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Abstract— Problem decomposition is an important aspect in
using cooperative coevolution for neuro-evolution. Cooperative
coevolution employs different problem decomposition methods
to decompose the neural network training problem into sub-
components. Different problem decomposition methods have
features that are helpful at different stages in the evolution-
ary process. Adaptation, collaboration and competition are
characteristics that are needed for cooperative coevolution as
multiple sub-populations are used to represent the problem.
It is important to add collaboration and competition in co-
operative coevolution. This paper presents a competitive two-
island cooperative coevolution method for training recurrent
neural networks on chaotic time series problems. Neural level
and Synapse level problem decomposition is used in each of
the islands. The results show improvement in performance
when compared to standalone cooperative coevolution and other
methods from literature.

I. INTRODUCTION

COOPERATIVE COEVOLUTION (CC) is a nature in-
spired optimisation method that divides a problem into

subcomponents that are similar to the different species in
nature [1]. Problem decomposition is an important proce-
dure in cooperation coevolution that determines how the
subcomponents are decomposed in terms of their size and the
representation of the problem. The original cooperative co-
evolution method decomposed problems by having a separate
subcomponent for each variable [1] and it was later found
that the strategy was mostly effective for fully separable
problems [2]. Cooperative coevolution naturally appeals to
separable problems as there is little interaction among the
subcomponents during evolution [3]. In the case of using
cooperative coevolution for training neural networks, the
problem decomposition method is dependent on the neural
network architecture and the type of the training problem
[4] in terms of the level of inter-dependencies amongst the
neural network weights.

The two major problem decomposition methods are those
on the synapse level [5] and neuron level [6], [7]. Different
problem decomposition methods have shown different level
of strengths and weaknesses in different types of prob-
lems and neural network architectures. Neural level problem
decomposition methods have shown good performance in
pattern classification problems [8], [9], [6], [7] while synapse
level problem decomposition have shown good performance
in control and time series prediction problems [5], [10], [11].
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Competition is a major feature in biological evolution. The
initial motivations for using competition in evolutionary al-
gorithms has been given by Rosin and Belew [12]. They pre-
sented a competitive coevolution method where a population
called “host” and another called “parasite” compete with each
other with different mechanisms that enable fitness sharing,
elitism and selection. In cooperative coevolution, competition
has been used for multi-objective optimisation [13] that
exploited correlation and inter-dependencies between the
components of the problem. Competition has also been used
in cooperative coevolution based multi-objective optimisa-
tion in dynamic environments where problem decomposition
method adapts according to the change of environment rather
than being static from the beginning of the evolution. [14].

Adaptation of problem decomposition in different phases
of evolution has been effective for training feedforward
networks on pattern recognition problems [15] and recur-
rent networks on grammatical inference problems [16]. The
results have shown that it is reasonable to adapt the prob-
lem decomposition method at different stages of evolution.
However, adaptation of problem decomposition method at
different stages of evolution is costly in terms of parameter
setting. It is difficult to establish the right parameters that
indicates when to switch from one problem decomposition
to another and how long to use them at the different stages
of evolution [16]. Extensive experiments are needed when
adaptation of problem decomposition is applied to different
neural network architectures and problems.

This paper presents a new approach to neuro-evolution of
recurrent neural networks using cooperative coevolution that
enforces competition using different problem decomposition
methods. The proposed approach takes advantage of the
different problem decomposition methods that compete and
collaborate with each other with the exchange of the strongest
genetic materials during evolution. The approach is applied
to chaotic time series problems using Elman recurrent neural
networks [17]. The performance of the proposed approach is
compared with established problem decomposition methods
from literature along with other computational intelligence
methods.

The rest of the paper is organised as follows. A brief
background on cooperative coevolution, recurrent neural net-
works and time series prediction is presented in Section 2 and
Section 3 gives details of the competitive and collaborative
cooperative coevolution method for training recurrent net-
works. Section 4 presents a background on the given chaotic
time series problems, experimental results and discussion.
Section 5 concludes the work with a discussion on future
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work.

