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Abstract— Domain transfer learning aims to learn an effective
classifier for a target domain, where only a few labeled samples
are available, with the help of many labeled samples from
a source domain. The source and target domain samples
usually share the same features and class label space, but have
significantly different In these experiments error of the classifier
distributions. Nonnegative Matrix Factorization (NMF) has
been studied and applied widely as a powerful data repre-
sentation method. However, NMF is limited to single domain
learning problem. It can not be directly used in domain transfer
learning problem due to the significant differences between
the distributions of the source and target domains. In this
paper, we extend the NMF method to domain transfer learning
problem. The Maximum Mean Discrepancy (MMD) criteria is
employed to reduce the mismatch of source and target domain
distributions in the coding vector space. Moreover, we also learn
a classifier in the coding vector space to directly utilize the class
labels from both the two domains. We construct an unified
objective function for the learning of both NMF parameters
and classifier parameters, which is optimized alternately in an
iterative algorithm. The proposed algorithm is evaluated on
two challenging domain transfer tasks, and the encouraging
experimental results show its advantage over state-of-the-art
domain transfer learning algorithms.

I. INTRODUCTION

DOMAIN transfer learning has attracted a lot of atten-
tions from both the research and engineering areas [1].

It has a lot of real-world applications such as wireless WiFi
localization [2] and cross-domain text classification [3]. It
is defined as a problem of learning an effective classifier
from samples of two different domains, which share the same
feature space and class label space. One domain is called
source domain, and the other one the target domain. In the
source domain, data samples are labeled with a class label,
which could be used to learn a classifier easily. However, in
the target domain, only a few samples are labeled, and the
remaining ones are unlabeled. Thus it is difficult to learn the
classifier in the target domain for the classification problem.
To solve this limitation, domain transfer learning tries to
borrow the labeled samples from the source domain for the
learning of classifier of the target domain. Nevertheless, due
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to the significant difference of distributions of the source
and target domains, the labeled samples can not be used to
learn the target domain classifier directly. For example, in
text classification problem where each data sample is a text,
we can define the newspaper as the source domain, while
the email as the target domain. The newspaper articles are
usually labeled as a category of news when it is written, but
the email texts are usually not labeled by the email users.
Thus when we try to develop a classifier to classify the
email texts, only very few labeled samples are available, but
many labeled newspaper articles can be used. However, it
is obvious that the distribution of newspaper articles and
email texts are different, and due to this difference, the
classifier learned by using the newspaper articles can not
be used directly to classify email texts. We can not combine
the newspaper articles and email texts directly to obtain an
enlarged dataset, because the difference between different
domains may be larger than the difference between different
classes.

To overcome this problem, various domain transfer meth-
ods have been proposed to learn the classifier for the target
domain with the help of source domain. For example, Daume
III [4] proposed the Feature Replication (FR) algorithm
to augment features for domain transfer learning. Yang et
al. [5] proposed the Adaptive SVM (A-SVM) by adapting
the new SVM classifier for target domain from an existing
classifier learned from the source domain. Jiang et al. [6]
proposed the Cross-domain SVM (CD-SVM) by weighting
each source domain sample for the learning of the target
domain. Bruzzone and Marconcini [7] proposed the Domain
Adaptation Support Vector Machine (DASVM) by extending
the Transductive SVM (T-SVM) to label unlabeled target
samples step by step and also removing some source domain
samples at the same time. Duan et al. [1] proposed the
Domain Transfer Multiple Kernel Learning (DTMKL) by
learning the kernel function and the classifier to minimize the
distribution mismatch between the samples from the source
and the target domains.

Nonnegative Matrix Factorization (NMF) [8] has been
studied very well as a data representation method. Given
a nonnegative matrix, where each column is a nonnegative
feature vector for a data sample, it tries to factorize it as
the product of a basic matrix and a coding matrix, such that
each sample could be represented as a coding vector in the
coding matrix. The nonnegative constraints are also imposed
on the basic matrix and the coding matrix. NMF is a popular
data representation method and has been used in various ap-
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plications, such as bioinformatics [9], computer vision [10],
and pattern recognition [11], [12]. However, surprisingly,
it is limited to single domain learning problem, and up to
now, no work has been done to extend it to domain transfer
learning problem. The only work that makes a breakthrough
is [13]. Unlike previous NMF algorithms which are devel-
oped either from optimization or probability perspective, this
work proposed an innovative NMF algorithm to integrate
these two perspectives together. Furthermore, the work also
proved that actually NMF algorithms can be transferred
from one perspective to the other one. To fill this gap, we
investigate in this paper the use of NMF for the transfer
learning problem, and propose the first Domain Transfer
NMF algorithm (DomTrans-NMF). Our algorithm tries to
learn effective and unified basic and coding matrices so that
the data samples from both source and target domains can be
mapped into a common space with a common distribution.
Moreover, the class labels from both the source and target
domain samples are used to improve the discriminant ability
of the coding vectors by learning a classifier and using it to
regularize the coding vectors. The contribution of this paper
is listed as follows:

