
 
 

 

  

Abstract—This chapter discusses the future of cybersecurity 
as warfare between machine learning techniques of attackers 
and defenders. As attackers will learn to evolve new 
camouflaging methods for evading better and better defenses, 
defense techniques will in turn learn new attacker's tricks to 
defend against. The better technology will win. Here we discuss 
theory of machine learning based on dynamic logic that are 
mathematically provable to learn with the fastest possible speed. 
We also discuss cognitive functions of dynamic logic and related 
experimental proofs. This new mathematical theory, in addition 
to being provably fastest machine learning technique, is also an 
adequate model for several fundamental mechanisms of the 
mind. 

I. INTRODUCTION 
ODAY’S networks and their users are under attack from an 
ever-expanding universe of threats and malware. 
Malware are malicious software codes that typically 

damages or disables, takes control of, or steals information 
from a computer system. Malware broadly includes botnets, 
viruses, worms, Trojan horses, logic bombs, rootkits, boot 
kits, backdoors, spyware, adware, and other types of threats. 
The ever increasing danger of the future threat is its ability to 
evolve for avoiding system defenses. Future threats will be 
using machine learning to outsmart the defenses. Therefore 
the future of cybersecurity if a warfare of machine learning 
techniques. The more capable machine learning technique 
will win. 

Correspondingly, an important direction of cybersecurity 
concentrates on machine learning techniques (Blowers and 
Williams, 2014; Dua and Du, 2011; Gesher, 2013; Mugan, 
2013). Shabtai et al, 2012). In this Chapter we discuss 
machine learning techniques based on dynamic logic (DL), 
which can be mathematically proven to have the fastest 
possible learning ability (Perlovsky, Deming, & Ilin, 2011). 
Steps toward developing such cybersecurity methods are 
discussed below.  

This chapter describes an adaptive machine learning 
techniques based on abstract models. The approach to 
detecting novel attacks is anomaly detection: we develop 
algorithms learning models of attack-free traffic, and then 
detect deviations identifying malware. Gradual learning is a 
fundamental aspect of this approach. We begin assuming that 
an adequate protection system exists, and we can learn 
characteristics-models of attack-free traffic. The developed 
algorithms learn evolution of the malware as it attempts to 
hide its harmful nature. For the success of this approach, 
learning of the defensive system must be faster than evolution 
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of the threat.  
The defensive system learns to recognize threats as 

combinations of basic elements, words or n-grams. In 
principle, this is a most general and universal approach, 
potentially capable of recognizing any threat. The difficulty 
of realizing this universal potential is computational 
complexity and slow learning of most existing algorithms. 
The reason for these difficulties is fundamental: the number 
of combinations is very large, even relatively few n-grams 
can be used to form a very large number of combinations. The 
number of combinations of only 100 n-grams is 100100, this 
number exceeds all interactions of all elementary particles in 
the Universe during its entire lifetime. Therefore even if the 
entire Universe could be made to learn combinations of 
n-grams, it will not be able to perform its job fast enough. 
Later we will relate this fundamental difficulty to Gödelian 
difficulties of logic.  

We describe DL, a mathematical technique overcoming 
Gödelian limitations. DL has been used to overcome 
combinatorial complexity (CC), a difficulty that for 50 years 
has prevented classical pattern recognition and artificial 
intelligence to solve many complex problems, such as 
detection of patterns below noise and among unrelated 
signals (clutter). The developed DL algorithms have 
overcome CC and improved detection performance by orders 
of magnitude. After introducing DL we discuss CC specific to 
cybersecurity. This CC is related to learning structures of 
threat models. The past research in dynamic logic can be 
understood as developing continuous mathematical 
representation of associations between signals and models. 
The current overcoming of CC of learning cyber-security 
models requires continuous mathematical representation of 
model structures. Model structure is a combination of 
inherently discrete mathematical constructs; representing it 
continuously is equivalent to eliminating a difference 
between continuous and discrete mathematics in this wide 
field. This will overcome Gödelian limitations of classical 
logic in this field. 