II. BACKGROUND

A. Cooperative Coevolution for Neuro-evolution

Cooperative coevolution divides a large problem into
smaller subcomponents which are implemented as sub-
populations that are evolved in isolation and cooperation
takes place for fitness evaluation [1]. Problem decomposition
determines how the problem is broken down into subcom-
ponents. The size of a subcomponent and the way it is
encoded depends on the problem. The original CC framework
has been used for general function optimisation and the
problems were decomposed to its lowest level where a
separate subcomponent was used to represent each dimension
of the problem [1]. It was later found that this strategy is only
effective for problems which are fully separable [2]. Much
work has been done in the use of cooperative coevolution in
large scale function optimization and the focus has been on
non-separable problems [2], [18], [19], [20].

A function of n variables is separable if it can be written
as a sum of n functions with just one variable [21]. Non-
separable problems have inter-dependencies between vari-
ables as opposed to separable ones. Real-world problems
mostly fall between fully separable and fully non-separable.
Cooperative coevolution has been effective for separable
problems. Evolutionary algorithms without any decomposi-
tion strategy appeal to fully non-separable problems [4].

The sub-populations in cooperative coevolution are
evolved in a round-robin fashion for a given number of
generations known as the depth of search. The depth of
search has to be predetermined according to the nature
of the problem. The depth of search can reflect whether
the problem decomposition method has been able to group
the interacting variables into separate subcomponents [7].
If the interacting variables have been grouped efficiently,
then a deep greedy search for the subpopulation is possible,
implying that the problem has been efficiently broken down
into subcomponents which have fewer interactions amongst
themselves [4].

Cooperative coevolution has been been used for neuro-
evolution of recurrent neural networks for time series prob-
lems [11], [22] and it has been shown that the perform better
compared to several methods from literature.

B. Recurrent Neural Network

Recurrent neural networks have been an important focus of
research as they can be applied to difficult problems involv-
ing time-varying patterns. They are suitable for modeling
temporal sequences. First-order recurrent neural networks
use context units to store the output of the state neurons
from computation of the previous time steps. The context
layer is used for computation of present states as they contain
information about the previous states. The Elman architecture
[17] employs a context layer which makes a copy of the
hidden layer outputs in the previous time steps. The dynamics
of the change of hidden state neuron activation’s in Elman
style recurrent networks is given by Equation (1).

yi(t) = f

 K∑
k=1

vik yk(t− 1) +
J∑

j=1

wij xj(t− 1)

 (1)

where yk(t) and xj(t) represent the output of the context
state neuron and input neurons respectively. vik and wij

represent their corresponding weights. f(.) is a sigmoid
transfer function.

C. Problem Decomposition for Recurrent Networks
Problem decomposition is an important procedure in using

cooperative coevolution for neuro-evolution. The problem
decomposition method will determine which set of weights
in from the neural network will be encoded into a particular
sub-population of cooperative coevolution. In the case of
recurrent neural networks, special consideration needs to be
made for the weights that are associated with the feedback
connections.

There are two major problem decomposition methods
for neuro-evolution that decomposes the network on the
neuron level and synapse level. In synapse level problem
decomposition, the neural network is decomposed to its
lowest level where each weight connection (synapse) forms
a subcomponent. Examples include cooperatively co-evolved
synapses neuro-evolution [5] and neural fuzzy network with
cultural cooperative particle swarm optimisation [10]. In neu-
ron level problem decomposition, the neurons in the network
act as the reference point for the decomposition. Examples
include enforced sub-populations [8], [9] and neuron-based
sub-population [6], [7].

III. COMPETITION AND COLLABORATION IN
COOPERATIVE COEVOLUTION

Competition in an environment of limited resources is an
important feature used for survival in nature. Collaboration
helps in the sharing of resources between the different
species that have different characteristics for adaption when
given with environmental changes and other challenges.
In cooperative coevolution, the species are implemented
as sub-populations that do not exchange genetic material
with other sub-populations. Collaborations and exchange of
genetic material or information between the sub-populations
can be helpful in the evolutionary process. Competition and
collaboration is vital component of evolution where different
groups of species compete for resources in the same environ-
ment. Different types of problem decomposition methods in
cooperative coevolution represent different groups of species
(neuron and synapse level [5], [6], [7]) in an environment
that features collaboration through fitness evaluation during
evolution.