1) To map the source and target domain samples into a
common coding vector space with a common distri-
bution. We employ the Maximum Mean Discrepancy
(MMD) criteria [14] to reduce the mismatch of the
distributions of source and target domain samples’
coding vectors.

2) To utilize the class labels of labeled samples from
both source and target domains, we also learn a linear
classifier for samples of both domains in the coding
vector space. The learning of the classifier parameters
and the NMF parameter matrices are modeled within
one single objective function so that they can be
optimized simultaneously. In this way, the classifier
can also regularize the coding vectors to improve their
discriminant ability.

3) An unified objective function for both NMF and clas-
sifier learning is constructed and optimized alternately.
Therefore, an iterative DomTrans-NMF is developed
for domain transfer learning algorithm.

The remaining of this paper is organized as the following:
In section II, we propose the novel domain transfer NMF
method; in section III, we evaluate the proposed algorithm by
comparing it to several state-of-the-art domain transfer learn-
ing algorithm on two challenging domain transfer learning
problems; in section IV, we conclude the paper .

II. DOMAIN TRANSFER NONNEGATIVE MATRIX

FACTORIZATION

In this section, we introduce the proposed domain transfer
nonnegative matrix factorization method.

A. Objective Function

We suppose that we have a dataset of 𝑁 samples, and a
𝐷-dimensional nonnegative feature vector is extracted from

each sample. The collection of the feature vectors of the 𝑁
samples are denoted as 𝒳 = {x1, ⋅ ⋅ ⋅ , x𝑁} ∈ ℝ

𝐷
+ , where x𝑖

is the feature vector of the 𝑖-th sample. In the domain transfer
problem, the samples belongs to two different domains —
the source domain, and the target domain. The collection of
the source domain samples’ feature vectors are denoted as
𝒮, while that of the target domain samples’ feature vectors
as 𝒯 . Thus, 𝒳 = 𝒮∪ 𝒯 , and the number of source samples
is denoted as 𝑁𝑆 = ∣𝒮∣, while the number of target samples
as 𝑁𝑇 = ∣𝒯 ∣, so that 𝑁 = 𝑁𝑆 + 𝑁𝑇 . Moreover, most
samples in the source domain are labeled as positive or
negative, while only a small number of samples in the target
domain are labeled. We denote the collection of labeled
samples’ feature vectors as ℒ, while the unlabeled as 𝒰 , so
that 𝒳 = ℒ∪𝒰 . Similarly, the number of labeled samples
are denoted as 𝑁𝐿 = ∣ℒ∣, while unlabeled as 𝑁𝑈 = ∣𝒰∣,
and 𝑁 = 𝑁𝐿 + 𝑁𝑈 . We also define a class label vector as
y = [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑁 ] ∈ {+1,−1, 0}𝑁 for all the samples. If the
𝑖-th sample is labeled as positive, 𝑦𝑖 = +1; if it is labeled
as negative, 𝑦𝑖 = −1; and if it is unlabeled, 𝑦𝑖 = 0.

The data samples are organized as a nonnegative matrix
𝑋 = [x1, ⋅ ⋅ ⋅ , x𝑁 ] ∈ ℝ

𝐷×𝑁
+ , where the 𝑖-th column is the

feature vector of the 𝑖-th sample. NMF seeks two low-rank
nonnegative matrices 𝑈 ∈ ℝ

𝐷×𝐾
+ and 𝑉 ∈ ℝ

𝐾×𝑁
+ , such

that their product can approximate the original data matrix
𝑋 , e.g., 𝑋 ≈ 𝑈𝑉 . Each column of 𝑈 can be referred as
a basic vector, and each sample can be approximated as
the linear combination of these 𝐾 basic vectors. The linear
combination coefficients of the 𝑖-th sample are given in the
𝑖-th column in 𝑉 , v𝑖 ∈ ℝ

