
 
 

 

  

Abstract--In recent years, many bio-inspired computation 
algorithms have been proposed to solve constraint problems. 
Biogeography-Based Optimization (BBO) is one of these newly 
proposed optimization algorithms. As a new way to solve 
complicated optimization problems, BBO has a quick 
convergence. In this paper, we proposed an improved BBO for 
solving protein structure prediction problems. Comparative 
experiments with standard BBO and differential evolution 
algorithm (DE) are also conducted, and the results demonstrate 
this improved BBO approach performs better in solving these 
complicated protein prediction problems. 

Index--Biogeography-Based Optimization, migration 
method, Protein Prediction. 

I. INTRODUCTION 
ROTEIN puts crucial role in biological processes, and 
thus it has great value to be researched further. There are 
two main aspects influence the nature of proteins, one is 

the sequences of amino acids, and the other is the proteins’ 
folding structures [1]. With the breakthrough of DNA project, 
now scientists can easily obtain the sequence information of 
proteins. However, compared to the sharp increase in the 
amount of data of the proteins’ sequences, the process of 
obtaining its structure information through experiments is 
time consuming. Thus, people have to explore other methods 
to research the structure of protein, and the technology of 
protein folding structure prediction is emerged. In the 1950s, 
Anfinsen proposed that the folding structure of a certain 
protein is determined entirely by its sequence [2]. This theory 
provides us with the feasibility of obtaining the protein 
structure information from its sequence information [3]. 
However, due to the complex and nonlinear features of this 
prediction’s mathematical model, to predict the structure by 
this method has been a puzzling problem in computational 
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biology for a long time [4]. 
In the last several decades, people proposed various 

evolutionary based optimizations to solve optimization 
problems with linear or nonlinear constraints in science 
researching and engineering projects [5]. For example, 
genetic algorithms (GAs) [6]-[8], particle swarm 
optimization (PSO) [9]–[10] and differential evolution 
algorithm (DE) [11]. As a kind of computational tools, these 
optimization algorithms have powerful efficient to solve 
complex global optimization problems, including problems 
like protein structure prediction problems.  

Biogeography-based optimization (BBO) [12] is a new 
bio-inspired computation algorithm aiming to solve global 
optimization problems. This new algorithm is proposed based 
on the findings related to biogeography. It uses habitats and 
its species to represent a group of possible solutions. It 
optimizes problems by modifying the habitat features 
according to its immigration rate and emigration rate. This 
algorithm allows different habitats sharing information with 
each other in the global range. Compared to genetic algorithm 
and particle swarm optimization, BBO has the advantage that 
it requires less parameter [13], is easier to control and 
converges quickly. It has been applied to solve real problems 
including optimal power flow (OPF), sensor selection and 
satellite image classification, etc. 

In this paper, we introduce the AB Off-Lattice model in 
two dimensions [14] in Section II, and the standard BBO 
algorithm in Section III. Then in Section IV, we optimize the 
BBO optimization by improving its migration process. We 
changed its migration method and named this improved BBO 
as I-BBO. In Section V, comparative experimental results 
with standard BBO and DE algorithm by using the same 
mathematical model are given. Our concluding remarks are 
given in Section VI. 

II. MATHEMATICAL MODEL FOR PROTEIN STRUCTURE 
PREDICTION  

Natural protein forms a thermodynamic system with its 
environment, and always be in a certain stable structure, 
which situates the system at the lowest energy level [15]. 
Based on this thermodynamic theory, some models are 
proposed to solve the protein structure prediction problem by 
computing the protein’s energy value. AB Off-Lattice Model, 
which is proposed by Frank H. Stillinger in 1993, is such a 
widely accepted mathematical model. This model classifies 
the amino acids into hydrophobicity and hydrophilic types. In 
this paper, we will apply this model to search for the lowest 
energy value (the best solution) and obtain the structure 
information of objective protein sequence. 

This model classifies 20 different amino acids into two 
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basic sorts based on their hydrophobicity or hydrophilic, and 
are expressed by A and B respectively. In this model, the 
angle between two amino acids can get changed in the range 
from –π to π. Generally, this model requires three basic rules: 

--First, the bond lengths between two neighboring amino 
acids are the same. 

--Second, each amino acid is simplified as a sphere in 
specific dimension. 

--Third, the bond angle θi between two contiguous 
amino acids is defined as 

iπ θ π− ≤ <                   (1) 
Based on these rules, the structure of a protein, which is 

composed of N dimension amino acids, is determined by n−2 
variables: θ2, θ3… θn-1. 

