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Abstract—Large scale artificial neural networks (ANNs) have
been widely used in data processing applications. The recurrent
neural network (RNN) is a special type of neural network
equipped with additional recurrent connections. Such a unique
architecture enables the recurrent neural network to remember
the past processed information and makes it an expressive model
for nonlinear sequence processing tasks. However, the large
computation complexity makes it difficult to effectively train
a recurrent neural network and therefore significantly limits
the research on the recurrent neural network in the last 20
years. In recent years, the use of graphics processing units
(GPUs) becomes a significant advance to speed up the training
process of large scale neural networks by taking advantage
of the massive parallelism capabilities of GPUs. In this paper,
we propose an efficient GPU implementation of the large scale
recurrent neural network and demonstrate the power of scaling
up the recurrent neural network with GPUs. We first explore the
potential parallelism of the recurrent neural network and propose
a fine-grained two-stage pipeline implementation. Experiment
results show that the proposed GPU implementation can achieve
2 ∼ 11× speed-up compared with the basic CPU implementation
with the Intel Math Kernel Library. We then use the proposed
GPU implementation to scale up the recurrent neural network
and improve its performance. The experiment results of the
Microsoft Research Sentence Completion Challenge demonstrate
that the large scale recurrent network without class layer is able
to beat the traditional class-based modest-size recurrent network
and achieve an accuracy of 47%, the best result achieved by a
single recurrent neural network on the same dataset.

I. INTRODUCTION

The amount of data in our world have been exploding

and we have entered an era of ‘big data’ [1]. Modern data

acquisition routinely produces massive amounts of complex

data that motivate a series of scientific discoveries ranging

from the genomic analysis to user-behavior predictions of the

social network [2]. Big data is changing our lives.

The analysis of big data requires efficient data processing

methods. Artificial neural networks (ANNs) are among the

most commonly used methods for data processing applica-

tions [3]. Artificial neural networks are computational models

inspired by the nervous systems in nature and have found

extensive utilization in solving many complex real-world

problems [4]. In recent years, the large scale artificial neural

networks, also known as the deep neural networks (DNNs)

or deep learning, have demonstrated a great promise in many

artificial intelligence tasks. State-of-the-art performance have

been reported in many domains, ranging from computer vision,

speech recognition, to nature language processing and infor-

mation retrieval [5]. The deep neural network has become one

of the most popular tools to process big data [6].

The recurrent neural network (RNN) is a special type of

neural network that operates in the time domain [7]. Different

from the deep neural network, where all the layers process the

input data in a uniform direction, the recurrent neural network

is equipped with additional recurrent connections that have

important capabilities not found in feedforward networks [8].

These unique recurrent connections enable the recurrent neural

network to store information for later use and capture the

long-range dependencies between input data. Therefore, the

recurrent neural network has been regarded as an expressive

model to deal with nonlinear sequential processing tasks [7],

such as speech recognition [9], text generation [7] and even

SQL attack detection [10].

However, the difficulty of training the recurrent neural

network makes the recurrent neural network fail to become a

mainstream tool in machine learning [11]. The major challenge

comes from the huge computation complexity of the recurrent

neural network. For example, the recurrent neural network

is usually used as the language model in nature language

processing tasks. In these tasks, the number of output nodes

in the recurrent neural network is usually required to be equal

to the size of the vocabulary. Therefore, a task with 10K

words in the vocabulary will demand a ‘small’ recurrent neural

network with 100 nodes in the hidden layer to have at least

10, 000 × 100 = 106 parameters. The traditional CPU-based

computers will take hundreds of hours to train a recurrent

neural network with such a large number of parameters. People

have to divide the output layer into classes to reduce the com-

putation complexity at the cost of performance reduction [12].

In addition, the unstable relationship between the parameters

and the dynamics of the hidden states leads to a large number

of epochs before convergence and huge time consumption for

training a recurrent neural network [13]. As a result, although

the recurrent neural network demonstrates a great potential for

sequential data processing, there has been surprisingly limited

research on the recurrent neural network, especially on the

large scale recurrent neural network, over the past few decades

[7].