𝐾
+ . In this way, the 𝑖-th sample, x𝑖,

can be represented by a 𝐾-dimensional coding vector, v𝑖. To
learn the effective factorization matrices 𝑈 and 𝑉 for samples
of both source domain and target domains, we construct a
unified objective function by combining the following three
terms,

∙ NMF Loss Term: To measure the error of the approxi-
mation, NMF employs a loss function based on squared
Euclidean distance between the original matrix 𝑋 and
the approximated matrix 𝑈𝑉 , which is ∥𝑋 − 𝑈𝑉 ∥22.
This loss function should be minimized with respect
to 𝑈 and 𝑉 , so that the approximation could be as
accurate as possible. This problem can be modeled as
the following minimization problem,

𝑚𝑖𝑛
𝑈,𝑉
∥𝑋 − 𝑈𝑉 ∥22

𝑠.𝑡.𝑈 ≥ 0, 𝑉 ≥ 0.
(1)

∙ Domain Transfer Term: To reduce the difference
between the coding vector distributions of the source
and target domains samples, we employ the MMD
criterion which compares the data distributions based
on the squared Euclidean distance between the means of
samples from two domains in the coding vector space.
The mean of source domain sample coding vector is
calculated as 1

𝑁𝑆

∑
𝑖:x𝑖∈𝒮 v𝑖, while that of the target

domain sample coding vectors as 1
𝑁𝑇

∑
𝑗:x𝑗∈𝒯 v𝑗 . To
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reduce the mismatch of the distributions, the following
minimization problem is considered with respect to the
coding matrix 𝑉 ,

𝑚𝑖𝑛
𝑉

⎧
⎨

⎩

∥
∥
∥
∥
∥
∥

1

𝑁𝑆

∑

𝑖:x𝑖∈𝒮
v𝑖 − 1

𝑁𝑇

∑

𝑗:x𝑗∈𝒯
v𝑗

∥
∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥

∑

𝑖:x𝑖∈𝒳
𝜋𝑖v𝑖

∥
∥
∥
∥
∥

2

2

= ∥𝑉 𝝅∥22

⎫
⎬

⎭

𝑠.𝑡.𝑉 ≥ 0,

(2)

where

𝜋𝑖 =

{ 1
𝑁𝑆
, 𝑖𝑓 x𝑖 ∈ 𝒮

− 1
𝑁𝑇
, 𝑖𝑓 x𝑗 ∈ 𝒯 (3)

is the domain indicator of the 𝑖-th sample, and 𝝅 =
[𝜋1, ⋅ ⋅ ⋅ , 𝜋𝑁 ]⊤ is the domain indicator vector.

∙ Classifier Term: To utilize the class labels of both the
source and target domain samples directly, we also try
to learn a classifier in the coding vector space with the
labeled samples. Given a coding vector v ∈ ℝ

𝐾
+ , we

try to design a linear classifier, ℎ(v) = w⊤v + 𝑏, to
predict its corresponding class label 𝑦, where w ∈ ℝ

𝐾

is the classifier coefficient vector, and 𝑏 ∈ ℝ is the
bias variable. We unify the coding vectors and class
labels of the labeled samples in ℒ to learn the classifier
parameter (w, 𝑏). To measure the classification error of
the classifier for the labeled samples, we use the squared
loss for the 𝑖-th sample as

∥
∥(w⊤v𝑖 + 𝑏)− 𝑦𝑖

∥
∥2
2
, where

v𝑖 is its coding vector and 𝑦𝑖 is its true class label.
The classifier parameter will be learned to minimize the
classification errors of all the labeled samples. To reduce
the complexity of the classifier, we further introduce
the 𝑙2 norm-based regularization ∥w∥22 term for w. The
classifier learning problem is modeled as the following
minimization problem,

𝑚𝑖𝑛
𝑉,𝑤,𝑏

{
1

2
∥w∥22 + 𝛾

∑

𝑖:x𝑖∈ℒ

∥
∥(w⊤v𝑖 + 𝑏)− 𝑦𝑖

∥
∥2
2

=
1

2
∥w∥22 + 𝛾

∑

𝑖:x𝑖∈𝒳

∥
∥[(w⊤v𝑖 + 𝑏)− 𝑦𝑖

]
𝜄𝑖
∥
∥2
2

=
1

2
∥w∥22 + 𝛾

∥
∥[(w⊤𝑉 + 𝑏1N)− y

]
𝜾
∥
∥2
2

}

𝑠.𝑡.𝑉 ≥ 0.
(4)

where 𝜄𝑖 is the labeled sample indicator defined as

𝜄𝑖 =

{
1, 𝑖𝑓 x𝑖 ∈ ℒ
0, 𝑖𝑓 x𝑖 ∈ 𝒰 (5)