The energy value function of AB Off-Lattice Model is 
defined as 

( ) ( )
1 2

1 2
2 1 2

, ,
n n n

i ij i j
i i j i

V V rθ ξ ξ
− −

= = = +

Φ = +∑ ∑ ∑       (2) 

where V1 represents the energy of the backbone, it is only 
determined by the sequence of amino acids. V2 represents the 
energy between the amino acids which are not contiguous and 
is determined by not only the sequence of amino acids, but 
also the distance between each couple of amino acids. V1 and 
V2 are given by the following equations 

( ) ( )1
1 1 cos
4i iV θ θ= −              (3) 

( ) ( )( )12 6
2 , , 4 ,ij i j ij i j ijV r r C rξ ξ ξ ξ− −= −       (4) 

The notation ξ i represents the category of the amino acid. 
When the amino acid is hydrophobic, ξ i = 1, on the contrary, 
when the amino acid is hydrophilic, ξ i = -1. The notation r i j 
is the Euclidean distance between amino acid i and amino 
acid j, which can be computed by Eq. (5) 
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(5) 
The coefficient C ( ξi,, ξj ) is computed by 

( ) ( )1, 1 5
8i j i j i jC ξ ξ ξ ξ ξ ξ= + + +          (6) 

When the amino acids pair is AA,  C ( ξi , ξj ) = 1, when it is 
BB,  C ( ξi , ξj ) = 0.5, and when it is AB, C ( ξi , ξj ) = -0.5. 

Applying this model for protein structure prediction in 
two dimensions, what we need to do is to find a group of 
applicable value θi ( i = 2,…,n-1) , reaching the minimum of 
the energy function. And then, we obtain the structure 
information from the bond angles θi. Then the problem is 
simplified to search for the constraint minimum of objective 
function 

( )
( )2 1,

min , ,
i

nθ π π
θ θ −∈ −

Φ …            (7) 

III. BIOGEOGRAPHY-BASED OPTIMIZATION 
Biogeography-based optimization has been developed 

based on the research of biogeography. Its mathematical 
model describes the process of the generation, extinction and 
migration of species. 

The potential solutions of a certain global optimization 
problem are considered to be a group of habitats. Each habitat 
has its amount of species, and different habitats usually have 
different amount of species. It uses the habitat suitability 
index (HSI), which is depended on many features of a habitat, 
to measure the quality of this habitat, that is, the quality of the 
solution. A higher HSI express a better solution of the 
problem. HSI is related to the immigration rate and 
emigration rate of the habitat. Habitats with high HSI are 
suitable for survival, the number of species tend to be the 
maximum of environment carrying capacity. Thus, these 
habitats have low immigration rates and high emigration rates. 
In opposite, habitats with low HSI have high immigration 
rates and low emigration rates. They have more opportunities 
to accept a lot of new features from other habitats, especially 
from the habitats with high HSI, to evolve them. This 
mechanism makes BBO can realize global information 
sharing, and has a strong ability to deal with the problem in 
parallel process. In addition, BBO model includes the 
mutation operate to avoid the local optimum and resist 
premature convergence, includes the elitism to avoid the 
algorithm degeneration phenomena. 

A. Migration 
In this paper, we apply the linear migration model in 

standard BBO to calculate immigration rate λs and emigration 
rate μs, they are evaluated by Eq. (8) and (9). 

max

1s
SI

S
λ

⎛ ⎞
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               (8) 
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s
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S

μ =                    (9) 

where I denotes the maximum of immigration rate, E is the 
maximum of emigration rate, S max is the maximum species 
count among all the habitats, and S is the species count in 
present habitat. Each habitat has its own λs and μs according to 
its species count. In the process of migration based on the 
probability of immigration and emigration, a feature Hi from 
a habitat is replaced by another feature Hj from a different 
habitat. It can be expressed as 

i jH H←                     (10) 

B. Mutation 
Define Ps to be the probability of species count. The 

probability of a certain habitat owning S species count is Ps. It 
satisfies the following formula. 
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The mutation rate value is defined as 
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where mmax is the maximum of mutation rate ranging from 0 
to 1. It is usually suitable to be set as 0.005. Pi is the species 
count probability of habitat i, and P max is the maximum of the 
species count probability of all the habitats. 

C. Elitism 
We add elitism to suppress the phenomenon of 

degeneration in iterations of the algorithm. In each 
generation, the best solution in present is compared with the 
best solution in the whole history. If the present solution is 
better than the history solution, it replaces the latter to be the 
new best solution in history. In the opposite situation, it will 
be replaced by the latter. This operation ensures that the best 
solution in the whole history is always involved in iterations 
to optimize the solution continually. 