This requires the new mathematical method described 
here. We outline an approach to proving the fastest possible 
learning of DL. We illustrate the new DL technique of 
machine learning using an abstract simulated data set, and 
finally, we demonstrate DL using publicly available malware 
data bases. 

In addition to being a provably fastest machine learning 
technique, DL is also an adequate model for several 
fundamental mechanisms of the mind. We briefly discuss 
theoretical foundations for cognitive-emotional functions of 
DL and their experimental proofs in several brain-imaging 
labs. The combination of mathematical and cognitive 
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superiority promises reliable future cybersecurity.  

II. CC AND THE GÖDELIAN PROBLEM IN LOGIC 
Developing machine learning techniques exceeding human 

learning abilities started in the 1950s, when computers 
become available. Since then, hundreds and thousands 
learning algorithms have been developed. Many look like 
they can solve a variety of problems, but practically they have 
been limited to "toy" problems and could not be generalized 
to different or more complex problems. Gradually it became 
accepted that all previously used paradigms faced the 
difficulty of CC. 

CC as a general problem encountered by all paradigms 
attempting to model the mind and to create equally capable 
machine learning techniques have been discussed in 
(Perlovsky, 1998). This publication analyzed all major 
paradigms of machine learning and for each identified a 
reason for CC. In parallel a fundamental reason for CC has 
been identified (Perlovsky, 1996, 2001a). Using today's 
understanding (Perlovsky, Deming, & Ilin, 2011; Perlovsky, 
2013) it can be formulated succinctly: CC is related to logic; it 
is a manifestation of difficulties of  logic discovered by Gödel 
in the 1930s (Gödel, 2001). 

As discussed in given references, the argument 
summarized above closely follows Gödelian arguments that 
lead to fundamental difficulties in logic. Gödel (2001) 
considered all logical statements, including potentially 
infinite ones. And he demonstrated that although he logically 
listed all logical statements, he was able to prove that there 
have to be logical statements not in the list. This Gödelian 
argument can be related to our argument above: the Gödelian 
list included combinations of the original elements forming 
logical statements. And although the number of original 
elements was infinite, the number of combinations turns out 
to be a "significantly larger" infinity. Whereas the original 
infinity was countable, the number of combinations turn out 
to be uncountable infinity. To prove a fundamental difficulty 
in logic, Gödelian argument has to be applied to an infinite 
system, such as logic. Applying the Gödelian argument to a 
finite system, such as computer, does not result in a 
"fundamentally irresolvable" difficulty. Instead it results in 
CC, a "practically fundamental" difficulty. Thus for the 
purpose of designing efficient machine learning algorithm, 
CC is as fundamental as Gödelian difficulty in logic. 

 Understanding of this fundamental reason for CC is 
essential for making progress in machine learning. Thousands 
of algorithms have been designed for machine learning since 
the 1950s. These attempts still continue. The argument above 
demonstrates that unless fundamental reliance on logic during 
algorithm design is avoided, CC will persist. But what does it 
mean to avoid logic? Isn't entire science based on logic? 
Should the entire science be abolished? What could be used 
instead? The mind solves problems that computers cannot 
solve. Young kids and even birds solve problems that 
computers cannot. Can we understand how minds do this? 
Can this understanding be scientifically formulated? 