In recent years, the use of graphics processing units (GPUs)

has been a significant advance to speed up the training process

of large scale deep neural network models [14]. GPUs achieve

high performance by using single-instruction, multiple-data

(SIMD) pipelines with minimal overhead incurred by control
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hardware [15]. Recent work has demonstrated that, compared

with the implementations on CPUs, the training process of

large scale deep neural network can be significantly speeded

up around 2 ∼ 10× on GPUs [16], [17]. And therefore, GPUs

have become essential tools for studying deep neural networks.

In this paper, we propose an efficient GPU implementation

of large scale recurrent neural networks. And we try to

improve the network performance by increasing the scale of

the recurrent neural network. The contributions of this paper

include:

• We explore the natural parallelism within the calculations

from hidden layer to output layer, and the one from

hidden layer to the next timestep. Based on that, we

propose an efficient GPU implementation of large scale

recurrent neural networks with a fine-grained two-stage

pipeline architecture. Experiment results show that the

proposed GPU implementation can realize a 2 ∼ 11×
speedup compared with the CPU implementation based

on the Intel Math Kernel library.

• Based on the proposed GPU implementation, we remove

the class layer, an additional layer used to significant-

ly reduce the computation complexity at the cost of

performance, and successfully train a large scale re-

current neural network with 1,000 nodes in the hidden

layer and ∼10,000 nodes in the output layer. We then

used the trained recurrent neural network as a language

model to test its performance. And the experiment on

the Microsoft Research Sentence Completion (MRSC)

Challenge demonstrates that the GPU trained large scale

recurrent neural network without class layer is able

to achieve an accuracy of 47%, the best performance

achieved by a single recurrent neural network model on

the same dataset.

The rest of this paper is organized as follows: Section 2

provides the background knowledge and related work. Section

3 introduces the proposed GPU implementation of large scale

recurrent neural networks. Section 4 studies the performance

of the large scale recurrent neural network by taking a sentence

completion task as a case study. And Section 5 concludes this

work.

II. BACKGROUND KNOWLEDGE AND RELATED WORK

A. RNN Architecture

A standard recurrent neural network can be illustrated in

Fig. 1. It can be seen that there’re unique feedback connections

between the output and input nodes of the hidden layer. The

relationship between the output and input of the recurrent

neural network can be described as follows:

�h(t) = f(Wih�x(t) +Whh
�h(t− 1) +�bh) (1)

�y(t) = g(Who
�h(t) +�bo) (2)

where

t = 1, 2, 3, ..., n

Fig. 1. RNN Architecture

where �x(t) and �y(t) are the input and output data of the

network at timestep t. �h(t) is the temporary state of the hidden

layer at timestep t and �h(0) is set to 0. Wih and Who are the

weight matrices between the input-hidden layer and hidden-

output layer, respectively. Whh is the recurrent weight matrix

between the last hidden state at timestep t− 1 and the current

hidden state at timestep t. �bh and �bo are the bias of hidden

and output layers, respectively. f(x) and g(x) are the active

functions of the hidden and output layers. The most common

functions are the sigmoid and softmax function as follows:

Sigmoid :y(xi) =
1

1 + e−xi
(3)

Softmax :y(xi) =
exi

∑

j

exj
(4)

A recurrent neural network must get trained for each specific

task. The training algorithm of the recurrent neural network

is backpropagation through time (BPTT) [18]. The key idea

of BPTT is to truncate the infinite recursion and expand the

network as a finite feedforward network. Then the expanded

network can be trained like other feedforward network struc-

tures by (i). calculating the actual outputs of the network for

the given input data, and (ii). updating the weights of each

matrix through backpropagating the deviations between the

actual and desired outputs layer by layer. The update of each

weight (wji) can be expressed as:

wji ← wji + η ·
T
∑

t=1

δj(t) · xi(t) (5)

where η is the learning rate and δj(t) is the error back

propagated from the node j in the next neighbour layer at

timestep t. T is the BPTT step for training the recurrent neural

network. xi(t) is the input of the node i.
When the active function of the output layer is softmax,

and we use the cross-entropy as the loss function, the error

derivative (δp(t)) of the node p in the output layer can be

calculated as follows:

δp(t) = tp(t)− op(t) (6)

where op(t) and tp(t) are the actual and desired outputs of

the recurrent neural network, respectively.

