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Abstract—We present a nature-inspired semi-supervised learn-
ing technique based on the flocking formation of certain living
species like birds and fishes. Each data item is treated as an
individual in the flock. Starting from random directions, each
data item moves according to its surrounding items, by getting
closer to them (but not too much close) and taking the same
direction of motion. Labeled items play special roles, ensuring
that data from different classes will belong to different, distant
flocks. Experiments on both artificial and benchmark datasets
were performed and show its classification accuracy. Despite
the rich behavior, we argue that this technique has a sub-
quadratic asymptotic time complexity, thus being feasible to be
used on large datasets. In order to achieve such performance,
a space-partitioning technique is introduced. We also argue
that the richness behind this dynamic, self-organizing model is
quite robust and may be used to do much more than simply
propagating the labels from labeled to unlabeled data. It could
be used to determine class overlapping, wrong labeling, etc.

I. INTRODUCTION

Semi-supervised learning is a machine learning task des-
ignated to work on datasets having most of their items un-
classified (unlabeled) and a few of them previously classified
(labeled) [1], [2], [31], [4]. Specifically, transductive learning
aims to classify the unlabeled data according to the labeled
ones. Inductive learning, in turn, aims to predict a classification
function instead of just classifying the existent unlabeled
data. Besides the previously classified data, in both tasks
(transductive and inductive) the pattern of the large amount of
unclassified data can also provide valuable information, i.e., the
unlabeled data can be used to classify themselves (transductive
task) or to output the classification function (inductive task).

In this paper, we present a nature-inspired transductive
learning technique, based on the flocking formation of certain
living species like birds and fishes. Those systems are able to
display a complex global behavior without any leadership [5],
[6]. The coordinated, collective motion just emerges from
the local interactions among the individuals that make up
the system. Such self-organization is a powerful feature that
can be explored on machine learning problems, because of
its intrinsic ability on dealing with imprecision. Precisely, on
semi-supervised learning problems, we want systems that are
resilient to noise, wrong labeling, class overlapping, etc.

Cui et al. [7] have already proposed a flocking-based
technique for document clustering analysis. Cui’s work and
ours are both based on the Reynolds’ boids model [8], [9].
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The flocking formation is achieved by modeling three main
interaction rules: alignment, approximation (cohesion), and
separation. Despite these similarities however, the simple fact
that Cui’s technique aims at unsupervised learning (clustering)
leads by itself to many modeling differences in comparison to
our semi-supervised learning technique. In our model, labeled
items play special roles by pushing away items that belong to
different classes. As a result, it is expected that items belonging
to different classes will make up different, distant flocks.

We also introduce a space-partitioning technique used to
improve performance. Doing so, we argue that our flocking-
like semi-supervised learning technique has a sub-quadratic
time complexity. Some preliminary results were obtained by
running our technique on artificial and benchmark datasets.
The classification accuracy obtained is comparable to those
from other well-known techniques. So we achieve a balance
between good classification and acceptable computational cost.
More importantly, we try to illustrate that the richness behind
this flocking-like approach can be used to do more complex
tasks such as soft labeling.

The rest of the paper is organized as follows. Sec. II for-
mally describes our proposed model. Since computational cost
is a concern, Sec. III discusses the computational complex-
ity of our proposed model and presents a space-partitioning
technique used to improve performance. Sec. IV presents
experimental results performed on artificial and benchmark
datasets. Running our technique on benchmark datasets has
enabled a comparison to other well-known techniques from
the literature. Finally, Sec. V concludes the paper.

II. MODEL DESCRIPTION

In this section, we formally describe our flocking-like semi-
supervised learning technique. Let us begin, however, with
just an illustration of how the proposed dynamical model
behaves. Fig. 1 displays the formation of flocks on an artificial
dataset. The overall idea is that at the beginning, every data
item is assigned a random velocity. Actually, the speed of
every item remains constant throughout the process. Only the
direction is changed. This is a common approach on modeling
flocking systems, as the well-known Vicsek’s work [5]. As the
dynamical process evolves, the new velocity of each item is a
function of the location and velocity of its surrounding items.
They all tend to get closer to each other, but not too much
close. Also, they tend to get the same direction of motion.
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Fig. 1.

