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Abstract—The problem of classifying imbalanced datasets has 
drawn a significant amount of interest from academia and 
industry. In this paper, we propose a modified support vector 
machine (SVM) approach using conformal kernel transformation 
to address the class imbalance problem. The proposed method 
first uses standard SVM algorithm to obtain an approximate 
hyperplane. And then, we give a kernel function and compute its 
parameters using the chi-square test. Finally, an experimental 
analysis is carried out with a wide range of highly imbalanced 
datasets over the proposal and several other methods. The results 
show that our proposal outperforms previously proposed 
methods. 

Keywords—support vector machine; classification; imbalanced 
data; conformal kernel transformation 

I. INTRODUCTION 
The scenario of imbalanced data appears in the 

classification field when the size of samples that represent the 
different categories is very different among them [1]. 
Imbalanced data are quite common in many real applications, 
such as fraud detection, medical diagnosis, network intrusion 
detection, and so on. For a binary classification problem, one 
of the classes can be represented by only a few samples while 
another class is represented by a large number of samples. The 
former is called the minority class and the later is called the 
majority class. 

Learning from the imbalance data is a remarkable challenge 
in the knowledge discovery and data mining field. When 
dealing with imbalanced datasets, many standard learning 
methods tend to emphasize the majority class and ignore the 
minority class [2, 3]. The fundamental reason is that these 
methods assume relatively balanced class distributions and 
equal misclassification costs within imbalanced datasets [4]. 
Therefore, The classification performance for the minority 
class becomes unsatisfactory. 

In recent years, the imbalanced learning problem has drawn 
a significant amount of interest from academia and industry. 
Much work focusing on this topic has been done. Many 
proposed methods have improved the classifier performance to 
some extents.  

In this paper, we propose a modified support vector 
machine (SVM) method using conformal kernel transformation 
to solve the imbalanced data classification problem. First, we 
use standard SVM algorithm to gain an approximate 
hyperplane. Then, we give a kernel function and compute its 

parameters using the chi-square test. Finally, experimental 
results on 6 datasets show that under F-measure and G-mean 
metrics, the proposed method could achieve more classification 
performance when dealing with the data skewed distribution. 

The remainder of this paper is organized as follows. 
Section II outlines the related background of imbalanced 
learning and support vector machine. The proposed method is 
presented in Section III. Experimental results are provided in 
Section IV. Finally we conclude in Section V. 

II. BACKGROUND 
The goal of this section is to provide the background 

information needed to describe our proposal. It is divided in 
two parts: an introduction to the problem of classification with 
imbalanced datasets, and a briefly review of support vector 
machine. 

A. Classification with Imbalanced Datasets 
The problem of classifying imbalanced datasets has been 

faced in many real works. While classifiers are built by the 
imbalanced datasets, the minority class is usually overwhelmed 
by the majority class [4]. Prediction results of those classifiers 
are dominated by the majority class. Researchers have 
proposed many strategies to deal with the class imbalance 
problem. Typically, the methods developed for coping with 
class imbalance can be classified into two kinds of approaches: 
data-level approaches and algorithmic approaches.  

The goal of data-level approaches is to obtain a more or 
less balanced class distribution based on the idea of resampling 
the data. Resampling techniques can be categorized as 
undersampling methods, oversampling methods and hybrid 
methods. In order to generate a balanced dataset from the 
original imbalanced one, undersampling methods [5] create a 
subset of the original dataset by deleting some of the samples 
of the negative class; and relatively oversampling methods [6] 
generate a superset of the original dataset by replicating some 
of the samples of the positive class or creating new samples 
from the original positive class instances. Hybrid methods [7] 
integrate both approaches into one, deleting some of the 
samples after the application of the oversampling method in 
order to remove the induced overfitting.  