And when the active function in the hidden layer is sigmoid,

for the node k in the hidden layer, the error derivative (δk(t))
is:

δk(t) = f ′(x)|f(x)=hk(t) · δBPTT (t) (7)

4063



x(t)

h(t)

h(t-1)

x(t-1)

x(t-2)

y(t-1)

y(t)

y(t-2)

h(t-2)

Fig. 2. Truncated RNN for Training

f ′(x) = f(x) · (1− f(x)) (8)

δBPTT (t) =
∑

o∈output

wokδo(t) +
∑

h∈hidden

whkδh(t+ 1) (9)

where hk(t) is the output of the node k in the hidden layer

at timestep t and f(x) is the active function of the hidden

layer. δBPTT is the accumulation of the errors backpropagated

through time. wko and wkh are the weights of Who and Whh

in Eq. (1) and (2), respectively. δo(t) is the error of the output

layer at the same timestep t. δh(t) is the error of the hidden

layer backpropagated from the next neighbour timestep t+ 1
and δh(T + 1) should be set to 0.

It should be noted that, although the expanded recurrent

neural network looks like a deep neural network, there should

be only 3 different weight matrices (Wih, Whh and Who) in

the expanded recurrent neural network. In other words, the

weight matrix between the corresponding layers at different

timestep (the arrows with the same color in Fig. 2) must get

updated together and stay the same because they come from

the same recurrent neural network.

B. RNN Language Model

The recurrent neural network can be used as a language

model in speech and nature language processing tasks. The

language model is used to evaluate the correctness of a word

sequence in many applications of text and speech, such as the

speech recognition, spelling correction and machine translation

[19].

The modern language model is based on statistics, instead

of grammar, and the correctness of a sequence is represented

by a probability. For a good language model, the probability

of a meaningful sequence should be larger than an incorrect

one as the following example:

P (I saw a dog) > P (Eye saw a dog)

The most commonly used language model is N-gram [20].

In the N-gram model, the probability of a word in a sequence

depends on the last N − 1 words before itself. For example,

the probability of the following sequence is calculated through

a 2-gram language model:

P (I saw a dog) =P (I|−)× P (saw|I)× P (a|saw)
× P (dog|a)× P (−|dog)

All the conditional probabilities in the equation are calcu-

lated through statistically analyzing the whole training data

collected. However, there’s a problem with these conditional

probabilities in the N-gram language model: the number of

parameters (the conditional probabilities) will increase expo-

nentially with N . An N-gram model requires V N conditional

probabilities for a vocabulary with a size of V , which are

difficult to storage. Moreover, the space of the training data

will also be highly sparse for a larger N . In other words, most

combinations of words, although they may be meaningful,

won’t exist in the training dataset. And therefore, it will

become very difficult to statistically analyze the training data

and calculate an efficient conditional probability. Experiment

results have proven that the performance of N-gram is poor for

a model with a larger N (N ≥ 5) [21]. As a result, the N-gram

can only realize a short-term perspective of the sequence and

is clearly insufficient to capture semantics of sentences [22].

When the recurrent neural network is used as a language

model, the sizes of the input and output layers will be set to

be equal to the size of vocabulary (either full or compressed)

and each node in the input or output layer will represent

one or more words in the vocabulary. When calculating the

correctness of a sequence, a series of words will be input into

the recurrent neural network language model in sequence. For

example, at the timestep T , the T th word in the sequence

will be input into the recurrent network. As a result, only the

node corresponding to the T th word in the input layer will

be set to 1, and all the other input nodes will be set to 0.

And then the value of the node corresponding to the (T +1)th

word in the output layer will represent the probability of this

word under the condition of all the T history input words.

Finally, the probability of a sentence can be calculated by

the product of all these conditional probabilities at different

timesteps together.