Illustration showing the formation of flocks. [Top-left:] At ¢ = 0, the original dataset. A few initially labeled items are denoted by special marks:

triangles and squares. [Top-right, bottom-left, and bottom-right:] Respectively, at ¢ = 100, ¢ = 200, and ¢ = 300, each one displaying the trajectories of all the
items along the last 100 iterations. Horizontal and vertical axes represent the values of first and second data attributes, respectively.

The closer two items are, the stronger the influence over each
other. Labeled items play special roles, specially regarding the
interaction between two items having distinct labels: they tend
to get away from each other. This feature raises a competition
for label propagation.

Now let us turn to a formal description. The dataset is
composed of two sub-sets: U of unlabeled and £ of labeled
items. Each data item x; is a vector in the feature space. N is
the dataset size (number of unlabeled plus labeled items) and
D is the dimensionality of the feature space, i.e., the number
of features that characterizes each item.

Let x;(t) be the position of the i-th data item at iteration
(time) ¢, and let v;(t) be the corresponding velocity of that
item. Thus the data motion is given by the following equations:
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One may notice that the velocity is always used as an unit
vector (v;(t)/||vi(#)|). In Eq. 1, it reflects the constant-speed
motion. Eq. 3 is just an auxiliary equation giving vfhg(t), the
change of velocity of the i-th data item at iteration ¢. Its value
is also normalized when used in Eq. 2 (v"8(2)/||v"8(¢)|)).
This latter normalization makes its usage independent of the
dataset size, since this size affects directly the resultant value
Ve,

The second summation in Eq. 3 takes place over all pairs
(xi,x;) such that both are labeled and belong to different
classes. It drives items from different classes to take distinct
directions. The first summation, in turn, enables the expected
flocking behavior and acts over all the other pairs (x;,x;),
except those which both x; and x; are unlabeled and x; does
not belong to the neighborhood of x;. This filtering is denoted



TABLE L VALUES ASSIGNED FROM type(x;,X;).
X X Value used in the experiments
unlabeled unlabeled 1
unlabeled labeled 20, 50 (*)
labeled unlabeled 0.05
labeled labeled (same class) 10
labeled labeled (different classes) 10

(*) Values used on artificial and benchmark datasets, respectively.

by the function nei(x;,t), which means the neighborhood of
x; at iteration ¢. It must be highlighted that such filtering
applies only when both x; and x; are unlabeled. Labeled items
have “greater importance” and have always to be computed, no
matter how distant they are. Since unlabeled items are found
in much more number than labeled ones (and so the number of
unlabeled-unlabeled pairs), and since the nearest neighbors are
those items that dominate the resultant value vfhg , doing such
filtering reduces drastically the computational cost without
deviating too much from the ideal result when considering the
interaction between all the pairs of items. All the experiments
presented here consider only the five nearest neighbors. In
Sec. III, we present a space-partitioning technique that avoids
the N2 cost of determining the nearest neighbors at each time
step.

Inside the first summation in Eq. 3, there are three main
terms each being led by the coefficients align, approx, and
sep. As these names suggest, such terms refer to the compo-
sition of a flocking behavior by combining three components:
alignment, approximation, and separation. The coefficients
align, approx, and sep are just parameters of the model. The
term x; —X;/||x; —x;|| is a unit vector that gives the direction
from x; to x;. Compare it to x; — X;/||x; — x;||, which
gives the opposite direction. The term 1/|x; — x;||*, where *
assumes 1, (2, or (3, results in a factor that depends on the
distance between x; and x;. The closer they are, the more x;
is influencing the motion of x;. 51, B2, and (3 are parameters.
All of them must be positive, and 3 must be greater than 3, in
order to achieve the proper equilibrium between approximation
and separation. In the experiments presented here, we set

B1 =2 and B3 = B2 + 1.