Undersampling with imbalanced datasets can be considered 
as a prototype selection procedure with the purpose of 
balancing datasets to achieve a high classification rate, 
avoiding the bias toward majority class samples. García and 
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Herrera [8] propose an evolutionary undersampling method for 
classification with imbalanced datasets. Galar et al. [9] develop 
a new ensemble construction algorithm (EUSBoost) based on 
RUSBoost and evolutionary undersampling. Synthetic 
Minority Over-sampling Technique (SMOTE) [6] is an 
intelligent oversampling method using synthetic samples. 
SMOTE method adds new synthetic samples to the minority 
class by randomly interpolating pairs of the closest neighbors 
in the minority class. Borderline-SMOTE [10] is another 
approach based on the synthetic generation of instances 
proposed in SMOTE. In this case, only the positive samples 
that lie near the decision boundaries (the borderline) are used to 
oversample the positive class. Gao et al. [11] propose 
probability density function estimation based oversampling 
approach for two-class imbalanced classification problems. 
Cateni et al. [12] propose a hybrid resampling method, 
called SUNDO. SUNDO combines the two approaches: for the 
oversampling phase, it places new samples where they likely 
could be and avoids to place them close to frequent samples; 
moreover it employs an innovative undersampling technique. 

Algorithmic approaches try to modify the classifiers to suit 
the imbalanced datasets. Cost-sensitive approach [13] is a 
popular algorithmic approach, which assigns a different 
misclassification cost (weight) for each training sample, and 
then minimizes the total misclassification cost. In this 
framework the costs of misclassifying a rare pattern are higher 
with respect to other kinds of errors in order to encourage their 
correct detection. In general, cost-sensitive approaches give 
penalties to misclassification in different classes, but in 
practical it is difficult to predefine the proper penalty for each 
class. Sun et al. [14] investigate cost-sensitive boosting 
algorithms for advancing the classification of imbalanced data, 
and propose three cost-sensitive boosting algorithms by 
introducing cost items into the learning framework of 
AdaBoost. Cano et al. [18] uses a matrix of weights to describe 
the importance of each attribute in the classification of each 
class, and improves the classification performance by 
considering both global and local data information. Zong et al. 
[15] propose a weighted extreme learning machine (ELM) to 
deal with imbalanced learning problem, in which each training 
sample is assigned with an extra weight to strengthen the 
impact of minority class while weaken the relative impact of 
majority class. Li et al. [16] present a Boosting weighted ELM, 
which embeds weighted ELM into a modified AdaBoost 
framework, to solve the above problem. 

Many works make some modification of the classification 
algorithms. SVMs have also been employed for facing 
imbalanced datasets. Many researchers combine the weighting 
method with the SVM, and have proposed a variety of 
weighted approaches for the class imbalance learning [17, 18]. 
Batuwita and Palade [19] propose a method to improve fuzzy 
SVMs for class imbalance learning, which can be used to 
handle the class imbalance problem in the presence of outliers 
and noise. Wu and Chang [20, 21] propose a class-boundary-
alignment algorithm to adjust the boundary with an alignment 
in kernel, and improve SVM performance in imbalanced 
datasets. A particular kind of radial basis function has been 
developed and tested in [22] where hyper-rectangular 
activation function neurons are used in the hidden layer in 
order to achieve more precision in the detection of the 

boundary of the input space regions reserved to each class. 
López et al. [23] propose the usage of the Iterative Instance 
Adjustment for Imbalanced Domains (IPADE-ID) algorithm to 
address imbalanced classification. The active learning 
approach provides more balanced training samples because it 
selects samples that lie closest to the separating hyperplane 
[24]. Fu and Lee [25] present a certainty-based active learning 
(CBAL) algorithm to solve the imbalanced data classification 
problem.  

In recent years, ensemble of classifiers have arisen as a 
possible solution to the class imbalance problem attracting 
great interest among researcher because of their flexible 
characteristics [26]. Ensembles are designed to increase the 
accuracy of a single classifier by training several different 
classifiers and combining their decisions to output a single 
class label [27]. Using an ensemble of weak classifiers to boost 
the classification performance has been reported to be effective 
in skewed data. Bagging and Boosting are two of the most 
popular ensemble learning algorithms among them [27]. 
SMOTEBoost [28] is designed to alter the imbalanced 
distribution based on Boosting. Data generation techniques are 
involved to emphasize the minority class examples at each 
iteration of Boosting. Easyensemble method [29] is developed 
based on the Bagging classification, which samples several 
subsets from the majority class, trains a learner using each of 
them, and combines the outputs of those learners. Oh et al. [30] 
present an ensemble learning method combined with active 
example selection to resolve the imbalanced data problem. Liu 
et al. [31] propose to combine an integrated sampling 
technique, which incorporates both over-sampling and under-
sampling, with an ensemble of SVMs to improve the prediction 
performance. 