, 𝜾 = [𝜄1, ⋅ ⋅ ⋅ , 𝜄𝑁 ]⊤ is the labeled sample indicter vector,
and 1N = [1, ⋅ ⋅ ⋅ , 1]

︸ ︷︷ ︸
N

is a 𝑁 -dimensional vector of all

ones. The first term in (4) is to reduce the complexity of

the classifier, the second term is to reduce the error of
the classifier, and 𝛾 is the trade-off variable to balance
these two terms.

By combining the three terms above together, we have the
final optimization problem for the domain transfer nonnega-
tive matrix factorization problem as follows,

𝑚𝑖𝑛
𝑈,𝑉,w,𝑏

∥𝑋 − 𝑈𝑉 ∥22 + 𝛼 ∥𝑉 𝝅∥22

+ 𝛽

{
1

2
∥w∥22 + 𝛾

∥
∥[(w⊤𝑉 + 𝑏1N)− y

]
𝜾
∥
∥2
2

}

𝑠.𝑡.𝑈 ≥ 0, 𝑉 ≥ 0.

(6)

where 𝛼 and 𝛽 are trade-off parameters. Unlike the usual
NMF problem set up, our learning set up has a broader
parameter space. We, not only assume that 𝑈 and 𝑉 are
variables, but also the the classifier parameters w and 𝑏. The
class labels from both source and target domains will be
used to learn the discriminant classifier, and the classifier
will further be used to regularize the coding vectors in 𝑉 .

B. Optimization

Direct optimization of (6) is difficult. We adopt the alter-
nate optimization strategy to solve the optimization problem
in (6) in an iterative algorithm where in each iteration, one
of 𝑈 , 𝑉 and (w, 𝑏) is optimized while others fixed, and then
their roles are switched. The iteration is repeated until a
maximum number of iterations is reached.

1) Optimization of 𝑈 : By fixing 𝑉 , w and 𝑏, and removing
the terms irrelevant to 𝑈 , the optimization problem in (6) is
reduced to the following one with respect to only 𝑈 ,

𝑚𝑖𝑛
𝑈

{
∥𝑋 − 𝑈𝑉 ∥22

= 𝑇𝑟(𝑋⊤𝑋)− 2𝑇𝑟(𝑋𝑉 ⊤𝑈⊤) + 𝑇𝑟(𝑈𝑉 𝑉 ⊤𝑈⊤)
}

𝑠.𝑡. 𝑈 ≥ 0.
(7)

where 𝑇𝑟(⋅) denotes the trace of a matrix. To solve this con-
strained minimization problem, we employ the Lagrangian
multiplier method for optimization [15]. We first introduce
the Lagrangian multipliers matrix Φ ∈ 𝑅𝐷×𝐾 to enforce
nonnegative constraint of 𝑈 ≥ 0. The Lagrangian function
of this problem is introduced as

ℒ =𝑇𝑟(𝑋⊤𝑋)− 2𝑇𝑟(𝑋𝑉 ⊤𝑈⊤)

+ 𝑇𝑟(𝑈𝑉 𝑉 ⊤𝑈⊤) + 𝑇𝑟(Φ𝑈⊤)
(8)

By using the zero gradient condition, we have

∂ℒ
∂𝑈

= −2𝑋𝑉 ⊤ + 2𝑈𝑉 𝑉 ⊤ +Φ = 0 (9)

By using the KKT condition [Φ] ∘ [𝑈 ] = 0, where [⋅] ∘ [⋅]
denotes the element-wise product of two matrices, we have

[−𝑋𝑉 ⊤] ∘ [𝑈 ] + [𝑈𝑉 𝑉 ⊤] ∘ [𝑈 ] = 0 (10)

which leads to the following updating rule for 𝑈 ,
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𝑈 ←
[
𝑋𝑉 ⊤

]

[𝑈𝑉 𝑉 ⊤]
∘ [𝑈 ], (11)

where [⋅]
[⋅] is the element-wise division of two matrices.

