
 
 

 

Abstract—This paper proposed a Modified AdaBoost.RT 
(AdaBoost Regression and Threshold) algorithm based on 
Fuzzy Neural Networks (FNNs) and its application to the 
accurate prediction of complex nonlinear time-series. The 
algorithm is validated by using four typical time-series data, 
namely Lorenz, Mackey-Glass, Sunspot and Dow Jones Indices 
data. The performance comparison of the proposed method and 
several existing approaches is also performed to show its 
advantages for nonlinear time series prediction problems. 

Index Terms—Modified AdaBoost.RT, ensemble learning, 
fuzzy neural networks, time series prediction 

I. INTRODUCTION 
HE predictor combination  has received much attention in 
recent years and accordingly many ensembling methods 
have been developed [1], [2]. The ensembled predictor 

has been shown to have higher predictive accuracy than any 
individual predictors. Motivated by the idea of combined or 
hybrid predictors, ensembling technique has turned out to be 
an efficient strategy to achieve  high performance of 
prediction, especially when the development of a powerful 
single predictor system requires considerable efforts and are 
difficult, if not impossible.  

In this study, the fuzzy neural networks (FNNs) are used to 
construct an ensemble of time-series predictors. The main 
reasons of using  FNNs are: 1) given their universal 
approximation properties, neural networks (NNs) are good 
candidate models for the purpose of global functional 
approximation  [3], [4], [5], 2) a fuzzy inference system based 
on a set of fuzzy if-then rules can model the qualitative 
aspects of human knowledge and reasoning process  as well 
as quantitative analyses [2], which is distinct difference 
between radial basis functions network (RBF) and FNN, 3) 
the FNN model obtained by combining NNs and fuzzy logic 
can overcome the drawbacks of either NNs or fuzzy systems 
when used alone, such as local optima, overfitting 
phenomenon and unability to adapt to new or variable 
cases/situations and 4) the learning process of FNNs is 
relatively fast. 

In fact, the choice of an appropriate ensembling method is 
also quite important for ensemble modeling. Two popular 
ensembling algorithms are Bagging [6], [7] and Boosting 

[8]-[10]. Both algorithms combine the outputs of individual 
predictors to improve the accuracy of prediction. It has been 
demonstrated that Bagging and Boosting techniques are 
generally more accurate than individual models. In this paper, 
we base our method on the boosting algorithm.  

The boosting algorithm was originally developed to cope 
with binary classification problems [9], and subsequently 
AdaBoost.M1 and AdaBoost.M2 was proposed by Freund 
and Schapire [8] to solve multi-class classification problems. 
So far, there have been many different variants of boosting 
algorithms for solving pattern classification problems [9], 
[10], [11]. 

In this work, we are mainly concerned with time series 
prediction problem, thus we use the boosting method for 
regression modeling of time series data. Freund and Schapire 
[8] extended AdaBoost.M2 to AdaBoost.R which projects the 
regression sample onto classification dataset. Drucker [12] 
proposed AdaBoost.R2 algorithm which is a modification of 
AdaBoost.R. Avnimelech and Intrator [13] extended the 
boosting algorithm for regression problems by introducing 
the notions of weak and strong learning and an approximate 
equivalence theorem between them. Shrestha and Solomatine 
[14], [15] proposed a new boosting algorithm AdaBoost 
Regression and Threshold (AdaBoost.RT) for regression 
problems. Recently, a Modified AdaBoost.RT algorithm, 
which will be used as an ensembling method in this paper, has 
been proposed by Tian [16] to alleviate the drawbacks of the 
original AdaBoost.RT. 

The simulation results are presented by considering four 
typical nonlinear time series, say the Lorenz, Mackey-Glass, 
the Sunspot and the Dow Jones Indices, which were widely 
used in the literature such as  [2], [3], [17]. The performance 
of our proposed method and that of other methods in literature 
is compared to show the effectiveness of our method. 

The paper is structurally organized in the following way, In 
the section II we will present the basics of FNNs and 
AdaBoost.RT algorithm. Meanwhile, we derive the 
self-adaptive ensemble model in this section. Section    Ⅲ
presents the pertinent time-series data modeling and analysis 
results. Finally, Section Ⅳ draws some conclusions and 
outlines some of future work along this line of research. 
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II. FNNS AND ENSEMBLE LEARNING 
This section first presents the basic concepts of FNNs, to 

give us an idea of how the operation of FNNs really is. In the 
second step we consider the ensemble learning, for a better 
understanding of how they are applied in the proposed 
method.  