B. Support Vector Machine 
A classification technique that has received considerable 

attention is support vector machine (SVM) proposed by 
Vapnik [32]. SVM has its roots in statistical learning theory 
and has shown promising empirical results in many practical 
applications.  

Consider a binary classification problem consisting of N 
training samples. Each sample is denoted by a tuple (xi, yi) (i=1, 
2, …, N), where T

idiii xxx ),...,,( 21=x  represents an d-

dimensional data sample, and }1,1{ −+∈iy  denotes its class 
label. The decision boundary of a linear classifier can be 
written in the following form  

 0=+⋅ bxw , (1) 

where w and b are parameters of the model. 
The support vector technique requires the solution of the 

following optimization problem: 
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where parameter C is a user-specified positive parameter that 
controls the trade-off between maximizing the margin and 
minimizing the training error term. The slack variables 0>iξ  

hold for misclassified samples, and therefore, ∑ =

N

i i1
ξ  can be 

thought of as a measure of the amount of misclassifications.  
This quadratic-optimization problem can be solved by 

constructing a Lagrangian representation. Once the optimal 
pair ),( 00 bw  is determined, the SVM decision function is 
then given by 

 )()( bysignf
SVi

iii +⋅= ∑
∈

xxx λ  (4) 

where the sample xi with the corresponding non-zero iλ  is 
called a support vector (SV). If f(x)=1, then the test sample x is 
classified as a positive class; otherwise, it is classified as a 
negative class. 

SVM works very well with high-dimensional data and 
avoids the curse of dimensionality problem. Its essential idea is 
to use a kernel function to map the original input data into a 
high-dimensional space so that two classes of data become, as 
far as possible, linearly separable [32]. For a nonlinear SVM, 
the decision function is given by 

 )),(()( bKysignf
SVi

iii += ∑
∈

xxx λ  (5) 

where )()(),( j
T

ijiK xxxx φφ=  is called the kernel 
function. 

Thus, the kernel is the key that determines the performance 
of the SVM. Several typical kernel functions are the lineal 
kernel jijiK xxxx ⋅=),( , the polynomial kernel 

d
j

T
iji raK )(),( += xxxx  and the RBF kernel 

)||||exp(),( 2
jijiK xxxx −−= γ . 

III. THE PROPOSED ALGORITHM 
In this section, we first give a description of conformal 

kernel transformations, and then we present our proposed 
method. 

A. Conformal Kernel Transformations 
A conformal transformation is a transformation that 

preserves local angles. To improve SVM discrimination power, 
Amari and Wu [33, 34] modified a kernel with a conformal 
mapping, and were the first to propose the use of conformal 
transformations to obtain a data-dependent kernel function. A 
conformal transformation of a geometrical space could be 
defined as a function that maps that space into a new one in 
which the angles between curves are locally preserved. If c(x) 

is a positive real valued function of x, then a new kernel is 
created by 

 )'()',()()',(
~

xcxxkxcxxk =  (6) 

 ∑
∈

−−=
SVsx

xxm

s

sexc
2||||)(  (7) 

where m is a positive constant, SVs are support vectors, c(x) is 
a suitably chosen positive function.  

We can obtain a new kernel function )',(
~

xxk  by a 
conformal transformation of the original )',( xxk . However, 
c(x) in equation (7) is sensitive to the distribution of SVs. The 
parameter m in equation (7) is computed through the distances, 
in input space, between support vectors, so it is dynamic but 
not well adaptive to spatial distribution in feature space. A 
modified version is presented in [34] which consider different 
mi for different SVs. Wu and Chang [35] also introduce a 
conformal transformation on kernel function, but the width is 
calculated through the distances in feature space. 