Because of the additional recurrent connections of the re-

current neural network, the recurrent neural network language

model (RNNLM) is able to calculate the conditional probabil-

ities for any length of the input history and even represent the

deep structure of the language itself [22]. Therefore, compared

with N-gram, the recurrent neural network language model is

able to realize a long-term perspective of the sequence. In

addition, the scale of the recurrent neural network language

model doesn’t increase with N , the length of conditions (the

input history), and there won’t be a problem of the sparsity

of the training data as the N-gram. Moreover, such a property

also demonstrates that the recurrent neural language model is

able to learn more patterns from less training data compared

with the N-gram model [23].

C. RNN Training Acceleration

The training algorithm of the neural network model is an

iterative process, and therefore, it’s difficult to get parallelized.

The hardware acceleration techniques mainly focus on utiliz-

ing the parallelism within each iteration in order to reduce the

total time consumption for training.
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A simple but efficient technique is to accelerate the matrix-

vector multiplication operations in the algorithm. As shown in

Eq. (1) and (2), the most basic operation of the recurrent neural

network architecture is the matrix-vector multiplication. There

have been several mature tools to accelerate this operation

at different platforms, such as the Intel’s MKL (Math Kernel

Library) for CPU [24] and NVIDIA’s CUBLAS (CUDA Basic

Linear Algebra Subroutines) for GPU [25]. Many results have

demonstrated that those tools are able to provide around an

order of magnitude speed-up compared with the basic for-loop

implementation and significantly reduce the time consumption

for training.

However, although the matrix-vector multiplication can be

significantly accelerated, the scale of the recurrent neural

network may still be too large to realize an effective training,

especially for the recurrent neural network language model. As

discussed in Section II-B, the input and output layer sizes of

the recurrent neural network language model are proportional

to the vocabulary size. Usually, the vocabulary size can easily

reach up to a size of 10K∼ 200K. Therefore, a recurrent neural

network language model with 100 hidden layers and 10,000

words in the vocabulary will require a 10,000×100 weight

matrix between the hidden and output layers. Such a large

matrix is still too complicated to calculate, especially for CPU-

based platforms.

A solution to significantly reduce the computation complex-

ity of the recurrent neural network, especially the recurrent

neural network language model, is to divide all the nodes in

the output layer into classes and set up an additional class

layer. Assuming that we need to calculate the result of node

p in the output layer, which belongs to the class node c.
And the recurrent neural network has V nodes in the output

layer, H nodes in the hidden layer, C nodes in the class layer

and there’re Nc nodes belong to the class node c in total.

Then when the class-based recurrent neural network needs to

calculate the value of node p in the output layer, the model will

first calculate the results of the class layer. Then the model will

only calculate the output nodes belonging to the same class

node c, instead of calculating all the nodes in the output layer.

Therefore, when the class-based recurrent neural network is

used as a language model, the conditional probabilities of the

corresponding output node can be expressed as:

P (p|history) = P (p|c, history) · P (c|history) (10)

It can be seen that the computation complexity of the class-

based model is proportional to:

C ×H ×H +Nc ×H ×H (11)

while the the computation complexity of the intact recurrent

neural network language model is proportional to [12]:

V ×H ×H (12)

Therefore, with the help of the additional class layer, the

computation complexity of the recurrent neural network can

be significantly reduced. And the best choice of class layer

size is C = sqrt(V ) [26]. However, the side effect of this

technique is that the accuracy of the recurrent neural network

will also decrease as a result of the extra deviations of the

class layer.

III. GPU IMPLEMENTATION

A. Basic Implementation

We mainly focus on accelerating the training phase of the

recurrent neural network. The training process can be abstract-

ed as executing the following calculations repeatedly: 1) pick

a labeled example from the training dataset; 2) calculate the

actual output of the network; and 3) update the weights of the

network with the differences between the actual and desired

outputs as Eq. (5)-(9).

As mentioned in the Section II-C, we realize all the matrix-

vector and matrix-matrix multiplication operations on GPUs

with the CUBLAS library. In addition, we also implement

other functions, such as the active functions in Eq. (3)-(4) and

the calculations of errors in Eq. (6)-(7), on GPUs. Because

the data transmission between CPU and GPU is very time

consuming [27], we keep all the parameters (Wih, Whh, Who,

bh, and bo) of a recurrent neural network in the GPU’s global

memory. And we also store all the states of hidden and

output layers in the GPU’s global memory. However, we store

the training data in the main memory instead of the GPU’s

global memory. The reason is that in many applications of the

recurrent neural network, such as the recurrent neural network

language model, only one input node will be activated and

only one output node will be monitored at each timestep. In

other word, only a small group of index data are demanded to

control the training process, and there’s little benefit to store

these data on GPU. However, it should be noted that a large

training data, such as the images, should be stored on the GPU

for efficient processing.