A. Basics of FNNs 
For simplicity, consider a fuzzy inference system with 

rules of Takagi-Sugeno type [18]: ܴ௜: ଵ௜ܣ ݏ݅ ଵݔ  ݂ܫ , ଶ௜ܣ ݏ݅ ଶݔ , ڮ , ௞௜ܣ ݏ݅ ௞ݔ ௜ݕ ݄݊݁ݐ  , ൌ ଴௜݌ ൅ ଵ௜݌ ଵݔ ൅ ڮ ൅ ௞௜݌  ௞ݔ
The operation of the notes in the same layer of FNN is of 

the same family of functions, as described below. (In 
subsequent, ௜ܱ௠denotes the ݄݅ݐ of the layer m). 

Layer 1: the number of nodes in input layer is equal to the 
dimension of input vector ࢞ ൌ ሾݔଵ, ,ଶݔ ڮ , ௞ሿ: ௝ܱଵݔ ൌ ࢞                                                                                           ሺ1ሻ 

Layer 2: each node in this layer corresponds to a linguistic 
label and the output node is equal to the value of membership 
in this linguistic label. The parameters of a node can change 
the shape of the membership function used to characterize the 
linguistic label. For example, the function of the ith node is 
given by: ௜ܱଶ ൌ ஺ೕ೔ߤ ൌ exp ቀെ ൫ݔ௝ െ ௝ܿ௜൯ଶ ௝ܾ௜ൗ ቁ                                       ሺ2ሻ 

Where ݆ ൌ 1,2, ڮ , ݇, ݅ ൌ 1,2, ڮ , ݊, k is the input node; ܣ௝௜ 
is a linguistic label like, small, large, etc.. Associated with 
this node, and ൛ ௝ܾ௜, ௝ܿ௜ൟ is the set of parameters. Parameters in 
this layer are called premise parameters. 

Layer 3: each node in this layer calculates the firing power 
of each rule: ௜ܱଷ ൌ ߱௜ ൌ ஺భ೔ߤ ሺݔଵሻ כ ஺మ೔ߤ ሺݔଶሻ כ ڮ כ ஺ೖ೔ߤ ሺݔ௞ሻ                      ሺ3ሻ 

Layer 4: the output layer calculate the overall output as: 

௜ܱସ ൌ ௜ݕ ൌ ෍ ߱௜ሺ݌଴௜ ൅ ଵ௜݌ ଵݔ ൅ ڮ ൅ ௞௜݌ ௞ሻ௡ݔ
௜ୀଵ ෍ ߱௜௡

௜ୀଵ൙          ሺ4ሻ 

In this way we have built an adaptive network, which 
combine with fuzzy inference system. The basic learning rule 
of FNNs is the gradient descent backpropagation, which 
calculates the error rates recursively from the output to the 
input nodes [2]. 

B. AdaBoost.RT Algorithm 
In this paper, more recent boosting algorithm for regression 

problems called Modified AdaBoost Regression and 
Threshold (Modified-AdaBoost.RT) [16] is used to improve 
the performance of single FNN as an ensemble method. 

The Modified-AdaBoost.RT algorithm can be summarized 
as follows: 
1) Input: 

 Sequence of ݉ examples ሺݔଵ, ,ଵሻݕ ڮ , ሺݔ௠,  ௠ሻ, whereݕ
output ݕ א ܴ. 

 Weak learning algorithm (Weak Learner). 
 Integer T specifying number of iterations (machines). 
 Threshold ׎ሺ0 ൏ ׎ ൏ 1ሻ for demarcating correct and 

incorrect predictions. 
2) Initialize: 

 Machine number or iteration t ൌ 1. 
 Distribution D୲ሺiሻ ൌ 1 m⁄  for all i. 
 Error rate ε୲ ൌ 0. 

3) Iterate while t ൑ T: 
 Call Weak Learner, providing it with distribution D୲.  
 Build the regression model: f୲ሺxሻ ՜ y. 
 Calculate absolute relative error for each training 

example as    ܧܴܣ௧ሺ݅ሻ ൌ ቤ ௧݂ሺݔ௜ሻ െ ௜ݕ௜ݕ ቤ .                                                        ሺ5ሻ 

 Calculate the error rate of f୲ሺxሻ:   ߝ௧ ൌ ෍ ׎௧ሺ݅ሻ௜:஺ோா೟ሺ௜ሻவܦ .                                                              ሺ6ሻ 

 Set β୲ ൌ Ԗ୲୬,  where n ൌ 1,2 or 3  (linear, square, or 
cubic). 