The dynamical model proposed here is made up by com-
puting the interaction between pairs of data items. Each pair
can be distinguished by the type of its items. Doing so enables
us to, for instance, set a labeled item to have more influence
than an unlabeled one. Therefore, each pair (x;, x;) is assigned
a factor that quantifies the influence of x; over the motion of
x;. Such factor is denoted by the function type(x;, x;) (Eq. 3),
which assigns values according to Table I. Of course, we are
free to modify those values in order to get different behaviors.
Those values set in Table I are just the values used in our
experiments.

Datasets may be unbalanced, not only in terms of their size
but also in terms of the amount of labeled items. Regarding
the number of labeled items, a class that has the majority of
them tend to absorb most of the unlabeled ones. It happens just
because each labeled item applies a force on every unlabeled,
thus making such biggest class also the strongest one. To avoid
this situation, we need an artifact to balance such forces. The
function balance(x;,x;), in Eq. 3, does this job. Along the
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two-class experiments presented in this paper, balance(x;, x;)
was set as:

|£1|/|£2| ifXjEEQ/\XiGU
balance(xi,xj) = |£2|/|£1| if X S ﬁl NX; € U (4)
1 ifx; € L

where £q and L, are the sets of labeled items that belong
to classes 1 and 2, respectively, and |£| and |L2| are their
sizes. When x; is labeled, balance(x;,x;) has no effect.
Generalizations can also be made to support datasets with more
than two classes.

Finally, there are two more parameters to be explained:
a1 and as (Egs. 1 and 2). They can be seen as the precision
of the dynamical process: the less their values, the smoother
the dynamics, but the longer the time to reach a stable
configuration (regarding the flocks that emerge). However,
some care must be taken when setting them, because they are
not independent from each other. They actually set the rate by
which the position and velocity of the data items change. For
instance, if we set the effect of ; much more intense than
aug, then the items may travel large distances with virtually no
change on the direction of motion.

III. COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational cost of the
proposed technique. Specifically, we are going to talk about the
time complexity. The data structures presented in this section
do not introduce significant space (memory) consumption, so
the space complexity will remain on the order of N, the dataset
size.

At each time step, a process like this one would have a
cost of N2, save for the filtering by considering only the
interaction among the nearest neighbors, instead of an all-
with-all interaction. However, the naive procedure of finding
such neighbors would by itself have a cost of N2, So we
introduce a space-partitioning technique that is expected to
avoid such a high cost. For simplification purposes, we are
not considering that labeled and unlabeled items play different
roles. Since the labeled data is much fewer than the unlabeled,
such simplification has no major implications on the following
analysis.

The partition of the feature space results in a hierarchy
of regions, denoted by a tree. The root node represents the
largest region being considered, large enough to contain all
the dataset, and its children represent sub-regions that contain
only a sub-set of the data. The tree ends in leaf nodes each
containing just one data item. There is a restriction that no
two data items are allowed to occupy the exact same position
(actually a duplicate item), otherwise the process will fail, just
because no partition could take them apart. Fig. 2 displays how
the space partitioning looks like.

As the dynamical process goes on, at each time step all the
tree has to be rebuilt to keep track of the new data configura-
tion. The neighbors of an item may change (and probably will)
as the system evolves. We can break the procedure of finding
the neighbors into two sub-procedures: (1) building the tree
and (2) walking the tree to find the neighbors of each item.

The first process is described as follows:
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Fig. 2. How the space partitioning looks like in a two-dimensional space. Rectangles represent the nodes (orthants) of the tree. The biggest rectangle is large
enough to cover all the items and, recursively, it is broken into smaller ones whenever there are more than one item inside it. Notice that every item lies inside
its own rectangle, which can be seen as its address in the space-partitioning tree. Labeled items are much fewer and play special roles, so they are not accounted
for the partitioning. Links between each item and its five closest neighbors are also displayed (in green), as well as the trajectories along the last iterations (in
gray). Horizontal and vertical axes represent the values of first and second data attributes, respectively.

1)  Start with a region in the feature space such that each
dimension is bounded and big enough just to cover
the entire dataset. This is the root node and it links
to all the data items.