In this section, we propose a cooperative coevolution
method that incorporates competition and collaboration with
species that is motivated by evolution in nature. The proposed
method employs the strength of a different problem decom-
position method which reflects on the different degree of non-
separability (interaction of variables) and diversity (number
of sub-populations) during evolution [4].

566



The proposed method is called Competitive Island-
Based Cooperative Coevolution (CICC) that employs dif-
ferent problem decomposition methods that compete with
different features they have in terms of diversity and degree
of non-separability. In the rest of the discussion, we refer to
the different types of problem decomposition as islands. The
proposed method features competition where the the different
islands compare their solutions after a fixed time (number of
fitness evaluations) and exchange the best solution between
the islands. In this model, for the case of neuro-evolution,
only two islands are used as given by the established problem
decomposition methods. The details of the different problem
decomposition methods that are called islands are given
below.

1) Synapse level problem decomposition: Decomposes
the network into its lowest level to form a single
subcomponent [5], [10]. The number of connections in
the network determines the number of subcomponents.

2) Neuron level problem decomposition: Decomposes
the network into neuron level. The number of neurons
in the hidden, state and output layer determines the
number of subcomponents [7].

The proposed CICC method is given in Algorithm 1.
Initially, all the sub-populations of the synapse level and
neuron level islands are randomly initialised with random
real values in a range. In Stage 1, the sub-populations
at synapse and neuron level problem decomposition are
cooperatively evaluated.

State 2 proceeds with evolution in an island based round-
robin fashion where each island is evolved for a predefined
time based on the number of fitness evaluations. This is called
island evolution time that is given by the number of cycles
that makes the required number of function evaluations in
synapse and neuron level islands. A cycle in cooperative co-
evolution is when all the sub-populations have been evolved
for n number of generations in a round-robin fashion.

Once a particular island has been evolved for the island
evolution time, the algorithm proceeds and check if the best
solution of the particular island is better than the rest of
the islands. If the solution is the best, then the collaboration
procedure takes place where the solution is copied to the rest
of the islands. Afterwards, when present island changes, the
best solution competes within the rest of the solutions from
same island until the local evolution time has been reached.
In the collaboration procedure, the algorithm needs to take
into account on how the solution from one island will be
transferred into the other the island which is defined by a
different problem decomposition method.

A. Cooperative Evaluation

Cooperative evaluation of individuals in the respective sub-
populations is done by concatenating the chosen individual
from a given sub-population with the best individuals from
the rest of the sub-populations [1], [6], [7], [11]. The concate-
nated individual is encoded into the recurrent neural network
and the fitness is calculated. The goal of the evolutionary

Fig. 1. The Two-Island CICC method that employs neuron and synapse
level islands.

Alg. 1 Competitive Two-Island Cooperative Coevolution for
training Recurrent Neural Networks
Stage 1: Initialisation:

i. Cooperatively evaluate Neuron level
ii. Evaluate Network level

Stage 2: Evolution:

while FuncEval ≤ GlobalEvolutionTime do
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Synapse level do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Neuron level do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
Stage 2: Competition: Compare and mark the island with best
fitness.

Stage 3: Collaboration: Inject the best individual from the
island with better fitness into the other island.

end

process is to increase the fitness which tends to decrease the
network error. In this way, the fitness of each subcomponent
in the network is evaluated until the cycle is completed.

B. Competition

Each island employs a different problem decomposition
method. In the synapse level island, a much higher number
of function evaluation is required for a single cycle when
compared to the neuron level island. The number of function
evaluation depends on the number of sub-populations used in
the island. Synapse level island employs the highest number
of sub-populations as each weight link is represented as a
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sub-population, whereas, neuron level sub-populations have
more than one weight variables.

Both islands need to be given same time for evolution,
therefore, the number of function evaluations required need
to be the same or similar. We can only evolve each is-
land for complete cycles, therefore, the number of function
evaluations cannot be exactly the same for each island. In
the competitive framework, both islands are given similar
approximate time in terms of the number of function evalu-
ations.