Williams et al. [36] propose a kernel-scaling method and 
describe a more direct way of achieving the desired 
magnification. Its idea is to choose a function c(x) so that it 
decays directly with distance, and to use prior knowledge 
obtained from conventional SVM training to conformally 
rescale the initial kernel function, so that the separation 
between two classes of data is effectively enlarged. The 
proposed transformation function is  

 
2)()( xmfexc −= ,  (8) 

where f(x) is given by equation (5) and m is a positive constant. 
c(x) reaches its maximum on the boundary surface, where f(x) 
= 0, and decays smoothly to e-m at the margins of the separating 
region where f(x) = ±1.  

The method proposed in [36] proved to be robust and 
efficient, but does not account for imbalanced data. Maratea et 
al. [37] propose an asymmetric kernel scaling (AKS) method 
for extending to imbalanced binary classification problem. Its 
basic idea is to enlarge differently areas on the two sides of the 
boundary surface, so to compensate for its skewness towards 
minority samples. The applied kernel transformation function 
in [37] is 
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where m1 and m2 are free parameters, V+ and V- are the 
positives and the negatives according to the initial standard 
SVM prediction, respectively.  

This paper uses chi-square test to compute parameter mi in 
order to avoid to optimizing mi and decrease computation cost, 
and proposes a modified SVM classification algorithm using 
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conformal kernel transformation. First, we also give a selection 
of kernel function c(x) using equation (9). Then, we calculate 
parameter mi by using the chi-square test in section B. Finally, 
we present an algorithm description in section C. 

B. Computation of Parameters mi 
Similar to AKS method in [37], we first perform a standard 

SVM to compute an approximate boundary position, then we 
split the samples in two datasets denoted by V+ and V-, 
according to first step prediction. 

Due to inevitable relation between mi and samples of each 
category, this paper uses the chi-square test and weighting to 
calculate mi. 

The chi-square test is used to determine whether there is a 
significant difference between the expected frequencies and the 
observed frequencies in one or more categories. The formula 
for calculating chi-square ( 2χ ) is:  

 
∑ −=

e

eo

f
ff 2

2 )(χ  (10) 

where of  is the observed frequency in each category, ef  is 
the expected frequency in the corresponding category. That is, 
chi-square is the sum of the squared difference between 
observed data of  and the expected data ef , divided by the 
expected data in all possible categories. 

Let V be a dataset including N samples and binary classes. 
ni denotes the number of samples in the ith category (i=1, 2). In 
the optimal distribution, the chi-square value is  

 ∑
=

−=
2

1

2
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 mi is defined as follows: 
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where 
2/

)2/( 2

N
NnX i

i
−=  (i=1, 2), wi is the weights calculated 

by equation (12) as follows 

 
∑ =

= 2

1
/

/

i i

i
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nN
nNw  (i=1, 2).  (13) 

Setting the appropriate weight is a critical issue in weighted 
approach for imbalanced problem. Obviously, weight factors 

wi above satisfy 12

1
=∑ =i iw . wi can show sparse distribution 

nature of each category.  

C. Algorithm Description 
The proposed algorithm is described as follows. In each 

iteration, the proposed algorithm first calculates mi for each 
support vector based on a chi-squared test. Then, the kernel 
transformation function c(x) is computed. Finally, the new 
kernel matrix K is updated and the classification model is 
retrained. 

 
Algorithm: A modified SVM algorithm 
Input:  

The training set trainX ; the kernel matrix K; maximum 
running iterations T. 
Output:  

Classifier svmT. 
Begin 
1: Train a SVM svm0 with kernel matrix KK =0  and the 

training set trainX .  

2: Compute the distance f(x) from sample trainXx∈  to the 
approximate hyperplane, and obtain an initial data 
partition V+ and V-, where represent the positive dataset 
and the negative dataset, respectively. 