III. DYNAMIC LOGIC 
For thousands of years logic has been the best way to 

conduct arguments, including scientific arguments. The 
Newtonian physics, quantum physics, theory of relativity are 
based on logic. Only recently, when facing problems related 
to working of the mind we encountered insufficiency of logic. 
It is interesting that Aristotle, the founder of logic, did not use 
logic when explaining working of the mind. To explain mind, 
Aristotle developed theory of forms. Aristotelian forms are 
different from Platonian ideas and from contemporary 
understanding of concepts of the mind. Ideas of Plato and 
concepts in contemporary psychology are static entities, 
similar to logical statements, such as: "this is a chair." Instead, 
Aristotelian forms are dynamic entities, processes in which 
"mind meets matter." Today we describe it as an interaction 
between top-down and bottom-up neural signals. Before 
Aristotelian forms meet matter they exist as potentialities; in 
interacting with matter they become actualities (Aristotle, 
1995). 
 What this process-logic means mathematically, in which 
way is it fundamentally different from usual classical logic? 
And why after Gödel has proven that logic has fundamental 
irresolvable difficulties in the 1930s, computer scientists still 
attempt to develop machine learning using logic? Did not 
neural networks and fuzzy logic attempt to overcome 
difficulties of logic? 
 An original mathematical theory of dynamic logic, theory 
that closely follows a process-logic of Aristotelian forms has 
been presented in (Perlovsky, 2001a, 2006a). 

IV. CONTINUOUS REPRESENTATION OF MODEL STRUCTURE 
AND LEARNING MALWARE CODES 

Applying DL to learning models of objects and events in 
Internet network requires overcoming CC of a more complex 
nature than in the above references. In these references 
associations between signals and models have been 
transformed into continuous representations, which makes 
possible the DL processes avoiding combinatorial 
complexity. For Internet models we face a requirement to 
represent continuously structures of these models. Signals in 
networks are moved in packets, and each packet contain a 
large number of symbols, words, or n-grams. Contents of 
most of these n-grams are benign. Very few are a part of a 
malware message. Usually the dangerous or destructive 
nature of an n-gram cannot be determined from a single 
n-gram. Several of them have to be assembled into a message 
before their dangerous content can be determined. This 
requires sorting through a huge number of benign n-grams 
and messages before a specific structure can be identified. 
Structural constituents of a model are considered inherently 
discrete elements. This view based on classical logical 
analysis of a model leads to considering and evaluating 
combinations of model elements, and therefore to CC in 
model learning. These combinations are of an entirely 
different nature than combinations of signals and models in 
the previous example, and the previously developed 
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mathematical approach is not applicable here. 
Below we describe a further development of DL, which 

turns identifying of a model structure into a continuous 
problem (Perlovsky, Deming, Ilin, 2011). Instead of the 
logical consideration of a model as consisting of its elements, 
so that every signal or n-gram in the network either belongs to 
a model or does not, DL considers every n-gram as potentially 
belonging to a model. Starting from a vague potentiality of a 
model, to which every n-gram could belong, the DL learning 
process evolves this into a model-actuality containing definite 
n-grams, and not containing others.  

We denote n-grams in the network as x(n,j), n=1,...N 
enumerates messages, j=1,...J enumerates n-grams, and 
m=1,...M enumerates models. Model parameters, in addition 
to r(m) are p(m,j), potentialities of n-gram j belonging to 
model m. Data x(n,j) have values 0 or 1; potentialities p(m,j) 
start with vague value near 0.5 and in the DL process of 
learning they converge to 0 or 1. Mathematically this 
construct can be described as 

  

l (n|m) = ∏
=

J

j 1

 p(m,j) x(n,j)(1 – p(m,j))(1- x(n,j))   (1) 

 
A model parameter p(m,j), modeling a potentiality of n-grams 
j being part of model m, starts the DL process with initial 
value near 0.5 (exact values 0.5 for all p(m,j) would be a 
stationary point of the DL process). Value p(m,j) near 0.5 
gives potentiality values of x(n,j) with a maximum near 0.5, 
in other words, every n-gram has a significant chance to 
belong to every model. If p(m,j) converge to 0 or 1 values, 
these would describe which n-grams j belong to which 
models m. The DL process estimating parameters p(m,j) is 
given by: 
 
f(m|n) = r(m) l (n|m) / ∑

∈Mm '

r(m') l (n|m'). (3) 

df(m,j|n)/dt=f(m|n) ∑
∈Mm '

[δmm' - f(m'|n)] [∂ln l(n|m')/∂p(m',j)] 

*dp(m',j)/dt,  δmm'  = 1 if m=m', 0 otherwise 
 
dp(m,j)/dt =∑

∈Nn
f(m|n)[∂lnl(n|m)/∂p(m,j)] .  (2) 

 
Parameter t here is an internal time of the DL process; in 
digital computer implementation it is proportional to an 
iteration number. Functions f(m|n) associate n-grams and 
models, they can be interpreted as estimated probabilities.  