 Update distribution D୲:   ܦ௧ାଵሺ݅ሻ ൌ ௧ሺ݅ሻܼ௧ܦ ൈ ൜ߚ௧,1, ௧ሺ݅ሻܧܴܣ ݂݅          ൑ .݁ݏ݅ݓݎ݄݁ݐ݋׎                      ሺ7ሻ 

Where Z୲ is a normalization factor chosen such that D୲ାଵ will be a distribution. 
 Set t ൌ t ൅ 1. 

4) Output the final hypothesis:  ௙݂௜௡ሺݔሻ ൌ ∑ ቄቀ݈݃ ଵఉቁ ௧݂ሺݔሻቅ௧ ∑ ሺ݈݃ ଵఉሻ௧ .                                              ሺ8ሻ 

C.  Ensemble FNN Model 
In this section, we describe the architecture that we have 

proposed for the ensemble of FNNs which is illustrated in Fig. 
1. 

The experiments with AdaBoost.RT algorithm have shown 
that the performance of ensemble machine is sensitive to 
parameter: ׎  [15]. The value of ׎  would affect the 
performance of the ensemble machine seriously and may 
make it unstable. Consequently, a new self-adaptive 
modifying the value of  ׎ ensemble method is developed 
instead of the invariable [16] ׎. This ensemble method can 
overcome the limitation of original AdaBoost.RT algorithm 
which attributes to estimating the value of threshold： ׎. In 
Solomatine’s research [15], the ensemble model is stable 
while the value of ׎  is between 0 and 0.4 and the 
AdaBoost.RT becomes unstable at the value of around 0.4. 
Therefore, in our paper we choose 0.001 as the default initial 
value of  ׎. The self-adaptive method is described as follows: 

 
 Calculate the root mean square error (RMSE) of 

output e in every iteration: 

  e ൌ ඩ1ܰ ෍ሺ ௧݂ሺݔ௜ሻ െ ௜ሻଶேݕ
௜ୀଵ .                                                    ሺ9ሻ 

 The value of ׎  will decrease, while e୲ ൏ e୲ିଵ, 
reversely the value of ׎ will increase,  while e୲ ൐ e୲ିଵ. 
The detail of change is shown as the following  

 equations:   ൜׎௧ାଵ ൌ ௧׎ · ሺ1 െ ௧ାଵ׎,ሻߣ ൌ ௧׎ · ሺ1 ൅ ,ሻߣ ௧݁ ݈݄݁݅ݓ ൏ ݁௧ିଵ ݈݄݁݅ݓ ݁௧ ൐ ݁௧ିଵ                               ሺ10ሻ 
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Fig. 1.  The ensemble FNN model using the modified AdaBoost.RT Algorithm 

 Where ߣ is relative to the change rate of RMSE：   ߣ ൌ ݎ · ฬ݁௧ െ ݁௧ିଵ݁௧ ฬ.                                                               ሺ11ሻ 

The default value of r is 0.5, it can also be determined 
by users for different problems. 

The main idea of ensemble learning in FNNs, is that each  
FNN has been trained by datasets with different distributions 
and thus be simulated which makes something like an expert 
system. In general, it is widely accepted that weighted 
averaging with unequal weights is appropriate for combining 
learners to achieve a better performance.  

III. DATA ANALYSIS RESULTS 
Mathematically, predicting the future of time series 

involves finding some nonlinear mapping ݂  with several 
parameters such as  ݔොሺݐ ൅ ሻ݌ ൌ ݂ሼݔሺݐሻ, ݐሺݔ െ ∆ሻ, ڮ , ݐሺݔ െ ሺ݊ െ 1ሻ∆ሻሽ         ሺ12ሻ 

Where ∆ is a lag time and ݊ is an embedding dimension. 
The equation implies that an estimate ݔො at the time ሺݐሻ ahead 
of ݌ can be obtained from the unknown mapping ݂ with a 
proper combination of ݊ points of the time series spaced ∆ 
apart. 