D. Improvement on migration of BBO 
We propose a new approach to enhance the global 

searching capacity of BBO. We improved the process of 
migration, and call this improved model I-BBO. 

In real world, one migration process among habitats is not 
simply related to only two habitats, but determined by all 
habitats nearby. Because the species amount is limited, a 
habitat with a high immigration can affect the immigrating 
process of nearby habitats. This phenomenon can be 
summarized that the migration process is determined by 
several habitats in an area. Inspired by this, in I-BBO, instead 
of simply replace a feature Hi by another feature Hj from a 
different habitat, we create a new migration method. The 
original feature in the habitat is Hj, we select N different 
features Hj1, Hj2, … , Hjn from N different habitats according 
to their emigration rates. Then we mix Hi and Hj1, Hj2, … , Hjn 
with coefficient α, β1, β2, … , βn. In this paper, we choose N to 
be three and use the same coefficient β. This migration model 
is defined as 

( )1 2 3i i j j jH H H H Hα β← + + +             (13) 

where α and β are real numbers as weight parameters. Feature 
Hj1, Hj2 and Hj3 are all select based on emigration rate and 
immigration rate equally, thus the same value β for these three 
features is reasonable. Parameters α and β can be determined 
by different approaches according to different optimization 
problems to be suitable. The result of the AB Off-Lattice 
model using this improved migration method demonstrate 
I-BBO can often obtain better solutions than standard BBO, 
and have advantage in the ability of escaping from the local 
optimum. 

IV. I-BBO ALGORITHM APPROACH TO PROTEIN STRUCTURE 
PREDICTION PROBLEM 

A. I-BBO Used for Protein Structure Prediction Problem 
The algorithm has been encoded in Matlab language and 

implemented on a PC with 4 GB of RAM using Windows 7. 
The parameters in the prediction experiment were set to be 
the following values: I = 1, E = 1, mmax = 0.005, Maximum 

species count = 30, Habitat counts = 30, Maximum iteration 
cycles = 1000, elitism number = 2, α = 1, β = 1. 

To avoid the potential solution being out of boundaries, we 
added the below step in Table II after each migration.  

B. Standard BBO and DE Tested for Comparing 
In standard BBO, parameters were set the same as that in 

I-BBO. We also compute the AB Off-Lattice model using the 
DE algorithm. We chose DE because it is a typical mature 
algorithm with few parameters to be selected and it performs 
well in many optimization problems. Besides, scholars have 
made researches on blending DE and BBO. They finally 
obtained better optimization results compared with single 
BBO approach [16].  
In DE, Maximum of iteration is set to be 1000, the same as 
that in BBO and I-BBO. In each generation, DE algorithm 
firstly finds the best solution Sbest in present, and then it 
selects four different individuals Si ( i = 1, 2, 3, 4)randomly. 
Then generate the offspring S new by Eq. (14).  

( ) ( )1 1 2 2 3 4new bestS S F S S F S S= + − + −         (14) 
In this work, we set F1 and F2 to be 0.3. 

V. EXPERIMENTAL RESULTS 
We test the prediction model using standard BBO, I-BBO 

and DE algorithm. The parameters adopted are the same as 
those descried in the previous section. For each test, we run 
the optimization independently for 25 times to get average 
results. Each run is computed for1000 iterations. 

Table III shows the performance comparison on the same 
sequences for BBO, I-BBO and DE algorithms. The results 
show that the precisions of all these three algorithms decline 
when the dimension increases. I-BBO performs much better 
than standard BBO in most sequences, it can get a lower 
energy (means a better solution) and from the averages of 25 
independent tests we can know that it is usually more 
stabilized. When comparing with DE algorithm based on the 
best result and the mean result, we can get the findings that 
DE can usually get a lower energy than I-BBO in short 
sequences in 3 or 4 dimensions, except for sequences ABBA, 
BABB, and BBBB. In these three short sequences, I-BBO 
gets lower energy in the mean results. In the long sequences, 
however, I-BBO can usually obtain better results than both 
DE and standard BBO. The characters overstriking in Table 
III are the results that I-BBO performs at least not worse than 
both standard BBO and DE algorithm. 
 

4225



 
 

 

 
Figs. 1- 4 show the performance of these three algorithms 

in four different sequences visually.  
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Fig. 1.  The sequence of the protein is ABB 
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Fig. 2.  The sequence of the protein is BABB. 

 

 

 
From Figs 1-4, it is obvious that our proposed I-BBO can 

converge much quicker than the basic DE algorithm. 