2) Optimization of 𝑉 : By fixing 𝑈 , w and 𝑏, and removing
the terms irrelevant to 𝑉 , we can reduce (6) to the following
optimization problem with respect to 𝑉 ,

𝑚𝑖𝑛
𝑉

{
∥𝑋 − 𝑈𝑉 ∥22 + 𝛼 ∥𝑉 𝝅∥22 + 𝛽𝛾

∥
∥[(w⊤𝑉 + 𝑏1N)− y

]
𝜾
∥
∥2
2

= 𝑇𝑟(𝑋⊤𝑋)− 2𝑇𝑟(𝑈⊤𝑋𝑉 ⊤) + 𝑇𝑟(𝑈⊤𝑈𝑉 𝑉 ⊤)

+ 𝛼𝑇𝑟(𝑉 𝝅𝝅⊤𝑉 ⊤)

+ 𝛽𝛾𝑇𝑟
[
(w⊤𝑉 + 𝑏1N − y)𝜾𝜾⊤(w⊤V + b1N − y)⊤

]

= 𝑇𝑟(𝑋⊤𝑋)− 2𝑇𝑟(𝑈⊤𝑋𝑉 ⊤) + 𝑇𝑟(𝑈⊤𝑈𝑉 𝑉 ⊤)

+ 𝛼𝑇𝑟(𝑉 𝝅𝝅⊤𝑉 ⊤)

+ 𝛽𝛾𝑇𝑟(ww⊤𝑉 𝜾𝜾⊤𝑉 ⊤) + 𝛽𝛾𝑇𝑟
[
w(𝑏1N − y)𝜾𝜾⊤V⊤

]

+𝛽𝛾𝑇𝑟
[
(𝑏1N − y)𝜾𝜾⊤(b1N − y)⊤

]}

𝑠.𝑡.𝑉 ≥ 0.
(12)

We also adopt Lagrange multiplier error of the classifier
method to optimize (12). The Lagrangian multiplier matrix
Ψ ∈ ℝ

𝐾×𝑁 is introduced to enforce nonnegative constraint
𝑉 ≥ 0. The Lagrange function is given as

ℒ =𝑇𝑟(𝑋⊤𝑋)− 2𝑇𝑟(𝑈⊤𝑋𝑉 ⊤) + 𝑇𝑟(𝑈⊤𝑈𝑉 𝑉 ⊤)

+ 𝛼𝑇𝑟(𝑉 𝝅𝝅⊤𝑉 ⊤)

+ 𝛽𝛾𝑇𝑟(ww⊤𝑉 𝜾𝜾⊤𝑉 ⊤) + 𝛽𝛾𝑇𝑟
[
w(𝑏1N − y)𝜾𝜾⊤V⊤

]

+ 𝛽𝛾𝑇𝑟
[
(𝑏1N − y)𝜾𝜾⊤(b1N − y)⊤

]

+ 𝑇𝑟(Ψ𝑉 ⊤)
(13)

The zero gradient condition gives

∂ℒ
∂𝑉

=− 2𝑈⊤𝑋 + 2𝑈⊤𝑈𝑉 + 𝛼𝑉 𝝅𝝅⊤ + 𝛽𝛾ww⊤𝑉 𝜾𝜾⊤

+ 𝛽𝛾w(𝑏1N − y)𝜾𝜾⊤ +Ψ

=0
(14)

We decompose the matrix 𝝅𝝅⊤ into positive part [𝝅𝝅⊤]+ ∈
ℝ
𝑁×𝑁
+ and negative part and [𝝅𝝅⊤]− ∈ ℝ

𝑁×𝑁
+ , so that

𝝅𝝅⊤ = [𝝅𝝅⊤]+− [𝝅𝝅⊤]−, where [𝑋]+ or [𝑋]− is defined
as a matrix of the same size of 𝑋 with their elements as

[𝑋]
+
𝑖𝑗 =

{
𝑋𝑖𝑗 , 𝑖𝑓 𝑋𝑖𝑗 ≥ 𝑜,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

[𝑋]
−
𝑖𝑗 =

{−𝑋𝑖𝑗 , 𝑖𝑓 𝑋𝑖𝑗 < 𝑜,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(15)

Similarly, ww⊤ = [ww⊤]+ − [ww⊤]−, w(𝑏1N − y) =
[w(b1N − y)]+ − [w(b1N − y)]−. Equation (14) can be
rewritten as

