
Adaptively Weighted Support Vector Regression for 
Financial Time Series Prediction

Zhijie Li1,2, Yuanxiang Li1, Fei Yu1, Dahai Ge1

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
2 Computer School, Hunan Institute of Science and Technology, Yueyang 414006, China

lzj0019@163.com, yxli@whu.edu.cn,  yufei@whu.edu.cn, 117225075@qq.com

Abstract—The financial data are usually volatile and contain 
outliers. One problem of the standard support vector regression 
(SVR) for financial time series prediction is that it considers data 
in a fixed fashion only and lack the robustness to outliers. To 
tackle this issue, we propose the adaptively weighted support 
vector regression (AWSVR) model. This novel model is 
demonstrated to choose the weights adaptively with data. 
Therefore, the AWSVR can tolerate noise adaptively. The 
experimental results on three indices: the NASDAQ, the 
Standard & Poor 500 index (S&P), and the FSTE100 index 
(FSTE) show its advantages over the standard SVR.

Keywords—Support vector regression, outliers, data adaptive 
learning, weighted learning, financial time series prediction.

I. INTRODUCTION 

INANCIAL time series prediction is a challenging task in 
machine learning [1], [2], [3], [4], [5]. The support vector 

regression (SVR) has been successfully applied in this 
problem due to its advantage of generalization with a unique 
and global optimal solution [6], [7], [8]. The standard SVR 
adopts the ε-insensitive loss function with a fixed margin to 
control the sparsity of the solution and reduce the effect of 
some unimportant data points. This setting is simple and 
effective in common applications.

Financial data are usually highly volatile and the noise 
varies over time, and fixing the margin cannot tolerate noise 
adaptively. In modeling the financial time series, one key 
problem  is outliers detection and reduction [1], [5]. When the 
data are noise with possible outliers in the data, learning 
observations without awareness of outliers may lead to fitting 
unwanted data and interrupt the approximation function, 
which will result in the lowering of generalization 
performance. Hence, extending the fixed ε-insensitive loss 
function to general ε-insensitive with adaptive margin is very 
important in the prediction of the stock market. Specific 
techniques, e.g., [9], [10], and [11], have been proposed to 
gain robustness. In these methods, the corresponding 
optimization problem either is nonconvex or involve much 
more computational cost than that of the standard SVR. 

In this paper, we proposed an adaptively weighted SVR 
training algorithm to enhance the robust capability of standard 
SVR. The weights are chosen adaptively with data, which can 
reduce the impact of outliers by using smaller weights. As a 

result, the weighted SVR can deliver better prediction 
performance than the unweighted ones. Experimental results 
on real-world  financial datasets demonstrate the merits of the 
proposed weighting and adaptive learning algorithm for 
financial time series prediction. 

II. SUPPORT  VECTOR REGRESSION

Given financial time series data set, {(xt, yt) | xt∈Rd, yt∈R, 
t=1,…,N}, the objective of regression is to find a function 
which can not only approximate these data well, but also can 
accurately predict the value of y for future data x.

In standard SVR, the approximating function takes the 
following linear form:

f(x)= βT x + b,                                                              (1)
where β∈Rd, b∈R. Furthermore, the (1) can be extended into 
the non-linear model by using Mercer’s kernel [12], [13].

Now the task is to determine w and b from the training data 
by minimizing the regression risk which is defined as follows:
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Where the term ββ
2
1 T is a complexity term, C is a 

regularized constant, and lε (y - f(x)) is the ε-insensitive loss 
function which is defined as
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Where []+ mathematically mean the value of what is 

between brackets if it is non-negative, else the value is zero. In 
above function, data points in the range of ε-margin are not 
considered. Therefore, it can reduce their effect to 
approximation function and controls the sparsity of solution.

The complete optimization of L2-SVR can be written as 
follows:
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s.t.      yi - (βTxi+b)≤ ε +ζi  ,                                          (5)
          (βTxi+b)-yi ≤ ε +ζi

*,                                            (6)
  ζi ≥0,  ζi

* ≥0,  i=1,…,N.                                     (7)
Where ζi and ζi

* are the corresponding positive and negative 
errors at the i-th point, respectively. The above optimization 
problem can be solved by the quadratic programming method 
[8], [14].
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III. AWSVR MODEL

A. Weighted  SVR
In proposed weighted SVR, we assume that there is a 

nonnegative weight wi associated with each pair of 
observations (xi, yi) for i=1,…,N. It solves the following 
optimization problem by the weighted learning:
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When wi=1, it reduces to the standard SVR. Minimizing the 
regression risk of (8) by the Lagrange method, the 
corresponding dual problem becomes
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where αi and  αi
* are the corresponding Lagrange multipliers 

used to push and pull f(xi) towards the outcome of yi, 
respectively. K(xi, xj) is the kernel function which satisfies the 
Mercer’s condition.