2)  Divide that region into 2° new sub-regions by halv-
ing each dimension. Let us call each new sub-region
as an orthant (generalization of quadrants and oc-
tants).

3)  Recursively divide (Step 2) each orthant whenever it
covers more than one data item.

Each node (orthant) must link to all the data it covers. It also
has to keep track of its region boundaries.

A rather balanced tree will have a height around log;p) N

(base is 2P), which is smaller than logy N. So the cost of
building that tree has an order of N - logypy N.

Now we describe how to find the K nearest neighbors of
an item x;, by walking the previously built tree:

1)  Starting from the root node, go down the tree until
the leaf node that covers x; is reached. Doing so is
straightforward, we just have to look at the bound-
aries of each orthant and check whether x; is inside,
then repeating this process on the sub-orthants and
so on. We could also make a link from x; to its
leaf node, thus avoiding this step but consuming more
memory. On a somewhat balanced tree, however, this
searching process has a cost of order log;ny IV, thus
pretty fast.

2)  Once the leaf node is found, go one level up (parent
node) and measure the distance between x; and all the
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other items x; covered by this parent node, selecting
the K nearest ones. Remember that each node links
to all the data it covers, so only a very small set of
items has to be visited. If there are fewer data than
the K desired number of neighbors, then go up the
tree one level further.

Once the K x; neighbors were selected, we have to
check whether there could be another unvisited item,
say xj, such that x; is closer to x; than some of
x;. To do so, we check if the distance between x;
and the farthest x; (“last neighbor”) is greater than
the distance between x; and the boundaries of the
visited region (the highest visited orthant; remember
the nodes carry such information). If so, then we
have to visit one node above and repeat the process.
Otherwise, the neighbors we found are guaranteed to
be the closest ones. Determining precisely the compu-
tational cost of this step is a hard task. Furthermore, it
depends on D and K. On average, however, it seems
like the number of visited items is much less than the
total number N. So we can say that the cost of finding
the nearest neighbors of a given item has an order less
than IV (even considering Step 1), consequently the
cost of finding the neighbors of all the data is less
than N2.

Placing the two procedures together (building and walking
the tree), the total time cost remains below N2. This is the
total cost of finding the K nearest neighbors of every item,
assuming K is sufficiently small.

Now we have to consider the cost of computing the



error (%)

error (%)
4 6
L (/ L

© T

RREEsass
0 400 800 120 1600 2000 0 250 500

25

20
20

15
L
T
15

error (%)
error (%)

10
1

10
1
T

° T T T

T
0 400 800 1200 1600 2000

o

250 500

Fig. 3.  Dependency of classification accuracy on «; and on number of
iterations t. [Top:] Two-gaussians dataset (see Fig. 4). [Bottom:] Interlaced-
arcs dataset (Fig. 4). [Left:] Constant value of a1 throughout the process.
Experiments performed on five different values of «y. From red to blue:
0.005, 0.01, 0.02, 0.04, and 0.08 on two-gaussians dataset [top-left], and 0.01,
0.02, 0.04, 0.08, and 0.16 on interlaced-arcs dataset [bottom-left]. Each graph
is the average of 30 simulations, and measured at every 10 time steps. [Right:]
Experiments using incremental values of a1. On both datasets [top-right and
bottom-right], it starts on 0.001 and is multiplied by a factor of 1.2 at every
5 steps, until it reaches a maximum value of 0.2. Again, each graph is the
average of 30 simulations, but now measured at every 5 time steps.

interactions among the data items, as described in Sec. II,
Egs. 1, 2, and 3. Since we are interested in the asymptotic
cost, we just have to look at the summations of Eq. 3. At each
time step, each item x; is interacting with its K neighbors x;.
Since K is a small constant, computing the interactions among
all the data has just a cost of order N, thus linear. This plus
the cost of finding the neighbors still results in a sub-N? cost.

Finally, we have to bear in mind that the previous analysis
holds only for a single time step. The final question is: how
many steps would be necessary to achieve good classification
results? This is a much more intriguing question and a compre-
hensive analysis is beyond the scope of this paper. However,
some empirical results were obtained.