In this subsection we attempt a short-term prediction by 
means of the presented methods in the above subsection with 
regard to two simulated chaotic systems, Lorenz and 
Mackey-Glass equations and two real life time series: 
Sunspot time series and the Dow Jones Indices time series. 
Later, the performance of the prediction method is compared 
with the results reported in the literature for both Lorenz, 
Mackey-Glass equations and Sunspot time series. 

A. Lorenz Time Series 
Lorenz equations are written as: 

۔ۖەۖ
ݐሻ݀ݐሺݔ݀ۓ ൌ ሻݐሺݕሾߪ െ ݐሻ݀ݐሺݕ݀              ሻሿݐሺݔ ൌ ߛሻሾݐሺݔ െ ሻሿݐሺݖ െ ݐሻ݀ݐሺݖሻ݀ݐሺݕ ൌ ሻݐሺݕሻݐሺݔ െ  ሻ                                                  ሺ13ሻݐሺݖܾ

Where ߪ, ߛ  and ܾ  are dimensional parameters and the 
typical values for these parameters are ߪ ൌ ߛ  ,10 ൌ 28 and ܾ ൌ 8/3 [19], [20].  

The x-coordinate of the Lorenz time series is considered 
for prediction and a time series with a length of 3000 is 
generated.  

 
Fig. 2. Lorenz time series data 

The first 2000 samples were used as training data, while the 
remaining 1000 were used to test the proposed model. The 
data in time domain is shown in Fig. 2. And the embedding 
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TABLEⅠ 
Comparison of the prediction accuracy of existing approaches and the proposed ensemble method (1000 test data samples of Lorenz time-series) 

Prediction method Prediction error Ref. 
MSE NMSE RMSE 

Real time recurrent learning(RTRL-RNN) - 1.72E-03 - Mirikitani et al.[22] 

Pseudo Gaussian-radial basis function - - 0.094 Rojas et al.[21] 
ARMA-neural network - - 0.0876 Rojas et al.[23] 

Support vector regression - 1.46E-02 - Martinez-Rego et al. [24] 
TDL-MLP - 1.56E-04 - Martinez-Rego et al. [24] 
DLE-VQIT - 2.58E-04 - Martinez-Rego et al. [24] 

ROLSA 4.63E-02 - - Tao and Xiao [25] 
Boosted recurrent neural networks(BRNN) - 3.77E-03 - Assaad et al.[26] 

MDE-RBF - - 1.70E-01 Dhahri et al,[27] 
Wavelet-networks B 1.64E-02 - - Garcia et al.[28] 

FNN 3.28E-02 5.2466E-04 0.1810  
Ensemble 1 (with 100 iterations) 2.70E-02 4.3228E-04 0.1643  
Ensemble 2 (with 100 iterations) 5.9E-03 9.4749E-05 0.0769  

dimensions ݊ ൌ 3  and ∆ൌ ݌ ൌ 3  are estimated to allow a 
comparison with previous results.  

In order to evaluate the prediction performance and 
compare it with the results reported in the literature, mean 
squared error (MSE), root mean squared error (RMSE) and 
normalized mean squared error (NMSE) are calculated 
according to Eqs. (14), (15) and (16) respectively. ܧܵܯ ൌ 1ܰ ෍ሺݕ௜ െ ො௜ሻଶேݕ

௜ୀଵ                                                          ሺ14ሻ 

ܧܵܯܴ ൌ ඩ1ܰ ෍ሺݕ௜ െ ො௜ሻଶேݕ
௜ୀଵ                                                    ሺ15ሻ 

ܧܵܯܰ ൌ ∑ ሺݕ௜ െ ∑ො௜ሻଶே௜ୀଵݕ ሺݕ௜ െ തሻଶே௜ୀଵݕ                                                        ሺ16ሻ 

where ݕ௜ ො௜ݕ ,  and ݕത are observed data, predicted data and 
the average of observed data respectively, and ܰ is the length 
of observed data. 

Fig. 3(a) presents the comparison between the real time 
series and that predicted by the ensemble algorithm: Modified 
AdaBoost.RT-FNN, using 3 input variables, in order to 
predict the value of the time series. As they are practically 
identical, the difference can only be seen on a finer scale (Fig. 
3(b)).  

 
Fig. 3. Number of iterations ܶ ൌ 100, Prediction step ݌ ൌ ∆ൌ 3: (a) the 

original and predicted Lorenz time series, (b) predictive error. 