The data used for testing this DL algorithm and the results 
of the analysis are shown in Fig. 1. We simulated 16,000 
messages shown on the left. They are arranged in their 
sequential order along the horizontal axis, n. For this 

simplified example we simulated 1,000 total number of 
possible n-grams in the network, they are shown along the 
vertical axis, j. Every message has or does not have a 
particular n-gram as shown by a white or black dot at the 
location (n,j). This figure looks like random noise 
corresponding to pseudo- random content of messages. On 
the right figure, messages are sorted so that messages having 
similar n-grams appear next to each other. These similar 
n-grams appear as white horizontal strikes and reveal several 
groups. Most of message contents are pseudo-random 
n-grams; about a half of messages have several similar 
n-grams. These messages with several specific n-gram values 
have specific contents, they belong to certain models, and 
could be malware codes.  

Since the data for this example have been simulated, we 
know the true number of various groups, and the identity of 
each message as belonging to a particular groups. All 
messages have been assigned correctly to its group without a 
single error. Convergence is very fast and took two to four 
iterations (or steps) to solve eqs.(2). 

This algorithm have been applied to a publicly available 
data set of malware codes, KDD  (Dua and Du, 2011; Gesher, 
2013; Mugan, 2013). This data set originated from 1998 
DARPA Intrusion Detection Evaluation; under the 
sponsorship of DARPA and the Air Force Research 
Laboratory, MIT Lincoln Labs has collected and distributed 
the datasets for the evaluation of computer network intrusion 
detection system. This data set includes 41 features extracted 
from Internet packets and one class attribute enumerating 21 
classes of four types of attacks. Our algorithm identified all 
classes of malware and all malware messages without a single 
false alarm. This performance in terms of accuracy and speed 
is better than other published algorithms. An example of the 
algorithm performance on this data in give in Fig. 2. 

The machine learning based on DL achieves the fastest 
possible learning. This is a consequence of DL performing 
the maximum likelihood model estimation. This is known to 
lead to algorithms reaching the Cramer-Rao Bound, the 
information-theoretic bound on speed of learning (Perlovsky 
2001; Perlovsky, Deming, & Ilin, 2011). Thus in the future 
battles of machine learning technologies between 
cyber-security threats and defenses, DL offers a 
mathematically-provable technique with the fastest adaptive 
capability. 
  

V. COGNITIVE AND EMOTIONAL FUNCTIONS OF 
DL IN THE MIND 

In addition to being a mathematical breakthrough in 
several areas of Machine Learning, DL is a cognitive 
mathematical theory, a basis for a number of cognitive 
algorithms. Calling DL a cognitive mathematical theory we 
mean that it mathematically models several functions of  the
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mind-brain. Some of these functions are well appreciated, 
others have seemed mysterious. The DL models made a 
number of experimentally testable predictions, some 
nontrivial and unexpected, some confirmed experimentally, 
none have been disconfirmed. This section briefly 
summarizes this cognitive aspect of DL. 
 The first salient and unexpected prediction of dynamic 
logic is the process from vague to crisp as a foundation of 
perception and cognition. A simplified experiment 
confirming this prediction can be conducted by anyone in 1/2 
a minute. Concentrate on an object in front of your eyes, then 
close the eyes and imagine the object. Imagination is usually 
not as clear and crisp as perception with opened eyes. It is 
known that imagination is produced by top-down neural 
signals from representations of objects stored in memory 
(Kosslyn, 1994). Therefore, representations are not as crisp 
and clear as perceptions with open eyes, representations are 
vague. The more abstract are imagined ideas, the vaguer are 
representations. This experiment have been performed using 
brain imaging (Bar et al, 1996; Perlovsky, 2009c). This 
experiment confirmed that representations are vague, and less 
conscious than perceptions with opened eyes. Predictions 
about vaguer nature of cognitive representations have been 
confirmed in (Kveraga et al, 2007).  