− 2𝑈⊤𝑋 + 2𝑈⊤𝑈𝑉 + 𝛼𝑉
[
𝝅𝝅⊤

]+ − 𝛼𝑉 [𝝅𝝅⊤]−

+ 𝛽𝛾
[
ww⊤

]+
𝑉 𝜾𝜾⊤ − 𝛽𝛾 [ww⊤

]−
𝑉 𝜾𝜾⊤

+ 𝛽𝛾 [w(𝑏1N − y)]+ 𝜾𝜾⊤ − 𝛽𝛾 [w(𝑏1N − y)]− 𝜾𝜾⊤ +Ψ = 0
(16)

Using the KKT condition [Ψ] ∘ [𝑉 ] = 0, we have

[
2𝑈⊤𝑈𝑉 + 𝛼𝑉

[
𝝅𝝅⊤

]+

+𝛽𝛾
[
ww⊤

]+
𝑉 𝜾𝜾⊤ + 𝛽𝛾 [w(𝑏1N − y)]+ 𝜾𝜾⊤

]

∘ [𝑉 ]

=

[
2𝑈⊤𝑋 + 𝛼𝑉

[
𝝅𝝅⊤

]−

+𝛽𝛾
[
ww⊤

]−
𝑉 𝜾𝜾⊤ + 𝛽𝛾 [w(𝑏1N − y)]− 𝜾𝜾⊤

]

∘ [𝑉 ]
(17)

which leads to the following update rule for 𝑉 ,

𝑉 ←

[
2𝑈⊤𝑋 + 𝛼𝑉

[
𝝅𝝅⊤

]−

+𝛽𝛾
[
ww⊤

]−
𝑉 𝜾𝜾⊤ + 𝛽𝛾 [w(𝑏1N − y)]− 𝜾𝜾⊤

]

[
2𝑈⊤𝑈𝑉 + 𝛼𝑉

[
𝝅𝝅⊤

]+

+𝛽𝛾
[
ww⊤

]+
𝑉 𝜾𝜾⊤ + 𝛽𝛾 [w(𝑏1N − y)]+ 𝜾𝜾⊤

] ∘ [𝑉 ] .

(18)
3) Optimization of w and 𝑏: By fixing 𝑈 and 𝑉 , and

removing the terms irrelevant to w and 𝑏, (6) is reduced to
the following problem,

𝑚𝑖𝑛
w,𝑏
𝛽
1

2
∥w∥22 + 𝛽𝛾

∥
∥[(w⊤𝑉 + 𝑏1N)− y

]
𝜾
∥
∥2
2

(19)

By setting the derivative of the above objective function with
respect to 𝑏 to zero, we have

𝑏1N𝜾 = (y− w⊤V)𝜾

⇒ 𝑏𝑁𝐿 = (y− w⊤𝑉 )𝜾

⇒ 𝑏 =
1

𝑁𝐿
(y− w⊤𝑉 )𝜾

(20)

where 𝑁𝐿 = 1N𝜾 is the number of labeled samples. By sub-
stituting (20) into (19), we have the following optimization
problem with respect only to w,

𝑚𝑖𝑛
w
𝛽
1

2
∥w∥22 + 𝛽𝛾

∥
∥
∥
∥
(
w⊤𝑉 − y

)
[
𝐼 − 1

𝑁𝐿
𝜾1N

]
𝜾

∥
∥
∥
∥

2

2

= 𝛽
1

2
∥w∥22 + 𝛽𝛾

∥
∥(w⊤𝑉 − y

)
𝐻
∥
∥2
2

= 𝛽
1

2
𝑇𝑟(ww⊤) + 𝛽𝛾

[
𝑇𝑟(𝑉 𝐻𝐻⊤𝑉 ⊤ww⊤)

− 2𝑇𝑟(𝑉 𝐻𝐻⊤y⊤w⊤) + 𝑇𝑟(y𝐻𝐻⊤y⊤)
]

(21)

where 𝐻 = 𝜾 − 1
𝑁𝐿

𝜾1N𝜾. The closed form solution of w
can be obtained by setting the derivative with respect to w
to zero, as

w + 𝛾
[
2𝑉 𝐻𝐻⊤𝑉 ⊤w− 2𝑉 𝐻𝐻⊤y⊤

]
= 0

⇒ w =
[
𝐼 + 2𝛾𝑉 𝐻𝐻⊤𝑉 ⊤

]−1 [
2𝛾𝑉 𝐻𝐻⊤y⊤

]
.

(22)
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C. Algorithm

The iterative algorithm for the proposed domain transfer
nonnegative matrix factorization is summarized in Algorithm
1. As we can see from Algorithm 1, the basic and coding
matrices should be initialized. To this end, we perform a
standard NMF algorithm to the original matrix 𝑋 .