C. Collaboration

After the competition, the island that contains an indi-
vidual with the best solution is then injected (copied) into
the other islands. A number of factors needs to be taken into
account when making such a transfer as the size and number
of subcomponents vary for each island due to their difference
in problem decomposition method. The best individuals
from each of the subcomponents needs to be carefully con-
catenated into an individual and transferred without losing
any genotype (subcomponents in cooperative coevolution) to
phenotype (recurrent neural network) mapping.

Once the transfer is done, both islands need to be evaluated
in order to prepare for the next round of competition. In
evaluation, the best individuals in each of the sub-populations
are marked for evolution and cooperative evaluation. At each
round, only the winner island is not evaluated.

The winner island is used to inject the best solution to
the other island. The island in which the best individual is
injected is evaluated to ensure that the injected individual has
a fitness. In order to save evaluation time, the fitness can also
be transferred along with the solution. This depends on the
way the sub-populations are implemented and the approach
taken in ensuring that the fitness value is updated at the right
position that corresponds with the individual that has been
transferred. Since each sub-population contain individuals
that have a fitness, we need to note that there will be a
number of different fitness values from the best individual
in each sub-population. We only take the best fitness value
and use it to replace the best individuals from all the sub-
populations in the other island. Since the number of sub-
populations is different, only the best fitness replace the old
best fitness as it carries a stronger solution.

The type of evolutionary algorithm used in the sub-
population will have certain requirements for such a trans-
fer of solution to take place. In our implementation, we
used the generalised generation gap with parent-centric
crossover (G3-PCX) evolutionary algorithm [23] in the sub-
populations. This algorithm’s selection criteria is the gener-
alised generation gap model where a handful of individuals
are replaced at every generation and only those that are
replaced are evaluated.

IV. SIMULATION AND ANALYSIS

This section presents an experimental study of competitive
island based cooperative coevolution for training recurrent

neural networks on chaotic time series problems. The neu-
ron level (NL) [11] and synapse level (SL) [11] problem
decomposition methods are used in each of the islands and
standalone versions of these methods are used for compari-
son.

The Mackey Glass time series [24] and Lorenz time series
[25] are the two simulated time series while the real-world
problems are the Sunspot time series [26] and the financial
time series from ACI Worldwide Inc given in NASDAQ stock
exchange [27].

The behaviour of the respective methods are evaluated on
different recurrent network topologies which are given by dif-
ferent numbers of hidden neurons. The size and description
of the respective dataset is taken from our previous work for
a fair comparison [11]. The results are further compared with
other computational intelligence methods from literature.

Given an observed time series x(t), an embedded phase
space Y (t) = [(x(t), x(t − T ), ..., x(t(D − 1)T )] can be
generated, where, T is the time delay, D is the embedding
dimension, t = 0, 1, 2, ..., N−DT−1 and N is the length of
the original time series [28]. Taken’s theorem expresses that
the vector series reproduces many important characteristics
of the original time series. The right values for D and T must
be chosen in order to efficiently apply Taken’s theorem [29].
Taken’s proved that if the original attractor is of dimension d,
then D = 2d+1 will be sufficient to reconstruct the attractor
[28].

The reconstructed vector is used to train the recurrent
network for one-step-ahead prediction where 1 neuron is
used in the input and the output layer. The recurrent network
unfolds k steps in time which is equal to the embedding
dimension D [30], [31], [11].

The root mean squared error (RMSE) and normalised
mean squared error (NMSE) are used to measure the pre-
diction performance of the recurrent neural network. These
are given in Equation 2 and Equation 3.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2)

NMSE =

(∑N
i=1(yi − ŷi)

2∑N
i=1(yi − ȳi)2

)
(3)

where yi, ŷi and ȳi are the observed data, predicted data and
average of observed data, respectively. N is the length of the
observed data. These two performance measures are used in
order to compare the results with the literature.

A. Problem description

The Mackay Glass time series has been used in literature
as a benchmark problem due to its chaotic nature [24]. The
differential equation used to generate the Mackey Glass time
series is given in Equation 4.