 
Fig. 4. Result of prediction of Lorenz time series (RMSE vs. iteration  

number) (Ensemble 1:AdaBoost.RT-FNN; Ensemble 2: Modified 
AdaBoost.RT-FNN) 

When the number of iteration is increased, the error index 
decreases. Fig. 4 shows the results of predicting the time 
series of the Lorenz equations when the number of iteration 
changes (RMSE). 

TableⅠ compares the prediction accuracy of different 
computational paradigms presented in the bibliography for 
this benchmark problem (including our proposal) for various 
ensemble fuzzy systems, neural networks and other methods. 
The data are taken from [17], [21]. (Ensemble 1: 
AdaBoost.RT-FNN; Ensemble 2: Modified AdaBoost. RT - 
FNN) 

The error indices, the mean square error (MSE), 
normalized mean squared error (NMSE) and the root mean 
square error (RMSE), for this simulation are 0.0059, 
9.4749E-05 and 0.0769. It is important to note that other 
approaches appeared in the bibliography, for example, 
Mirikitani et al. [22] obtained an NMSE of 0.00172. 

The simulation confirms that the proposed ensemble 
method: Modified AdaBoost.RT-FNN, when it is used to 
forecast the future values of Lorenz time series, generates 
better results compared to other prediction methods reports in 
the literature. 

B. Mackey-Glass Chaotic Time Series 
The Mackey-Glass equation originally has been proposed 
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as a model of blood cell regulation. Mackey-Glass has been 
used in literature as benchmark model due to its chaotic 
characteristics. The differential equations leading to the time-  
series is demonstrated in: dxdt ൌ ݐሺݔܽ െ ߬ሻሾ1 ൅ ݐ௖ሺݔ െ ߬ሻሿ െ  ሻ                                              ሺ17ሻݐሺݔܾ

In the Mackey-Glass equation, the delay parameter, ߬ 
determines the characteristic of Eq. (17): i.e. ߬ ൏ 4.43 
produces a fixed point attractor, 4.43 ൏ ߬ ൏ 13.3:  stable 
limit cycle attractor, 13.3 ൏ ߬ ൏ 16.8:  double limit cycle 
attractor and ߬ ൐ 16.8: chaos. 

The parameters are selected according to the previous 
report by Ardalani-Farsa and Zolfaghari [17], where the 
constants are taken to be a ൌ 0.2, b ൌ 0.1 and c ൌ 10 and 
chaotic time series isgenerated by time delay ߬ ൌ 17  and 
initial value xሺ0ሻ ൌ 1.2. 

 A chaotic time series samples set with length of 1000 is 
generated by the Eq. (17). The first 500 samples were used as 
training data, while the remaining 500 were used to validate 
the model identified. The data in time domain is shown in Fig. 
5. To make the comparisons with earlier work fair, we choose 
the parameters of ݊ ൌ 3 and ∆ൌ ݌ ൌ 6. 

 
Fig. 5. Mackey-Glass time series data 

Fig. 6(a) shows the predicted and desired values for the 
checking data. As they are practically identical, the difference 
can only be seen on a finer scale (Fig. 6(b)). The prediction 
performance of the ensemble model improves largely when 
the number of iteration ܶ increases. Fig. 7 shows the results 
of predicting the time series of the Mackey-Glass Equations 

when the number of iteration changes (RMSE). 

 
Fig. 6. Number of iterations ܶ ൌ 100, Prediction step ݌ ൌ ∆ൌ 6: (a) the 
original and predicted Mackey-Glass time series, (b) predictive error. 

 
Fig. 7. Result of prediction of Mackey-Glass time series (RMSE vs. 

iteration number) (Ensemble 1:AdaBoost.RT-FNN; Ensemble 2: Modified 
AdaBoost.RT-FNN) 

TableⅡ compares the prediction accuracy of different 
computational paradigms presented in the bibliography for 
this benchmark problem (including our proposal), for various 
fuzzy system structures, neural systems and genetic 
algorithms. (Ensemble 1: AdaBoost.RT-FNN; Ensemble 2: 
Modified-AdaBoost.RT-FNN)

TABLEⅡ 
Comparison of the prediction accuracy of existing approaches and the proposed ensemble method (500 test data samples of MGS time-series) 