In addition, as only one node will be activated in the input

layer, the operation of matrix-vector multiplication between

the input and hidden layers can be realized by extracting the

row in the weight matrix Wih corresponding to the activated

node. And therefore, the operation of Wih ·�x(t) in Eq. (1) can

be expressed as:

Wih · �x(t) = �wkih (13)

Wih = [�w1
ih, ..., �w

k
ih, ..., �w

n
ih] (14)

where �x(t) is the input column vector. Only the kth element

of �x(t) is 1 and the other elements are 0. �wkih is the the kth

column of Wih as Eq. (14). And therefore, the the matrix-

vector multiplication operation of Wih ·�x(t) can be simplified

into an operation of copying the data of corresponding column

of Wih to the destination vector.

B. Pipeline Implementation

As discussed in Section II-A, the training process of the

recurrent neural network includes two phases: (i). feedforward

calculating the actual outputs of the network for the given

input, and (ii). backpropagating the deviations between the

actual and desired outputs to update the weights of the
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Whh·h(t)Whh·h(t)
+bh

Whh·h(t)
+bh

+Wih·x(t)
h(t) Who·h(t) Who·h(t)

+bo
NOP

exp{
Who·h(t)

+bo}
y(t)

Who·h(t+1)Who·h(t+1)
+bo

NOP

exp{
Who·h(t+1)

+bo}
y(t+1)Whh·h(t+1)

Whh·h(t+1)
+bh

Whh·h(t+1)
+bh

+Wih·x(t+1)
h(t+1)

h(t-1) Who·h(t-1)Who·h(t-1)
+bo

NOP
exp{

Who·h(t-1)
+bo}

y(t-1)

Fig. 3. Pipeline Implementation of the Feedforward Phase of RNN

network. The two phases are similar and both the phases can

be implemented with two-stage pipeline architectures. Fig. 3

illustrates the pipeline architecture for the feedforward phase.

The pipeline implementation of the feedforward phase in-

volves two stages. One stage completes the calculations of the

results of hidden layer (the grey boxes in Fig. 3) and the other

stage completes the calculations of the output layer’s results

(the white boxes in Fig. 3)). Each stage includes 4 serial steps:

1) Completing the matrix-vector multiplication;

2) Adding the bias up to the state of the layer

3) Adding the corresponding column of Wih up to the

hidden state, or calculating the exponent of the output

layer;

4) Calculating the sigmoid function of the hidden layer, or

scaling the exponential result of the output layer;

We implement the first step, second step and the steps of

calculating nonlinear functions in the hidden and output layers

in parallel. And the rest 2 operations (adding the corresponding

row of Wih up to the hidden layer, and scaling the output layer

result) are implemented in serial. Therefore, there’re totally 5

steps in the pipeline implementation and we label them with

different colors in Fig. 3. Each pair of white and gray blocks

in the same column is executed in parallel.

C. Matrix Combination

As discussed in the Section III-A, we use the CUBLAS

library to implement the operations of matrix-vector multipli-

cations. However, the functions in the CUBLAS are encap-

Cublas
(Kernel 1)

Cublas
(Kernel 2)

Cublas
(Kernel 1)

W1 V

W2

W1

W2[  
   

   
]

Y1

Y2[  
   

   
]

Y1

Y2

V

2 Kernels & 2 Steps 1 Kernel & 1 Step

V

Fig. 4. Matrix Combination

sulated. It’s difficult to combine two kernels together when

we want to implement the first two steps in the pipeline

architecture. Therefore, in order to take full advantage of the

massive parallelism of the GPU, we combine the two matrices,

Wih and Whh, together, instead of combining the two kernels

together (Fig. 4). And we also combine the two bias vectors,

bh and bo, together. Such a technique of combining different

matrices or vectors helps realize the steps in different pipeline

stages in parallel.