δx

δt
=

ax(t− τ)

[1 + xc(t− τ)]
− bx(t) (4)
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In Equation 4, the delay parameter τ determines the
characteristic of the time series, where τ > 16.8 produces
chaos. The selected parameters for generating the time series
is taken from the literature [32], [33], [34], [35] where the
constants a = 0.2, b = 0.1 and c = 10. The chaotic time
series is generated by using time delay τ = 17 and initial
value x(0) = 1.2.

The experiments use the chaotic time series with length
of 1000 generated by Equation 4. The first 500 samples are
used for training the Elman network while rest of the 500
samples are used for testing. The time series is scaled in the
range [0,1]. The phase space of the original time series is
reconstructed with the embedding dimensions D = 3 and
T = 2.

The Lorenz time series was introduced by Edward Lorenz
who has extensively contributed to the establishment of
Chaos theory [25]. The Lorenz time series is chosen for
prediction and 1000 samples are generated from the Lorenz
equation [25]. The time series is scaled in the range [-1,1].
The first 500 samples are used for training and the remaining
500 is used for testing. The phase space of the original
time series is reconstructed with the embedding dimensions
D = 3 and T = 2.

The Sunspot time series is a good indication of the solar
activities for solar cycles which impacts Earth’s climate,
weather patterns, satellite and space missions [36]. The
prediction of solar cycles is difficult due to its complexity.
The monthly smoothed Sunspot time series has been obtained
from the World Data Center for the Sunspot Index [26]. The
Sunspot time series from November 1834 to June 2001 is
selected which consists of 2000 points. This interval has been
selected in order to compare the performance the proposed
methods with those from literature [34], [35]. The time series
is scaled in the range [-1,1]. The first 1000 samples are
used for training while the remaining 1000 samples are used
for testing. The phase space of the original time series is
reconstructed with the embedding dimensions D = 5 and
T = 2. Note that the scaling of the three time series in the
range of [0,1] and [-1,1] are done as in the literature in order
to provide a fair comparison.

The financial time series dataset is taken from the NAS-
DAQ stock exchange [27]. It contains daily closing prices
for ACI Worldwide Inc time series which is one of the
companies listed on the NASDAQ stock exchange. The data
set contains closing stock prices from December 2006 to
February 2010 which is equivalent to around 800 data points
and 400 time series points after embedding T = 2. We used
embedding dimension D = 5 to reconstruct the time series
data using Taken’s theorem in order to get the training and
testing data sets. The closing stock prices were normalized
between 0 and 1. The dataset also overlaps with the recession
that hit the US market. The given data points were divided
into training and testing using a 50-50 split.

B. Experimental set-up

The Elman recurrent network employs sigmoid units in the
hidden layer of the three different problems. In the output

layer, a sigmoid unit is used for the Mackey Glass and
financial time series while hyperbolic tangent unit is used
for Lorenz and Sunspot time series. The experiment set-up
is same as our previous works [11]. The RMSE and NMSE
given in Equation 2 and Equation 3 are used as the main
performance measures of the recurrent network.

In the proposed CICC for recurrent networks shown in Al-
gorithm 1, each sub-population is evolved for a fixed number
of generations in a round-robin fashion. This is considered
as the depth of search. Our previous work has shown that the
depth of search of 1 generation gives optimal performance
for both neuron and synapse level decomposition [7]. Hence,
1 is used as the depth of search in all the experiments. Note
that all sub-populations evolve for the same depth of search.

The termination condition of the all the problems and
recurrent network training methods is when a total of 50
000 function evaluations has been reached by the respective
cooperative co-evolutionary methods (CC-NL and CC-SL).
The proposed CICC method employs a total of 100 000
function evaluation where each island (SL and NL) employs
50 000 function evaluations.

C. Results and discussion

This section reports the performance of CICC for training
the Elman recurrent network on the chaotic time series
problems.