Prediction method Prediction error Ref. 
MSE NMSE RMSE 

AutoRegressive model - - 0.19 Rojas et al.[21] 
Genetic algorithm and fuzzy system -5 MFs - - 0.0492 Kim and Kim [29] 
                                                           -7 MFs - - 0.0422 Kim and Kim [29] 
                                                           -9 MFs - - 0.0378 Kim and Kim [29] 

Hybrid neural network (HNN) - 5.30E-02 - Inoue et al. [30] 
Product T-norm - - 0.0907 Wang et al. [31] 

Min T-norm - - 0.0904 Wang et al. [31] 
Hybrid NARX-Elman RNN with residual 

analysis 
- 2.70E-08 3.72E-05 Ardalani-Farsa et al. [17] 

FNN 7.1968E-04 0.0141 0.0268  
Ensemble 1 (with 100 iterations) 5.4953E-04 0.0107 0.0234  
Ensemble 2 (with 100 iterations) 5.3826E-04 0.0105 0.0232  
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The error indices, the mean square error (MSE), 
normalized mean squared error (NMSE) and the root mean 
square error (RMSE), for this simulation are 5.3826E-04, 
0.0105 and 0.0234. It is important to note that other 
approaches appeared in the bibliography, for example, Rojas 
et al. [21] obtained an RMSE of 0.19. 

Meanwhile, as expected, the greater the number of iteration 
of the ensemble model is, the lower the error index for the real 
value (the remaining 500 data).  

The simulation confirms that the proposed ensemble 
method: Modified AdaBoost.RT-FNN, when it is used to 
forecast the future values of Mackey-Glass time series, 
generates better results compared to other prediction methods 
reports in the literature. 

C. Sunspot time series 
Forecasting solar activity is a challenging area and 

important topic for various researchers and industries [32]. 
The Sunspot time series is a good indication of solar activity 
for solar cycles. The impact of solar activity has been 
observed on earth, climate, weather, satellites and space 
missions. Therefore, it is critical to forecast Sunspot time 
series. However, because of the complexity of the system and 
the lack of a mathematical model, forecasting solar cycle is 
extremely challenging [19]. 

The monthly smoothed Sunspot time series has been 
obtained from the SIDC (World Data Center for the Sunspot 
Index). To compare the results with some of the research 
works published in the literature, data are selected in the same 
conditions reported by Ardalani-Farsa et al. [17], Gholipour 
et al. [19] and Ma et al. [20]. Sunspot series from November 
1834 to June 2001 (2000 points) are selected. The first 1000 
samples of the time series are selected to train and the 
remaining 1000 samples are kept to test the prediction method. 
The data in time domain is shown in Fig. 8. The parameters ݊ ൌ 5  and ∆ൌ ݌ ൌ 1  are estimated and accordingly phase 
space points are reconstructed. 

Fig. 9(a) shows the predicted and desired values for the 
checking data. As they are practically identical, the difference 
can only be seen on a finer scale (Fig. 9(b)). The prediction 
performance of the ensemble model improves largely when 
the number of iteration ܶ increases. Fig. 10 shows the results 
of predicting the time series of the Sunspot time series when 
the number of iteration changes (RMSE). 

 
Fig. 8. Sunspot time series data 

 
Fig. 9. Number of iterations ܶ ൌ 100, Prediction step ݌ ൌ ∆ൌ 1: (a) the 

original and predicted Sunspot time series, (b) predictive error. 
TableⅢ compares the prediction accuracy of different 

computational paradigms presented in the bibliography for 
this benchmark problem (including our proposal), for various 
fuzzy system structures, neural systems and genetic 
algorithms. 

The error indices, the mean square error (MSE), 
normalized mean squared error (NMSE) and the root mean 
square error (RMSE), for this simulation are 32.6876, 0.0135 
and 5.7173.   

TABLE Ⅲ 
Comparison of the prediction accuracy of existing approaches and the proposed ensemble method (1000 test data samples of Sunspot time-series) 

Prediction method Prediction error Ref. 
MSE NMSE RMSE 

WP-MLP(A) - 1.25E-01 - Teo et al.[33] 
McNish-Lincoln - 8.00E-02 - McNish and Lincoln [34] 

Sello-nonlinear method                    - 3.40E-01 - Sello [32] 
Waldmeier                              - 5.60E-01 - Sello [32] 
Denkmayr - 1.85 - Denkmayr and Cugnon [35] 
RBF-OLS - 4.60E-02 - Gholipour et al. [19] 