A problem of the matrix combination technique is that the

CUBLAS library requires the parameters of the matrices must

be stored in column-major order. Such a regulation will cause

a problem that the parameters of the two matrices will be

crossed with each other in the combined matrix. As we must

complete the matrix-vector multiplication between a single

matrix, instead of the combined matrix, and the vector at

both the beginning and the end of the pipeline, we have

to extract a single matrix from the discontinuous combined

matrix. There’re two methods to extract the single matrix:

• LDA method: extract the single matrix with the M,

N, and LDA (Leading Dimension Array) parameters in

CUBLAS;

• TRANS method: store the transpositions of the combined

matrix, i.e., a combination of W ′hh and W ′ho, to make the

parameters of the two matrices continuous, and use the

TRANS parameter to control the CUBLAS operations.

Both of the methods have a problem that the memory access

of the matrix data may be discontinuous and may lead to a

bad performance. However, the experiment results in the latter

section will demonstrate that the pipeline implementation of

RNN based on the LDA method performs better than the one

based on the TRANS method, and can realize an additional

2 ∼ 40% speed-up compared with the original CUBLAS

implementation without pipeline architecture.

D. Warp Formation of GPU Implementation

The warp formation in the proposed GPU implementation

should be carefully considered to make a better use of the

GPU architecture. The reason is that GPUs will group the
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TABLE I
TIME CONSUMPTION (S) OF THE RNN 10K OUTPUT NODES.

Hidden BPTT = 2 BPTT = 5 BPTT = 10

Layer Original1 LDA5 Trans6 MKL Original11 LDA15 Trans16 MKL Original21 LDA25 Trans26 MKL

100 38.38 38.14 42.93 108.29 77.64 75.88 80.89 185.93 124.41 120.71 125.58 254.12

200 47.12 46.88 68.37 145.10 92.61 89.22 128.15 223.38 144.17 137.03 199.02 371.52

500 77.60 77.41 149.45 315.45 147.03 143.65 282.14 876.56 217.28 209.27 436.51 1174.07

1000 131.58 132.01 145.78 1141.18 245.69 244.69 274.39 2019.25 353.61 350.40 399.22 4022.88

TABLE II
TIME CONSUMPTION (S) OF THE RNN WITH 10K OUTPUT NODES AND WARP FORMATION IN THE HIDDEN LAYER

Hidden BPTT = 2 BPTT = 5 BPTT = 10

Layer Original2 LDA7 Trans8 MKL Original12 LDA17 Trans18 MKL Original22 LDA27 Trans28 MKL

128 40.04 38.66 47.28 96.63 80.71 76.50 89.03 150.59 128.75 120.99 137.84 264.07

256 51.29 49.53 74.66 128.42 99.48 94.77 139.01 240.56 153.27 144.00 213.21 389.44

512 75.61 74.04 78.51 429.09 142.30 137.90 145.70 871.02 209.62 201.05 210.34 1490.79

1024 132.49 131.01 135.27 1238.60 247.47 241.97 249.88 2385.18 355.82 345.07 354.39 3796.22

TABLE III
TIME CONSUMPTION (S) OF THE RNN WITH 10K OUTPUT NODES AND WARP FORMATION IN BOTH HIDDEN AND OUTPUT LAYERS

Hidden BPTT = 2 BPTT = 5 BPTT = 10

Layer †Separate4 Original3 LDA9 Trans10 †Separate14 Original13 LDA19 Trans20 †Separate24 Original23 LDA29 Trans30

128 38.99 40.04 39.25 47.71 81.05 77.73 77.31 89.41 128.74 123.43 121.81 138.75

256 49.87 51.55 49.89 74.45 100.09 95.93 95.14 139.39 154.39 146.07 143.39 212.93

512 74.44 75.85 73.78 79.43 142.73 139.20 137.52 146.31 209.63 203.68 199.24 212.49

1024 131.46 133.15 130.45 137.09 247.32 243.16 239.78 253.30 353.78 346.65 338.92 359.63

†: There’re 10,000 nodes in the output layer in this simulation. We divide the combination kernels in the pipeline implementation (one used for active functions, and the
other one used for derivative calculations) into two separate kernels. And there won’t be any branch in the separate kernels.

threads executing the same code into fixed sized SIMD batches

known as warps and a warp can execute an instruction for all

its threads in parallel. However, a warp can only have one

active PC instruction at any given time. Conditional branch

instructions may cause the threads to take different dynamic

execution paths, or diverge, and therefore, those threads may

execute in sequence and the performance may be bad [28].