VI. CONCLUSIONS 
In this paper, we apply an improved biogeography-based 

optimization algorithm to solve the problem of protein 
structure prediction. A new migration method is adopted to 
improve the basic BBO algorithm, and the experimental 
results of protein structure prediction based on 2D AB 
Off-Lattice model show that: 

1)  BBO is a bio-inspired computation algorithm with 
potential in solving constrained linear and nonlinear 
problems. 

2)  I-BBO with an improved migration strategy performs 
more effectively than basic BBO in precision and the ability 
of escaping local optimum. 

3) I-BBO performs a little worse than DE algorithm in the 
ability of searching the best solutions, but seems to be more 
effective to avoid the local optimum solutions. Thus it still 
has high probability to obtain good solutions. When solving 
relatively long sequences with more dimensions, I-BBO 
performs much better. 

4)  As new global optimization algorithms, either 
standard BBO or I-BBO that is proposed in this paper still has 
potential to be better optimized to adapt to more real 
problems. 

Protein structure prediction problem is a challenging 
direction. Our future work will focus on the optimization of 
this newly proposed BBO algorithm by referring to the 
advanced intelligent algorithms, such as PSO, GA, and so on 
[17]-[18]. We will also conduct further research on different 
prediction models to get better structure prediction results and 
make it more conform to the real situation of protein. 
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Fig. 4.  The sequence of the protein is AABBA. 

0 100 200 300 400 500 600 700 800 900 1000
-2.5

-2

-1.5

-1

-0.5

0

0.5

Iterations

E
n

er
g

y 
V

al
u

es

Sequence: AAABA

 

 

BBO

DE

I-BBO

Fig. 3. The sequence of the protein is AAABA. 

TABLE II 
ALGORITHM TO KEEP THE HABITATS IN BOUNDARY 

For each habitat 
 For each habitat feature Hi 
  While Hi is below lower boundary 
   Hi=Hi+2π 
  End While 
  While Hi is above upper boundary 
   Hi=Hi-2π 
  End While 
 Next For 
Next For 

TABLE I 
IMPROVED BIOGEOGRAPHY-BASED OPTIMIZATION 

Initialize the parameters of I-BBO, including maximum of species 
count S max, maximum of immigration rate I and emigration rate E, 
maximum of mutation Mu max, weighting parameters α,β. 
Initialize a group of habitats, which corresponds a group of 
potential solutions. 
While the halting criterion is not satisfied 
Do 
 Compute the immigration rate, emigration rate and species 
 probability of each habitat. 
 For each habitat (A possible solution) 
  For each habitat feature (Angles between every two amino  
  acids) 
   Determine whether to modify habitat feature Hi based on 
   immigration rate. 
   If Hi is selected 
    Select habitat feature Hj1, Hj2 and Hj3 from different  
    habitats for modification of H I based on emigration 
    rate. 
    Hi ← αHi + β( Hj1 + Hj2 + Hj3 ) 
   End If 
   Determine whether to mutate Hi based on mutation rate 
   If Hi is selected 
    Replace Hi based on mutation rules. 
   End If 
  Next For 
 Next For 
 Compute HIS values for every habitat H. 
End While 
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TABLE III 
PROTEIN STRUCTURE PREDICTION RESULT OBTAINED BY BBO, I-BBO AND DE ALGORITHMS 

Sequence  I-BBO   BBO   DE  
Best Mean Worst Best Mean Worst Best Mean Worst 

AAA -0.658205 -0.658204 -0.658201 -0.658205 -0.654918 -0.637089 -0.658205 -0.658205 -0.658205 
AAB 0.0322266 0.0322266 0.0322267 0.0322266 0.0323676 0.0332627 0.0322266 0.0322266 0.0322266 
ABA -0.658205 -0.658204 -0.658204 -0.658205 -0.654865 -0.629185 -0.658205 -0.658205 -0.658205 
ABB 0.0322266 0.0322266 0.0322266 0.0322266 0.0322739 0.0326634 0.0322266 0.0322266 0.0322266 
BAB -0.030273 -0.030273 -0.030273 -0.030273 -0.030201 -0.029759 -0.030273 -0.030273 -0.030273 
BBB -0.030273 -0.030273 -0.030273 -0.030273 -0.030116 -0.028454 -0.030273 -0.030273 -0.030273 