The results are given for different number of hidden neu-
rons for Elman style recurrent networks using the respective
co-evolutionary algorithms given in Tables I - IV. The CC-
NL and CC-SL represent standalone cooperative coevolution
neuron and synapse level methods, respectively. They are
used to compare with the proposed CICC SL-NL method
using the same setup for the recurrent network architecture
and optimisation time in terms of function evaluations as
given in the experimental set-up subsection.

The results report the RMSE of with mean and 95 percent
confidence interval along with the best run from 50 experi-
mental runs.

We evaluate the results by comparing the different methods
with the number of hidden neurons (H). Note that the least
values of RMSE shows the best results. In Table I, the
results of the Mackey Glass time series shows that the
CICC method has given better performances than CC-NL
and CC-SL. This is clear for all the cases, i.e for 3 - 9
hidden neurons. In Table II, similar trend is seen where
CICC outperforms standalone CC-SL and CC-NL. CICC
gives better performance as the number of hidden neuron
increases for both simulated problems. This is seen for the
training, generalisation and the best runs. We note that both
of these problems are simulated time series that do not
contain noise, hence, there was no problem faced in over-
fitting that is common for poor generalisation performance.

The results in Table III and Table IV reveal the perfor-
mance of the proposed method for real world time series
where noise is present. In the Sunspot time series, CICC
performs better than the other methods for all the cases.
In the same trend is seen for the finance time series (ACI
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Worldwide Inc), however, the improvement is not that high
when compared to the other problems. In both cases, CICC
gives better performance as the number of hidden neuron
increases.

TABLE I
THE TRAINING AND GENERALISATION PREDICTION PERFORMANCE FOR

THE MACKEY-GLASS TIME SERIES

Method H Training (×E-02) Generalisation (×E-02) Best (×E-02)
CC-NL 3 1.138 ± 0.104 1.143 ±0.105 0.557

5 1.600 ± 0.111 4.374 ± 1.113 1.239
7 1.680 ± 0.121 4.339 ± 1.132 1.522
9 1.776 ± 0.106 6.886 ± 1.792 1.466

CC-SL 3 1.811± 0.208 1.820 ±0.209 0.976
5 1.636 ±0.192 1.643 ±0.193 0.822
7 1.906 ±0.414 1.911±0.415 0.902
9 2.964 ±0.685 2.967± 0.685 1.056

CICC 3 1.053 ±0.063 1.059 ± 0.064 0.572
SL-NL 5 0.847 ±0.062 0.847 ± 0.063 0.460

7 0.846 ±0.063 0.847 ± 0.064 0.470
9 0.856 ±0.074 0.858 ±0.074 0.399

TABLE II
THE TRAINING AND GENERALISATION PREDICTION PERFORMANCE FOR

THE LORENZ TIME SERIES

PD H Training (×E-02) Generalisation (×E-02) Best (×E-02)
CC-NL 3 1.775 ± 0.153 1.839 ± 0.161 0.728

5 1.321 ± 0.143 1.355±0.147 0.319
7 1.425 ± 0.153 1.470 ±0.156 0.514
9 1.489 ± 0.159 1.553 ± 0.167 0.514

CC-SL 3 2.085 ± 0.242 2.136± 0.246 0.787
5 1.678± 0.199 1.748 ± 0.210 0.433
7 1.643 ± 0.282 1.715 ± 0.296 0.591
9 1.444 ± 0.191 1.513 ± 0.205 0.642

CICC 3 1.390 ±0.155 1.431 ±0.158 0.583
SL-NL 5 1.026 ±0.136 1.054 ±0.140 0.355

7 0.938 ±0.150 0.965 ±0.149 0.372
9 0.888 ±0.097 0.915 ±0.101 0.442

TABLE III
THE TRAINING AND GENERALISATION PREDICTION PERFORMANCE FOR

THE SUNSPOT TIME SERIES

PD H Training (×E-02) Generalisation (×E-02) Best (×E-02)
CC-NL 3 2.066 ± 0.217 5.119 ± 1.233 1.693

5 1.794 ± 0.187 5.369 ± 1.277 1.662
7 1.648 ± 0.100 5.656 ± 1.553 1.510
11 1.705 ± 0.159 6.513 ± 1.890 1.507

