and W.D. Zhou, “Sparse ensembles using weighted
combination methods based on linear programming,” Pattern
Recongnition, 44, pp. 97-106, 2011.

E.K. Tang, P.N. Suganthan, and X. Yao, “An analysis of diversity
measures, Machine Learning,” Machine Learning, 65, pp. 247-271, 2006.
T.K. Ho, J.J. Hull, and S.N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, pp. 66-75, 1994.

S.D. Bay, “Combining nearest neighbor classifiers through multiple
feature subsets,” Proceeding of the 15th International Conference on
Machine Learning, pp. 37-45, 1998.

J. Kittler, M. Hatef, RP.W. Duin, and J. Matas, “On combing
classifiers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20, pp. 226-239, 1998.

L.I. Kuncheva, “Combining pattern classifier: method and algorithms,”
Wiley, Hoboken, NJ, 2004.

“http://yann.lecun.com/exdb/mnist/”.

S.A. Nene, S.K. Nayar, and H. Murase, “Columbia object image library(
COIL-100),” Techniqual Report, CUCS-006-96, Department of Comp.
Science, Columbia University, 1996.