    The above Quadratic Problem(QP) can be easily solved 
by a commonly used SVR library. Therefore, we obtain the 
approximation function as , bxxKxf i

N
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where the offset b is calculated by exploiting the Karush-Kuhn-
Tucher (KKT) conditions in [15].

B. Choice of Weights
AWSVR uses a nonnegative weight wi associated with each 

pair of observations, and how to choose weights is a key 
problem. When there are outliers, it is desirable to give 
smaller weights to observations that are outliers. One natural 
approach for the weighted learning is to adopt the results from 
standard learning to understand relative locations of the 
training data points to the regression boundary. Therefore, we 
first train the standard SVR in (2), and get the optimal 
approximation function and loss function.  Denote them as 

),(ˆ),(ˆ  lf , respectively, where  ]|)(ˆ[|),(ˆ  iiii xfyyxl . 
Next we train the AWSVR (8) using this weight wi defined as 
follows:

)),,(ˆ1(1 iii yxlw       i=1,…,N.                             (11)
Our motivation of the weight function comes from the form 

of the loss function lε=[|y-f(x)|-ε]+. When ε=0, the loss function 
become lε(u)=| y-f(x)|=|u|. To connect the value of target loss 
wi lε with 0-1, we consider the weight form 
w(u)=1/(1+|u|)，and the target loss function is shown in Figure 
1.
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Fig. 1. Plot of the loss function lε(u), the weight function for 
AWSVR, and the target loss function w(u) lε(u) on u

Note that our proposed weighting scheme assigns a smaller 
weight for any observation (xi,yi) with a larger |u|. This 
matches our goal. In particular, for any observation  (xi,yi), the 
larger |u| is, the more likely for (xi,yi) to be an outlier, our 
weight function will assign smaller weights for such 
observations in the weighted learning. A reason of outlier’s 
weight being not zero is that the outliers still contain some 
useful information for constructing the approximation function 
and thus we cannot completely ignore them.

With the loss learning solution ),(ˆ
ii yxl of standard SVR, 

we use the weight )),(ˆ1(1 iii yxlw  for the i-th point. 
Therefore, the value of target loss function 

lwi
ˆ will be in the 

range of 0 to 1 for all observations. This motivates us to 
propose the following “two-phase” procedure:
Phase 1: Train the standard SVR model with fixed ε margin 

setting, and calculate the weights for all training 
data points.

Phase 2: Apply the weighted learning to get the optimal 
approximation function f(x)

As we will show in our numerical results, our proposed 
choice of weights works very well in financial time series 
prediction.

IV. EXPERIMENTS

In this section, we implement the above “two-phase” 
procedure and perform the experiments on three indices:  
Standard & Poor 500 index (S&P), NASDAQ and the 
FSTE100 index (FSTE). The data are selected from the daily 
closing prices of the indices from January 2, 2013 to April 30, 
2013. The beginning four-fifth data are used for training and 
the rest one-fifth data are used in the one-step ahead 
prediction. All algorithms run on a PC with 2.80GHz CPU and 
3.93GB memory.

A. Data Preprocessing and Model Selection
Firstly, the daily closing prices (dt) of the above three 

indices are converted to continuously compounded returns as 
rt=log(dt+1/dt), and then they are normalized by yt=(rt-
Mean(rt))/STD(rt), where the means and STDs are computed 
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for each individual index. 
In our experiments, the predicted system is modeled as 

)(ˆ tt xfy  , where xt is constructed as a four-day’s pattern: 
xt=(yt-4, yt-3, yt-2, yt-1) based on the assumption that (non)linear 
relationship occurs in sequential five days’ prices. The trade-
off parameter C and the parameter of the RBF kernel 

 2(x, y) exp || x y ||K    are obtained on the 

following paired points: [2-5, 2-4,…,210]×[2-5, 2-4,…,210]. We 
just restrict the ε values in the range of 0.0, 0.2, …,1.0 to 2.0 
since when ε ≥ 2.0, there are not support vectors in the SVR.