CC-SL 3 2.066 ± 0.217 5.119 ± 1.233 1.693
5 1.794 ± 0.187 5.369 ± 1.277 1.662
7 1.648 ± 0.100 5.656 ± 1.553 1.510
11 1.705 ± 0.159 6.513 ± 1.890 1.507

CICC 3 1.589 ±0.090 4.068 ±0.594 1.572
SL-NL 5 1.479 ± 0.108 4.544± 1.229 1.342

7 1.348 ± 0.0745 7.606 ± 2.219 1.663
9 1.485 ± 0.071 6.657 ± 1.771 1.778

Tables V - VII, compare the best results from the previous
tables with some of the established methods in literature.
The RMSE from the best run is used for comparison along
with the NMSE that was obtained particularly for comparison
of results from the literature. We note that the particular
financial time series data-set has not been used in the
literature, therefore we cannot provide any comparison

TABLE IV
THE TRAINING AND GENERALISATION PREDICTION PERFORMANCE FOR

THE FINANCE (ACI WORLDWIDE INC) TIME SERIES

PD H Training (×E-02) Generalisation (×E-02) Best (×E-02)
CC-NL 3 2.074 ± 0.041 2.117 ± 0.132 1.934

5 2.027 ± 0.030 2.041 ± 0.024 1.931
7 2.010 ± 0.019 2.043 ± 0.044 1.932
9 2.028 ± 0.019 2.049 ± 0.066 1.930

CC-SL 3 2.262 ± 0.072 2.186 ± 0.078 1.908
5 2.200 ± 0.074 2.105 ± 0.047 1.930
7 2.108 ± 0.051 2.108 ± 0.058 1.931
9 2.106 ± 0.041 2.170 ± 0.065 1.947

CICC 3 2.008 ± 0.027 2.039 ± 0.028 1.920
SL-NL 5 1.974 ± 0.022 2.031 ± 0.019 1.942

7 1.941 ± 0.018 2.027 ± 0.030 1.935
9 1.932 ± 0.019 2.005 ± 0.015 1.942

The proposed CICC method has given better perfor-
mance when compared to similar evolutionary approaches
such as training neural fuzzy networks with hybrid of cul-
tural algorithms and cooperative particle swarm optimisation
(CCPSO), cooperative particle swarm optimisation (CPSO),
genetic algorithms and differential evolution (DE) [10]. The
only exception is being the results from Hybrid NARX-
Elman networks [35] as it has additional enhancements
such as the optimisation of the embedding dimensions and
strength of architectural properties of hybrid neural networks
with residual analysis [35].

CICC performs better than standalone cooperative coevo-
lution in literature, (CCRNN-Synapse Level and CCRNN
Network Level). It also performs better when compared to
adaptive modularity cooperative coevolution (AMCC), where
the motivation was to change the problem decomposition
method with time, i.e begin with Synapse level and then
move to neuron level and network level where only a stan-
dard evolutionary algorithm is used. This approach intended
to give the appropriate problem decomposition method at
different stages of evolution. This approach had limitations
due to parameter setting and heuristics required to figure out
when to change from one problem decomposition to another
ad there is no established measure of the interacting variables
as given by the degree of non-separability [4].

Synapse level island would be most useful in separable
problems that have lower degree of non-separability - it
provides more flexibility and enforces global search through
the sub-populations. CICC fulfils the limitations faced by
fixed problem decomposition methods by using the best
solutions after each round of competition of the islands. In
this way, the search can escape from local minimum from
the solution from the other island.

CICC can be further improved by adding more islands
- which will depend on different problem decomposition
methods. Some of the island can also be composed by
problem decomposition where the number of sub-population
and its composition is chosen arbitrarily.