As a result, there’s a major consideration of formatting warps

to avoid the conditional branch instructions in the programs

(kernels) executed on the GPU.

In order to avoid the divergence in GPU kernels, the first

solution is to divide the combination kernel in the pipeline

implementation back into two separate kernels. For example,

the kernel of calculating the sigmoid functions in the hidden

layer and the kernel of calculating the exponential functions in

the output layer are combined into one kernel for the pipeline

implementation. But the combination kernel will be divide

back into two separate kernels in order to make sure that

there won’t be any branch in the separate kernels and avoid

the divergence. However, such an implementation cannot take

full advantage of the GPU architecture. And a better solution

to avoid the divergence is to try to fit in the warp size of the

GPU. In other words, we will fill the nodes in the output layer

with extra dummy nodes and make the length of the output

vector an integral multiple of the warp size. For example,

the current warp size of NVIDIA GPU is 32 [29]. If there’re

10,000 nodes in the output layer in practice, we will set the

length of the output vector to 10,016. The extra 16 nodes

involve in computation just to avoid diverges and there will

be no use of these nodes’ results. In addition, we also suggest

to set the length of hidden layer as an integral multiple of the

warp size.

E. Experiment Results
We conduct a simulation to compare the performance of

different implementations. We use the recurrent neural network

as a language model as described in the Section II-B. We select

50,000 words from the Treebank corpus [30] as the training

data for the test. The vocabulary size of the dataset is 10,000.

The training depth (BPTT step) in the test is set to 2, 5 and

10. All the GPU implementations are tested on a NVIDIA

GeForce GTX580 GPU with 1.5GB global memory. And the

CPU implementations are tested on two Intel Xeon E5-2690s

(@2.9GHz with 16 cores in total). The ‘Original’ represents

the GPU implementation based on CUBLAS without pipeline

architecture. The ‘LDA’ and ‘Trans’ represent the pipeline

implementations based on the ‘LDA Method’ and ‘TRANS

Method’ described in the Section III-C. The ’Separate’ repre-

sents the GPU implementation based on Matrix Combination

and separate kernels for the calculations of nonlinear functions.

And the ’MKL’ is the CPU implementation with Intel Math

Kernel Library (MKL). And the results can be concluded as

follows:

1) The proposed GPU implementation is able to realize a

2 ∼ 11× speed-up compared with the CPU implemen-

tation. And the accelerating rate (the times of speed-up)

increases with the hidden layer size and BPTT step.

2) The pipeline implementation doesn’t work well with a

network with a small hidden layer. The reason is that

there’re too many extra nodes used for warp formation

(> 20% extra computation when setting the hidden layer

from 100 (200) to 128 (256)). However, when the size

of the network grow up, the overhead of the extra nodes

will decrease, and the pipeline architecture will become

efficient.
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Fig. 5. Speedup results of GPU implementations. The indexes represent the superscripts in Table I, II, and III

3) The pipeline implementation based on the LDA method

performs better than the one based on the TRANS

method. And when there’s no optimization on the GPU’s

warp formation, the pipeline implementation based on

the TRANS method may even perform worse than the

original implementation without pipeline.

4) There really exists a problem of divergence with GPU

implementations. And the warp formation method of

filling data up to the integral multiple of warp size

is more efficient than the method of separating the

combination kernels.

5) The warp formatted (both in the hidden layer and output

layer) implementation based on the LDA method and

pipeline architecture performs better than other imple-

mentations in most cases. Such a method is able to

achieve an additional 2% ∼ 37.2% speed-up compared

with the original implementation without pipeline archi-

tecture or warp formation.