Algorithm 1 DomTrans-NMF Learning Algorithm.
INPUT: Training set, 𝒳 , and corresponding class label
vector y.
Initialize the basic matrix, 𝑈0, and the coding matrix, 𝑉 0.
for 𝑡 = 1, ⋅ ⋅ ⋅ , 𝑇 do

Update the classifier parameter w𝑡 and 𝑏𝑡 by fixing the
basic matrix 𝑈 𝑡−1 and coding matrix 𝑉 𝑡−1 as in (22)
and (20) respectively.
Update the coding matrix 𝑉 𝑡 by fixing the basic matrix
𝑈 𝑡−1 and classifier parameter w𝑡 and 𝑏𝑡 as in (17).
Update the basic matrix 𝑈 𝑡 by fixing the coding matrix
𝑉 𝑡 as in (11).

end for
OUTPUT: The basic matrix 𝑈𝑇 , the coding matrix 𝑉 𝑇

and the classifier parameter w𝑇 and 𝑏𝑇 .

III. EXPERIMENTS

In this section, we conducted two sets of experiments
on two challenging domain transfer problems — the mo-
tor imagery classification in an EEG-based Brain-Computer
Interface (BCI), and the glioblastoma tumor classification.

A. Experiment I: Brain-Computer Interface

BCI is a technology which can translate human neuronal
activities into user commands, by classifying Electroen-
cephalography (EEG) singles according to the imagination of
movements [16]. A direct communication pathway between
the brain and a computer can be established via BCI. It
should be noted that the EEG data acquired on a certain
day for one subject may be very different to the EEG data
acquired on another day. There are two possible reasons:

1) The brain of the subject may show different electrical
activity on different days, due to the different state
concerning motivation, fatigue, etc.

2) The EEG recording device may have some changes of
electrode positions and impedances on different days.

It is worth noting that the design of a classifier for a BCI
system is very challenging when a classifier trained on data
acquired on a certain day should classify data recorded in
other days without retraining. Thus we treat this problem as
a domain transfer learning problem, and treat different days
as different domains error of the classifier.

1) Dataset and Setup: In In these experiments error of the
classifier, the BCI Competition 2008 — Graz data set A [17]
was used to evaluate the proposed method. It is composed
of EEG data of 9 individuals. The EEG data samples are
classified into four different classes according to the motor
imagery tasks, which are imagination of movement of the

left hand, right hand, both feet, and tongue. The EEG data
samples are recorded in two different days. Each day is
treated as domain and thus there are two different domains.
In each domain, there are in total 288 EEG samples, and 72
samples for each class respectively. We extract the feature
vector for each EEG sample using the feature extraction
method described in [18].

To conduct the experiment, we carried out two trials using
the samples of two different days. In the first trial, we use
the samples from the first day as source domain, and the
samples from the second day as target domain. Moreover, in
another trial of experiment, we switched the roles of these
tow days. In each trial, all source domain samples are labeled.
We apply the 8-fold cross-validation to the target domain to
test the performance of the proposed algorithm. The EEG
data sample set of the target domain was split into 8 folds
randomly. In each fold, there are 36 samples, and 9 samples
from each class of the four classes. One of the 8 folds was
used as a test set in turns, while the remaining 7 folds were
used as a training set. Such splits were repeated for 8 times.
In the training set, only a small partition of the samples
are labeled. We randomly selected 20% of them as labeled
samples. All the feature vectors of the source domain and
target domain training EEG samples were organized as a data
matrix, which is further factorized by the proposed algorithm.
After the NMF and classifier parameters were learned, we
represented and classified the target domain EEG samples
using these parameters. To handle the multiple class problem,
we employ the one-against-all protocol. The classification
results is compared against the true class labels to evaluate
the classification performances.

2) Results: In the experiment, we compared our algorithm
to several popular domain transfer learning algorithms, in-
cluding FR [4], A-SVM [5], CD-SVM [6] and DTMKL [1].
The boxplots of 8-fold cross-validation accuracy of different
methods are given in Figure 1. The results in Figure 1 showed
that DomTrans-NMF consistently outperformed other do-
main transfer learning methods across both two trials. The
large improvement of our algorithm over the competing ones
in this dataset is likely due to the large inter-domain variation
and the part latent nature, which is better captured by
both NMF representation and classification function provided
by DomTrans-NMF. Interestingly, FR, which is a domain
transfer representation algorithm, tends to do worse than the
other three domain transfer classifiers, which are DTMKL,
CD-SCM and ASVM. It seems that the difference of domain
distributions in this dataset could be better modeled by
domain transfer classifiers. However in general, we find that
it is better to learn both representation and classification
parameters, just as the proposed DomTrans-NMF does.