Fig. 3 displays the dependency of classification accuracy
on «; and on number of iterations ¢. Parameter «o was
set to 1 on all simulations. Other parameters were set as
discussed in the next section (Sec. IV). At any given time, the
classification is obtained by assigning every unlabeled item
the label of the closest labeled item. Notice that at ¢ = 0,
the result is just the same as using 1-Nearest Neighbor (1-
NN) classification technique. We clearly see that smaller values
of a1 (finer precision) lead to better classification accuracies
(left-hand figures). We may hypothesize that the cause of poor
results using larger values of «; resides just on the beginning
of the process. That is because the data items start with
random directions, and large steps using random directions
may degrade the dataset pattern, mixing up data belonging to
different classes. So we also evaluate a variant of the model,
using incremental values of g, so that it starts very small
and, as the system achieves some stability (at least regarding
to the directions of the items), it gets larger. These results is
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displayed on the right-hand side of Fig. 3. On both datsets,
we got results as good as using small values of ay, but now
demanding much less time steps.

We also expect that the number of steps needed to achieve
good classification results does not scale with the number of
items IV, at least not linearly. The dependency of classification
quality on ¢ seems to lie on the geometry of the dataset, not
directly on N. Assuming it is true, we can still stating that the
proposed technique has a sub-N? time cost, now considering
the entire process. However, a further analysis on how the
number of steps scales with NV has yet to be done.

IV. EXPERIMENTAL RESULTS

In order to evaluate the classification accuracy of the
proposed model, we now introduce experimental results per-
formed over both artificial and benchmark datasets. Firstly,
let us present the overall parameter setting. The factor
type(xi,x;) (Eq. 3, Sec. II) was set according to Table I
(Sec. II). Setting parameter c; depends on the dataset density.
We used values ranging from 0.01 for more compact datasets,
to 0.04 for sparser ones. as was just set to 1. 5, was set to 2
on artificial datasets and from 2 to 10 on benchmark datasets.
B2 and 35 were set as So = 31 and 53 = (B2 + 1. Only the five
nearest neighbors was used to compute the interaction between
unlabeled items.

By looking at Eq. 3, one can see that if we isolate the
approximation and separation terms, there will be a distance
|x; — x;|| by which the approximation and separation terms
neutralize each other. That is the idea behind the flocking
formation: “two data items tend to get close to each other,
but not too much close”. Thus, instead of setting approx and
sep constants independently, we may want to set the desired
equilibrium distance deq. Assuming 33 = B2 + 1, then we just
set approx = 1 and it results that sep = dcq. In order to reduce
the dependency of parameter adjustment on the dataset, in all
the simulations we set dqq to be the average of the distances
between every unlabeled item and its closest neighbor. Finally,
the parameter align was just set to 1.

A. Artificial datasets

Fig. 4 presents a classification map on two artificial
datasets. Each dataset has 1000 data items, a few of them
initially labeled and denoted by special marks: triangles and
squares. Each color denotes one class: red for “triangle” and
blue for “square”. Each entry on this map was made by placing
one more unlabeled item at that location, then running the
process and checking which label that item gets. The label it
gets is just the label of the closest labeled item, like an 1-NN
classification, but measured after some time evolution (750
steps for the two-gaussians and 1000 steps for the interlaced-
arcs datasets). Due to assignment of random initial direction
for all the data items, each map entry is averaged 15 times
by running 15 entire simulations. Values in-between red and
blue mean that the additional unlabeled item was classified
sometimes as red-class and sometimes as blue-class. a; = 0.01
for the two-gaussians and «; = 0.02 for the interlaced-arcs
datasets. As a comparison, Fig. 4 gives also the classification
map by using the 1-NN technique.
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Classification map on two artificial datasets: “two gaussians” [left] and “interlaced arcs” [right]. [Top:] Using the proposed technique. Each entry is

the average of 15 simulations, each one measured after 750 time steps on “two gaussians”, and 1000 time steps on “interlaced arcs”. [Bottom:] Using 1-NN.
Horizontal and vertical axes represent the values of first and second data attributes, respectively.