AAAA -1.67623 -1.67407 -1.66703 -1.67626 -1.59369 -1.43142 -1.67633 -1.67633 -1.67633 
AAAB -0.585264 -0.584861 -0.582416 -0.585203 -0.574684 -0.517678 -0.585273 -0.585273 -0.585273 
AABA -1.45095 -1.44594 -1.42529 -1.45069 -1.19036 -0.536077 -1.45098 -1.45098 -1.45098 
AABB 0.0672133 0.0672961 0.0674981 0.0672191 0.0672191 0.0685846 0.0672041 0.0672041 0.0672041 
ABAB -0.649344 -0.64897 -0.647997 -0.64936 -0.64133 -0.581846 -0.649375 -0.649375 -0.649375 
ABBA -0.359883 -0.340772 -0.027891 -0.034693 0.0415988 0.0608892 -0.036171 0.0437505 0.0589737 
ABBB 0.0047067 0.0047428 0.0048845 0.0047121 0.0049233 0.0055111 0.0047041 0.0047041 0.0047041 
BAAB 0.0617174 0.0617848 0.0620139 0.0617181 0.0620713 0.0638108 0.0617172 0.0617172 0.0617172 
BABB -0.0007768 -0.0007195 -0.0004045 -0.000778 0.0010915 0.0128108 -0.000783 0.0015899 0.011081 
BBBB -0.139732 -0.139375 -0.138556 -0.139183 -0.101974 -0.060141 -0.139738 -0.096923 -0.063283 

AAAAA -2.83801 -2.74761 -2.6741 -2.81753 -2.43693 -1.85307 -2.84828 -2.77785 -2.60608 
AAAAB -1.58695 -1.56029 -1.43495 -1.58883 -1.43181 -1.15798 -1.58944 -1.53557 -1.4772 
AAABA -2.43388 -2.32423 -2.10196 -2.41291 -1.98232 -0.75505 -2.44493 -2.40095 -2.33499 
AAABB -0.546235 -0.542692 -0.534961 -0.54627 -0.541966 -0.532244 -0.546878 -0.546878 -0.546878 
AABAA -2.52376 -2.43498 -2.27053 -2.49042 -1.917 -0.569261 -2.5317 -2.53169 -2.53168 
AABAB -1.33959 -1.32056 -1.28554 -1.34726 -1.11748 -0.425707 -1.34774 -1.34627 -1.34306 
AABBA -0.925277 -0.82497 -0.627264 -0.905484 -0.059237 0.0949816 -0.926621 -0.151725 0.0929749 
AABBB 0.0401862 0.0411605 0.0433465 0.0401852 0.0406419 0.0416867 0.0401702 0.0401702 0.0401702 
ABAAB -1.37377 -1.34947 -1.29935 -1.37302 -1.13822 -0.370248 -1.37647 -1.37647 -1.37647 
ABABA -2.2195 -2.10812 -1.85662 -2.21507 -1.86425 -1.18745 -2.2202 -2.2202 -2.22019 
ABABB -0.616121 -0.613087 -0.604571 -0.616718 -0.609813 -0.58719 -0.616795 -0.615122 -0.595882 
ABBAB -0.0036184 0.0145747 0.0275231 0.0043039 0.0289875 0.0650924 -0.0056451 0.0251689 0.0264528 
ABBBA -0.395263 -0.345089 -0.251206 -0.18532 0.0230795 0.0404773 -0.39804 -0.135991 0.0387054 
ABBBB -0.0651591 -0.0574868 -0.0414973 -0.0650415 -0.0303851 -0.0093792 -0.0659612 -0.0409847 -0.0137165 
BAAAB -0.520613 -0.516347 -0.507642 -0.520988 -0.512573 -0.487777 -0.521076 -0.521076 -0.521076 
BAABB 0.0963302 0.097517 0.103351 0.0962163 0.0966784 0.0981387 0.0962067 0.0962067 0.0962067 
BABAB -0.647495 -0.644109 -0.633758 -0.647823 -0.642811 -0.630535 -0.648025 -0.648025 -0.648025 
BABBB -0.182494 -0.157731 -0.0976296 -0.176268 -0.0507278 -0.0265388 -0.182657 -0.0502991 -0.0287933 
BBABB -0.239185 -0.224346 -0.193279 -0.226549 -0.0881531 0.182805 -0.240204 -0.11136 0.0282197 
BBBBB -0.451625 -0.434865 -0.395186 -0.450891 -0.332608 -0.0958679 -0.452663 -0.340031 -0.0967803 

Protein structure prediction result obtained by standard BBO, I-BBO and DE algorithms over 25 independent runs with 1000 iterations in 
every run. The table shows the best, mean and worst values. The sequences of protein are expressed by A and B according to their hydrophobicity 

and hydrophilic. 
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