3: t ← 0. 
4: while (t<T) { 
5:   Compute mi using equation (12). 
6: Compute kernel transformation function c(x) using equation 

(9). 
7:  Compute the new kernel matrix K using equation (6). 
8: Train a new SVM svmt with kernel matrix K and amend the 

approximate hyperplane.  
9: t ← t+1. } 
10: return svmT.  
End 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we give a description of evaluation metrics 

for imbalanced data classification problem, and present the 
experimental analysis of the proposed method in order to 
determine its robustness in imbalanced datasets.  

A. Evaluation Metrics 
Overall accuracy and error rate are important evaluation 

metrics for assessing the classification performance and 
guiding the classifier modeling. However, in the case of 
imbalanced learning, conventional evaluation metrics fail to 
provide adequate information about the performance of the 
classifier [38].  

For example, if we have a binary classification problem, 
where 99% of samples belong to the majority class, and the 
rest belong to the minority class. A classifier assigns all 
samples to the majority class to easily achieve 99% accuracy. 
However, this measurement is meaningless to some 
applications where the learning concern is the identification of 
the rare cases. 

The measures of the quality of classification are built from 
a confusion matrix shown in Table I. The result of 
classification can be categorized into four cases. These 
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categories are called TP (true positive), FN (false negative), FP 
(false positive) and TN (true negative). 

TABLE I.  CONFUSION MATRIX FOR A BINARY-CLASS PROBLEM 

Actual class Positive prediction Negative prediction 

Positive class TP (True Positive) FN (False Negative) 

Negative class FP (False Positive) TN (True Negative) 

From this matrix, different measures can be deduced to 
perform the evaluation in the imbalanced data classification 
problem:  

 True positive rate or sensitivity, TPrate=Sens= 
TP/(TP+FN). 

 Ture negative rate or specificity, TNrate=Spec= 
TN/(FP+TN). 

 False positive rate, FPrate=FP/(FP+TN). 
 False negative rate, FNrate=FN/(TP+FN). 

Accuracy is the most used evaluation metric for assessing 
the classification performance and guiding the classifier 
modeling. The overall accuracy Acc is defined as 

 Acc=
FNTNFPTP

TNTP
+++

+
 (14) 

However, accuracy is not a useful measure for imbalanced 
data. To measure the performance of the classifier, several 
measures have been developed to deal with the class imbalance 
problem, including F-measure and geometric mean (G-mean) 
[39]. 

Precision Prec is defined as the fraction of relevant 
instances that are retrieved as follows: 

 Prec=TP/(TP+FP). (15) 

F-measure is often used in the fields of information 
retrieval and machine learning for measuring search, document 
classification, and query classification performance. F-measure 
considers both precision Prec and sensitivity Sens to compute 
the score [40]. It can be interpreted as a weighted average of 
the precision and sensitivity as follows: 

 
SensrecP

SensrecPmeasureF
+

××=− 2
. (16) 

G-mean is defined by two parameters sensitivity Sens and 
specificity Spec. G-mean gives a more fair comparison of 
positive class and negative class regardless of its size. It is 
defined as 

 SpecSensmeanG ×=− . (17) 

B. Experimental comparison and anlysis 
In this sub-section, we will compare our proposal to 

address the class imbalance problem with several techniques. 

The experiments use 6 binary-class datasets which have 
different degrees of imbalance from the KEEL [41], including 
pima, haberman, glass1, cmc1, yeast1, and yeast2. They are 
very varied in their size of classes, size of attributes, size of 
samples and imbalance ratio. Their characteristics are 
summarized in Table II. For each data set, the size of samples 
(#Samples), the size of attributes (#Attributes), the size of 
samples of each class (#Positives and #Negatives), and 
imbalance ratio are listed. We calculated class imbalance ratio 
of the size of the majority class to the size of the minority class. 
Table II is ordered by the imbalance ratio, from lowly to highly 
imbalanced datasets. 