IV. A CASE STUDY: MICROSOFT RESEARCH SENTENCE

COMPLETION CHALLENGE

A. The Microsoft Research Sentence Completion Challenge
and Experiment Setup

We use the large scale recurrent neural network as a

language model as a case study to test its performance. And

we use the Microsoft Research Sentence Completion (MRSC)

Challenge to test the RNN language model. The MRSC chal-

lenge intended to stimulate research into language modeling

techniques which are sensitive to overall sentence coherence

[31]. The challenge consists of fill-in-the-blank questions

similar to those widely used in the Scholastic Aptitude Test.

Fig. 6 illustrates the sample questions in the challenge. And

there’re 1,040 tests in total in the challenge.

In the experiment, we use the recurrent neural network

language model to calculate the score (probability) of the

sentence filled with each given option. We choose the option

that leads to the highest score of the complete sentence as the

final answer of the model. The training data of the model are

a large set of Nineteenth and early Twentieth Century novels

and there’re around 38M words in the training dataset. The

vocabulary size of the training data is around 60K. However,

many of the words in the training dataset only appear a few

times. Therefore, we statistically analyze the frequencies of

words in the training data. We retain the 9K words that

1. I have seen it on him , and could _____ to it. 

(a) write 

(b) migrate 

(c) climb 

(d) swear 

(e) contribute 

2. They seize him and use violence towards him in order to 

make him sign some papers to make over the girl's _____ of 

which he may be trustee to them. 

(a) appreciation 

(b) activity 

(c) suspicions 

(d) administration 

(e) fortune 

3. My morning's work has not been _____ , since it has 

proved that he has the very strongest motives for standing in 

the way of anything of the sort. 

(a) invisible 

(b) neglected 

(c) overlooked 

(d) wasted 

(e) deliberate 

Fig. 6. The first three questions of the Microsoft Research Sentence
Completion Challenge

appear frequently and merge the other low-frequency words

into 1,583 ‘words’. And we try to make the frequencies of

those merged ‘words’ be equal with each other. Therefore,

there will be 10,583 nodes in the output layer of the recurrent

neural network model. We set the size of the hidden layer to

1,000 and the BPTT step to 5 when training this large recurrent

neural network.

B. Experiment Results

The results of different methods are illustrated in Table

IV and Fig. 5. It can be seen that the the RNN language

model can realize a loner-term perspective of the sentence

compared with the N-gram model as discussed in the Section

II-B. And an accuracy of 47% demonstrates that the proposed

large scale RNN is able to beat the traditional class-based

modest-size recurrent network. In addition, The Maximum

Entropy RNN model (RNNME) trained on 50M tokens is able

to achieve an accuracy of 49.3%. Therefore, both combining

RNN with other models and increasing the training data

may lead to an improvement on the model’s performance.

Finally, the vLBL+NCE5 model achieved the best result by
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TABLE IV
PERFORMANCE OF DIFFERENT METHODS ON THE MRSC CHALLENGE

Method Accuracy (%)
Chance 20

Smoothed 4-gram in [31] 39

RNN-100 with 100 classes1 40
Proposed 47

RNNME-300 in [32]2 49.3

vLBL+NCE5 in [33]3 60.8
Human 91

1 The model is trained with the RNNLM Toolkit in [26].
2 The model is trained on about 50M tokens using 200K vocabulary.
3 The best result we have seen so far.

constructing a model of noise (to distinguish noise and real

language) and analyzing a group of words at the same time

(note that the RNNLM only considers 1 word at one timestep).

And therefore, we may apply those methods to our RNNLM

model to process more information and further improve the

performance.

V. CONCLUSION

In this paper we propose an efficient GPU implementation

of the large scale recurrent neural network, which achieves a

2 ∼ 11× speed-up compared with the basic CPU implemen-

tation with the Intel MKL. We then explore the effectiveness

of scaling up the recurrent neural network with GPUs. The

experiment results of the MRSC Challenge demonstrate that

the large scale recurrent network is able to beat the traditional

modest-size RNN and achieve an accuracy of 47%, the best

result achieved by a single recurrent neural network on the

same dataset. However, the performance of the model still

falls far behind the human intelligence. There’s still a lot of

work to do to further improve the model’s performance.
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