According to the theory of instincts and emotions 
(Grossberg & Levine, 1987), instincts are sensor-like neural 
mechanisms in the mind, which measure vital bodily 
parameters and indicate their safe ranges to decision-making 
parts of the brain. The neural signals connecting instinctual 
and decision-making parts of the brain are emotional signals 
indicating satisfaction of instinctual needs. DL extended this 
theory toward the knowledge instinct, which measures 
similarity between mental models-representations and 
patterns in sensor signals, eq.(1) (Perlovsky, 1987, 2001a; 
Perlovsky & McManus, 1991). Emotional signals measuring 
satisfaction of the knowledge instinct are aesthetic emotions, 
serving as a foundation for all human higher mental abilities, 
including abilities for the beautiful (Perlovsky, 2000, 
2001a,b, 2010a). Existence of this specific aesthetic emotions 
related to knowledge have been first postulated by Kant 
(1790) and experimentally confirmed in (Perlovsky, 
Bonniot-Cabanac, & Cabanac, 2010). 

DL has led to a theory of interaction between language and 
cognition (Perlovsky, 2004, 2007, 2009a,b, 2010b,c, 2013d; 
Fontanari & Perlovsky, 2007, 2008a; Tikhanoff et al, 2006; 
Perlovsky & Ilin, 2010). This theory explains why children 
can talk without full understanding, why language is acquired 
earlier than cognition, several other mysteries of language 
and cognition, it predicts that language and cognition are 
closely connected but separate brain functions, that abstract 
concepts are understood mostly due to language, without full 
cognitive understanding. Some of these predictions have been 
experimentally confirmed (Binder et al, 2005; Price, 2012). 
DL has led to a theory of language emotionality (Perlovsky 
2009b, 2012c) and to a theory explaining the cognitive 
function, origin, and evolution of musical emotions that 
Darwin (1871) called "the greatest mystery" (Perlovsky, 
2006c, 2008, 2010b,d, 2012a,b, 2013a,c). Predictions of this 

theory have been experimentally confirmed in (Cabanac et al, 
2013; Masataka et al, 2012a,b, 2013; Perlovsky et al, 2013). 

To summarize, the mathematics of DL has overcome 
combinatorial complexity and achieved the maximum 
likelihood model estimation and malware detection. This 
results in fast learning at the information-theoretic bound on  
the speed of learning. DL ability to model cognitive- 
emotional mechanisms opens new perspectives for 
cyber-security discussed below. 
 

VI. FUTURE RESEARCH 
 
 The next step of applying DL to cyber security will include 
learning syntactic and semantic aspects of models. Fast 
learning of these complicated models is necessary to counter 
advanced threats, including evolving malware using stealthy, 
mutating, self-camouflaging, and "Frankensteinian" 
technologies (Cisco, 2013). These types of threat are capable 
to evolve and mutate for avoiding existing anti-malware 
technology, operate stealthy, and assemble itself from parts of 
other codes (so that no "local" syntax-based detection is 
possible). We repeat: future malware codes will utilize 
machine learning technology, and countering these 
cyber-threats will be only possible by using a superior 
machine learning technology. Future cyber-security will be a 
battle of machine learning technologies. Here we described a 
step toward the machine learning technology that can be 
mathematically proven to reach information theoretic bounds 
on speed of learning (Perlovsky et al, 2011; Perlovsky, 2013). 

Cognitive and emotional aspects of DL machine learning 
will be used for a different type of cyber-security than the one 
at the focus of this paper. It will be possible to analyze 
cognitive and emotional contents of network traffic, identify 
perpetrators and their intents, and instead of countering 
cyber-threats, attack the perpetrators of cyber-attacks. 
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