In the first phase, we construct the approximation function 
f(xt) by performing the SVR (2) on the normalized training 
data using the above settings. Then we observe that some 
training data points actually differ largely from the predictive 
values. Therefore, we update the corresponding wi according 
to (11) in the second phase. Hence, we can deflate the 
influence of those differing points.

B. Result Analysis
Tables 1, 2, 3 report the corresponding mean square errors 

(MSEs) in the NASDAQ, S&P, and FSTE index, respectively. 
In these tables, we list the results against the different ε’s, 
ranging from 0.0 to 2.0. From these tables, the second phase 
usually demonstrates better performance than the standard ε-
SVR when ε is specified. These observations once again 
validate that considering data in a proper weight can indeed 
boost the prediction performance. To make it clear, in Fig.2, 
we plot the best results given by the first phase and the second 
phase. Again, the proposed AWSVR demonstrates smaller 
MSEs in all the three indices. More specifically, the smallest 
MSEs of the AWSVR are 1.2054 in NASDAQ, 0.9189 in 
S&P, and 1.5750 in FSTE, while the smallest MSEs of the ε-
SVR are 1.2620, 1.0127, and 1.6488, respectively. A paired t-
test [16] performed on the best results of two models show 
that the AWSVR model outperforms the ε-SVR with the 
α=5% significance level for a one-tailed test.

TABLE Ⅰ
MSE OF AWSVR AND SVR ON THE NASDAQ INDEX 

ε AWSVR SVR
0.0 1.3039 1.2620
0.2 1.3024 1.3063
0.4 1.3163 1.3035
0.6 1.2784 1.3175
0.8 1.2253 1.3277
1.0 1.2293 1.3515
2.0 1.2054 1.2694

TABLE Ⅱ
MSE OF AWSVR AND SVR ON THE S&P INDEX 

ε AWSVR SVR
0.0 1.2124 1.2186
0.2 0.9582 1.2456
0.4 0.9189 1.2133
0.6 0.9592 1.1651
0.8 0.9609 1.0571
1.0 1.0283 1.0127
2.0 1.1531 1.1543

TABLE Ⅲ
MSE OF AWSVR AND SVR ON THE FSTE INDEX
ε AWSVR SVR

0.0 1.7037 1.6488
0.2 1.6847 1.6897
0.4 1.7198 1.7030
0.6 1.6536 1.7042
0.8 1.6010 1.7347
1.0 1.5902 1.7482
2.0 1.5750 1.6585
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Fig. 2. MSE comparison among the AWSVR and SVR

In order to investigate how the trade-off parameter C 
influences the performance of the proposed algorithm, we plot 
the MSEs against C on S&P500 index in Fig. 3. One can find 
that the performance of the ε-SVR is very sensitive to the 
choice of C in these high-volatile data, while the performance 
of the AWSVR almost remains unchanged against different 
Cs. If one looks back into the optimization problem (8) in the 
AWSVR, the loss is weighted by wi around each data point xi. 
The non-fixed weight would “absorb” the influence caused by 
the noise points, and we can even remove the loss term 
 


N

i iii xfylwC
1

))((  from (8). This phenomenon actually 

makes our model more appealing. In comparison, in the ε-
SVR, the impact caused by outliers are only mitigated slightly 
by the slack variables ζi and ζi

*  in (4).

Fig. 3. The influence of C on the performance S&P500
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The disadvantage of the proposed AWSVR is its relatively 
long training time. Though the AWSVR algorithm needs the 
second phase to solve the adaptive weight problem, its time 
complexity is polynomial. In the experiments, we observe that 
the AWSVR costs less than 1s in training all three indices, and 
it is worth to adopt the weighted learning for financial time 
series prediction.

V. CONCLUSION

In this paper, a novel “two-phase” SVR training procedure 
is proposed to mitigate the effect of outliers. This idea 
motivates from the phenomenon that the weighting and 
adaptive learning around each data point will be able to refine 
its loss function with robustness to outliers. The experimental 
results on three indices indicate that our proposed AWSVR 
algorithm has improvement on the prediction.

Some remaining works are worth considering. For example, 
the choice of weights is defined based on the first phase 
solution and it may not be reasonable anymore to assign 
weight using the second phase solution. How to consider 
another choice of weights and construct an iterative procedure 
using corresponding weights to obtain better prediction, it 
remains to be a highly challenging yet interesting topic. These 
are our future works.
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