A major advantage of the proposed method is that it can be
implemented in a multi-threaded environment that will speed
up the computation time which is a limitation of cooperative
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TABLE V
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE MACKEY TIME SERIES

Prediction Method RMSE NMSE
Neural fuzzy network and hybrid of cultural algorithm and cooperative
particle swarm optimisation (CCPSO) (2009) [10] 8.42E-03
Neural fuzzy network and particle swarm optimisation (PS0) (2009) [10] 2.10E-02
Neural fuzzy network and cooperative particle swarm optimisation (CPS0) (2009) [10] 1.76E-02
Neural fuzzy network and differential evolution (DE) (2009) [10] 1.62E-02
Neural fuzzy network and genetic algorithm (GA ) (2009)[10] 1.63E-02
Backpropagation neural network and genetic algorithms with residual analysis (2011) [37] 1.30E-03
Hybrid NARX-Elman RNN with Residual Analysis (2010) [35] 3.72E-05 2.70E-08
Backpropagation neural network and genetic algorithms with residual analysis (2011) [37] 1.30E-03
CCRNN-Synapse Level (2012) [11] 6.33E-03 2.79E-04
CCRNN-Neuron Level (2012) [11] 8.28E-03 4.77E-04
AMCC-RNN [22] 7.53E-03 3.90E-04
Proposed CICC-RNN 3.99E-03 1.11E-04

TABLE VI
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE LORENZ TIME SERIES

Prediction Method RMSE NMSE
Backpropagation-through-time (BPTT-RNN) (2010) [31] 1.85E-03
Real time recurrent learning (RTRL-RNN) (2010) [31] 1.72E-03
Recursive Bayesian LevenbergMarquardt (RBLM-RNN) (2010) [31] 9.0E-04
Hybrid NARX-Elman RNN with Residual Analysis (2010) [35] 1.08E-04 1.98E-10
Backpropagation neural network and genetic algorithms with residual analysis (2011) [37] 2.96E-02
CCRNN-Synapse Level (2012) [11] 6.36E-03 7.72E-04
CCRNN-Neuron Level (2012) [11] 8.20E-03 1.28E-03
AMCC-RNN [22] 5.06E-03 4.88E-04
Proposed CICC-RNN 3.55E-03 2.41E-04

TABLE VII
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE SUNSPOT TIME SERIES

Prediction Method RMSE NMSE
Multi-layer perceptron (1996) [30] 9.79E-02
Elman RNN (1996) [30] 9.79E-02
FIR Network (MLP) (1996) [30] 2.57E-01
Wavelet packet multilayer perceptron (2001)[38] 1.25E-01
Radial basis network with orthogonal least squares (RBF-OLS)(2006) [34] 4.60E-02
Locally linear neuro-fuzzy model - Locally linear model tree (LLNF-LoLiMot) (2006) [34] 3.20E-02
Hybrid NARX-Elman RNN with Residual Analysis (2010) [35] 1.19E-02 5.90E-04
CCRNN-Synapse Level (2012) [11] 1.66E-02 1.47E-03
CCRNN-Neuron Level (2012) [11] 2.60E-02 3.62E-03
AMCC-RNN [22] 2.41E-02 3.11E-03
Proposed CICC-RNN 1.57E-02 1.31E-03

coevolution for training neural network when compared to
gradient based methods. In a multi-threaded implementation,
each island can run on a separate thread.

V. CONCLUSIONS AND FUTURE WORK

This paper presented competitive island-based cooperative
coevolution of recurrent neural networks for chaotic time
series prediction. The proposed method used two different
islands that were composed by defined by different problem
decomposition methods. The results have shows that the
proposed method outperforms the standalone cooperative
coevolution methods in terms of prediction performance and
scalability. The proposed method also performs better than
several other methods from the literature. The proposed
method takes advantage of two problem decomposition meth-

ods with different degree of non-separability. In a conven-
tional cooperative coevolution method, the problem decom-
position method is fixed throughout the evolutionary process,
whereas in the proposed approach, two methods compete and
collaborate through the islands. In case when the search is
trapped in a local minimum in a particular island, the search
takes advantage of the solution that is produced in the other
island through the collaborative features.

In future work, the proposed method can be improved
by exploring other problem decomposition methods that can
provide more competition. A multi-threaded version of the
algorithm can be developed to reduce the computation time.
The method can be used to evolve other neural network
architectures for similar problems and those that involve
pattern classification and control. The proposed method can
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be also use for large scale global optimisation problems.
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