TABLE II.  DATA DESCRIPTION FOR BINARY PROBLEM 

Data set  #Samples #Attributes #Positives and 
#Negatives 

Imbalance 
ratio 

pima 691 8 241, 450 1.87 
haberman 306 3 81, 225 2.78 

glass1 214 9 51, 163 3.20 
cmc1 1324 9 299, 1025 3.43 
yeast1 1332 8 146, 1186 8.12 
yeast2 1332 8 84, 1248 14.86 

In these datasets, pima is a binary-class dataset. For 
haberman dataset, we select the first class as positive class and 
the second class as negative class. For glass1 dataset, the 4th, 
5th and 6th classes in original data are integrated into positive 
class and the rest is negative class. For cmc1 dataset, we select 
the second class in original data as positive classes and the rest 
is negative class. For yeast1 data set, we use the 4th class in 
original data as positive class and the rest is negative class. For 
yeast2 data set, we use the 5th and 6th classes in original data 
as positive class and the rest is negative class. 

In order to evaluate the performance of our proposed 
solution, we have compared it against other popular classifiers, 
including AKS method [37], SVM-SMOTE, SVM-UNDER, 
and WSVM in binary classification problems. SVM-SMOTE is 
a SMOTE-based SVM classifier. SVM-UNDER is a 
undersampling-based SVM classifier. WSVM is a weighting-
based SVM classifier. 

In the experiments, we implemented all 5 algorithms in 
Matlab. Parameters of each algorithm are tuned using gird 
search with 10-cross validation. For each dataset, we randomly 
select 80% of data as training data while the rest are used as 
test data.  

1) F-measure and G-mean metrics 
F-measure and G-mean values of two models are 

calculated from the accuracies of each class according to 
equations (16) and (17). The experimental results are presented 
in Table III.  

From Table III, we observe that, for most datasets, our 
proposed method and AKS method perform better than SVM-
SMOTE, SVM-UNDER, and WSVM, with respect to both F-
measure and G-mean. However, WSVM method performs the 
best G-mean among all methods. For most datasets, our 
proposed method performs slightly better that AKS method. 
Indeed, the performance improvements of our proposed 
method are significant when comparing to AKS method on 
datasets haberman and glass1.  
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TABLE III.  AVERAGE PERFORMANCE IN 6 DATASETS 

Data set 
SVM-SMOTE SVM-UNDER WSVM AKS method Our proposed method 

F-measure G-mean F-measure G-mean F-measure G-mean F-measure G-mean F-measure G-mean 

pima 0.342 0.472 0.690 0.760 0.733 0.797 0.752 0.813 0.824 0.843 

haberman 0.333 0.461 0.348 0.501 0.583 0.695 0.586 0.568 0.830 0.822 

glass1 0.845 0.912 0.780 0.839 0.923 0.970 0.801 0.817 0.952 0.961 

cmc1 0.290 0.486 0.381 0.572 0.270 0.432 0.572 0.538 0.607 0.612 

yeast1 0.800 0.894 0.781 0.901 0.857 0.928 0.912 0.934 0.926 0.981 

yeast2 0.462 0.615 0.474 0.745 0.518 0.713 0.713 0.754 0.847 0.885 

2) Performance result in terms of accuracy 
Performance result in terms of accuracy is shown in Table 

IV. We see that our proposed method outperforms the others 
for most datasets. This is consistent with our analysis in F-
measure and G-mean metrics. In other words, our proposed 
method performs best in achieving higher overall accuracy, 
while AKS method obtains relatively slight decrease in the 
overall accuracy.  

TABLE IV.  OVERALL ACCURACY IN 6 DATASETS 

Data set SVM-
SMOTE 

SVM-
UNDER WSVM AKS method Our proposed 

method 
pima 0.649 0.766 0.792 0.799 0.831 

haberman 0.750 0.531 0.781 0.823 0.865 

glass1 0.913 0.891 0.956 0.926 0.953 

cmc1 0.638 0.563 0.745 0.781 0.791 

yeast1 0.954 0.941 0.961 0.965 0.967 

yeast2 0.909 0.869 0.931 0.949 0.954 

V. CONCLUSIONS 
In this paper, a modified SVM method is proposed to deal 

with the imbalanced data classification problem. In the 
proposed method, a kernel transformation function is applied, 
and its parameters are calculated by the chi-square test and 
weighting. Experimental results show our proposal 
outperforms previously proposed methods.  
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