B. Experiment II:Glioblastoma Grade Classification

In the second experiment, we evaluated the proposed al-
gorithm on the problem of cross-domain glioblastoma grade
classification based on the gene expression profile of the
tumor samples.
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Fig. 1. The boxplots of 8-fold cross-validation accuracy of two trials on
the BCI datasst.

1) Dataset and Setup: In this experiment, we used two
gene expression data sets of two different glioblastoma types
— glioma III and IV. These dataset are generated by two
different research groups [19], [20], using the same U133A
platform, which share the same 12,287 genes. The first gene
expression dataset contains 74 tumor samples, 50 of which
belong to grade IV, while 24 of which belong to grade III. In
the second dataset, there are in total 98 tumor samples, 75 of
which belong to grade IV, and 23 of which belong to grade
III. Generally speaking, since these two groups investigate
the same glioblastoma cancer types using the same genes,
the distributions of these two datasets should be similar.
However, surprisingly, the distributions are significantly dif-
ferent from each other. The possible reasons are that the
researchers of these two groups used different experiment

protocol and data processing methods, or the conditions of
the glioblastoma patients themselves are different. Thus these
two datasets are treated as two different domains, and domain
transfer learning is needed to learn from one dataset to
another one.

To perform the domain transfer learning experiment, we
also conducted two trials of experiments. In each trial, one
dataset was used as the source domain while the other one
as the target domain. The source domain samples are all
labeled, and we perform the 5-fold cross-validation to the
target domain samples. The target domain was split into 5
folds randomly, and each fold is used as the test set while
the remaining four sets as the training set. In the training
set, about 20 % samples were selected as labeled samples,
while the remaining samples as unlabeled samples. Then we
combined the source domain samples and the target domain
training samples (labeled and unlabeled) and performed the
proposed DomTrans-NMF algorithm to learn the basic matrix
and the classifier parameter. Finally, the learned NMF and
classifier parameter were used to represent and classify the
target domain test samples.

To evaluate the classification performance, we used the
receiver operating characteristic (ROC) curve and the recall-
precision curve as the performance metrics. The ROC curve
is obtained by plotting the true positive rates (TPR) against
the false positive rates (FPR) on various classification thresh-
olds, while the recall-precession curve is obtained simply by
plotting precision against recall values. A good classifier will
have a ROC curve close to the left-top corner of the figure,
and a recall-precision curve close to the right-top corner of
the figure. We also used the area under ROC curve as a single
performance metric.

2) Results: The ROC and recall-precision curves of two
trials of experiments are given in Figure. 2. Our approach
was performing better than the other methods in the first
trial. In the second trial, the proposed method achieved the
best performance in most cases. The DTMKL algorithm
outperforms DomTrans-NMF in the seconde trial when the
FPR is larger than 0.2. This is not surprising since it is
based on kernel classifier while our algorithm learns a linear
classifier, and in most cases, the kernel classifier outperforms
the linear classifier. Additionally, our approach outperforms
all the other domain transfer classification and representation
methods when using the same percent of labeled samples.

In addition, we provided the AUC values as shown in
Figure. 3. In both trials our approach maintain a high
AUC value (0.9758 and 0.9338) and outperform the other
three competing approaches (CD-SVM, ASVM, and FR)
significantly. The only exception is that in the second trial,
where DTMKL almost catches up with DomTrans-NMF and
the reason for that is it maps the samples from both domain
into a kernel space.

IV. CONCLUSION

We proposed the domain transfer NMF approach, for
data representation in domain transfer learning problem. Our
main contribution lies in explicitly reducing the mismatch of
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Fig. 2. The ROC and recall-precision curves on the glioma tumor dataset.

coding vector distribution of different domain via the MMD
criteria, and learning a linear classifier to utilize the class
labels from both domains. The samples from the source
domain and target domain can be mapped into a common
space expanded In these experiments error of the classifier
by the basic matrix. Additionally, our approach is able to
learn the NMF and classifier parameters, simultaneously.
The experimental results show that the proposed approach
yields good classification results on two domain transfer
learning datasets. Our approach outperforms recently pro-
posed domain-transfer learning methods including CD-SVM,
ASVM and FR. It is also comparable to a kernel based
domain transfer classifier — DTMKL.
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