LLNF-LoLiMot - 3.20E-02 - Gholipour et al. [19] 
ERNN - 2.80E-03 1.29E-02 Ma et al.[20] 
FNN 42.1264 0.0174 6.4905  

Ensemble 1 (with 100 iterations) 38.6937 0.0160 6.2204  
Ensemble 2 (with 100 iterations) 32.6876 0.0135 5.7173  
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Fig. 10. Result of prediction of Sunspot time series (RMSE vs. iteration 
number) (Ensemble 1: AdaBoost.RT-FNN; Ensemble 2: Modified 

AdaBoost.RT-FNN) 
It is important to note that other approaches appeared in the 

bibliography, for example, Ma et al. [20] obtained an NMSE 
of 2.80E-03. 

D. Dow Jones Indices 
For the problem of the Dow Jones time series (Dow Jones 

Indexes, 2010) we are using 800 pairs of data [2] that 
correspond from 11/03/05 to 01/08/09, and Fig. 11 shows a 
plot the Dow Jones time series. The first 400 samples of the 
time series are selected to train and the remaining 400 
samples are kept to test the prediction method. The 
parameters ݊ ൌ 3  and ∆ൌ ݌ ൌ 6  are estimated and 
accordingly phase space points are reconstructed. 

 
Fig. 11. Dow Jones time series data 

Fig. 12(a) shows the predicted and desired values for the 
checking data. As they are practically identical, the difference 
can only be seen on a finer scale (Fig. 12(b)). The prediction 
performance of the ensemble model improves largely when 
the number of iteration ܶ increases. Fig. 13 shows the results 
of predicting the time series of the Dow Jones time series 
when the number of iteration changes (RMSE). 

TableⅣcompares the prediction accuracy of three methods: 
FNN, AdaBoost.RT-FNN and Modified AdaBoost.RT-FNN 
which have been used in our paper. It is obviously that the 
self-adaptive ensemble model achieves the best result. 

 
Fig. 12. Number of iterations ܶ ൌ 100, Prediction step ݌ ൌ ∆ൌ 6: (a) the 

original and predicted Dow Jones time series, (b) predictive error. 

 
Fig. 13. Result of prediction of Dow Jones time series (RMSE vs. iteration 

number) (Ensemble 1: AdaBoost.RT-FNN; Ensemble 2: Modified 
AdaBoost.RT-FNN) 

TABLE Ⅳ 
Comparison of the prediction accuracy of existing approaches and the 

proposed ensemble method (400 test data samples of Dow Jones time-series) 
T Model Prediction error 
  MSE NMSE RMSE 
- 

100 
100 

FNN 7.1737E-04 0.1278 0.0268 
Ensemble 1 7.0609E-04 0.1258 0.0266 
Ensemble 2 5.6023E-04 0.0820 0.0237 

IV. CONCLUSIONS 
In this work, a new time-series prediction method is 

developed by combining FNNs and a modified AdaBoost.RT 
algorithm. Based on the embedding theorem, the original time 
series can be unfolded with embedding dimensionality and 
time delay and hence reconstructed in the phase space. A 
FNN with rules of Takagi-Sugeno type is used to predict 
future values of the time series data points in embedded phase 
space. Furthermore, a new ensemble learning method based 
on a modified AdaBoost.RT algorithm is used to enhance the 
predictive accuracy of single FNN. The resulting ensemble 
model is shown to be able to achieve better time-series 
forecasting performance. 

The developed method has been applied to 
multi-step-ahead (long-range) prediction of nonlinear time 
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series and compared with other time-series forecasting 
methods reported in the literature in terms of several different 
predictive error indices. The issue of long-range time-series 
forecasting and the analysis of the computational burden 
required by the proposed ensemble modeling method should 
be considered in future work as an extension to the present 
study. 

The proposed model exhibits a superior performance in 
prediction of chaotic time series and features simplicity for 
implementation. Based the simulation results presented above, 
we can conclude that the modified AdaBoost.RT-FNN 
method is more suitable for nonlinear time series prediction 
problem than previous methods, for instance FNN and 
AdaBoost.RT-FNN. 

In future work, we would consider: 
1) to optimize the structure of ensemble model; 
2) to define a proper individual model diversity metrics to 

further improve the performance of resultant ensemble 
model; 

3) to use the developed ensemble modeling technique to 
other real-world nonlinear time series prediction problems to 
validate its practicability in a more comprehensive fashion. 
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