Although 1-NN is much faster, the results from the pro-
posed technique are much more consistent. Moreover, looking
at the classification maps allows determining regions of dif-
ficult labeling (colors in-between red and blue). This feature
could be used for soft labeling other than just assigning a label,
i.e., items could be assigned a level of membership in each
class. In practice, for a transductive learning task, such maps
are not even needed to perform a soft classification. We just
have to run the technique a number of times, using different
random direction initializations, and then compare how many
times a given unlabeled item gets classified as one class or
another.

B. Benchmark datasets

In order to compare the performance of the proposed tech-
nique to other well-known techniques from the literature, we
have conducted experiments on benchmark datasets. Table II
displays the datasets we employed, as proposed by Chapelle et
al. [1]. Each dataset is available in 12 different versions, called
splits. The data items are exactly the same, but each split has
a different set of initially labeled items.

Table III displays the other techniques from the literature,
used for classification accuracy comparison. The respective
reference for each technique is also given.

Table IV presents the classification accuracy compari-
son. The datasets were pre-processed by using the first five
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TABLE II. THE BENCHMARK DATASETS USED FOR THE EXPERIMENTS,

PROPOSED BY CHAPELLE ET AL. [1].

Dataset Classes Dimensions (*) Size
2241c 2 241 1500
2241d 2 241 1500
Digitl 2 241 1500
USPS 2 241 1500

BCI 2 117 400

(*) All the results presented in this paper, including the other techniques from the
literature, was achieved by using only the first five PCA components.

TABLE III. REFERENCES FOR THE OTHER TECHNIQUES USED FOR
COMPARISON.

Abbreviation  Technique Ref.

k-NN k-Nearest Neighbors [10]

MVU Maximum Variance Unfolding [11]

LEM Laplacian Eigenmaps [12], [13], [14], [15], [16]

SVM Support Vector Machines [17]

TSVM Transductive Support Vector Machines [18], [19], [2]

SGT Spectral Graph Transducer [20]

LDS Low-Density Separation [18]

Lapl. RLS Laplacian Regularized Least Squares [21], [13], [15], [16]

Attr. Forces Attraction Forces 4]

PCA components, except for MVU and LEM, which are
dimensionality-reduction techniques. The results of the other
techniques from the literature were obtained from Cupertino



TABLE IV.

CLASSIFICATION ERRORS (%) ON THE DATASETS PROPOSED BY CHAPELLE ET AL. [1]. THE DATASETS WERE PRE-PROCESSED BY USING

THE FIRST FIVE PCA COMPONENTS (EXCEPT FOR MVU AND LEM, WHICH ARE DIMENSIONALITY-REDUCTION TECHNIQUES). THE RESULTS OF THE
OTHER TECHNIQUES FROM THE LITERATURE WAS OBTAINED FROM CUPERTINO ET AL. [4]. DIFFERENT COMBINATIONS OF (31, B2, AND [33 WERE
EVALUATED. ON ALL OF THEM, 32 AND 33 WERE SET AS 82 = (31, AND 33 = 32 + 1. THE BEST RESULTS FROM THE LITERATURE ARE HIGHLIGHTED, AS
WELL AS THE BEST RESULTS OF OUR PROPOSED TECHNIQUE. THE RANK OF OUR TECHNIQUE (AMONG 13) IS ALSO DISPLAYED. ENTRIES MARKED WITH
“-” WERE NOT SIMULATED.

10 initially labeled items

100 initially labeled items

g241c g241d Digitl USPS BCI g241c  g241d  Digitl USPS BCI
1-NN 28.95 27.20 21.77 23.93 49.10 21.40 10.98 7.04 13.60 47.36
MVU + 1-NN 47.15 45.56 14.42 23.34 47.95 43.01 38.20 2.83 6.50 47.89
LEM + 1-NN 44.05 43.22 23.47 19.82 48.74 4028  37.49 6.12 7.64 4483
SVM (linear) 24.00 28.67 21.53 31.52 48.50 13.34 13.99 6.79 21.60 46.92
SVM (RBF) 44.41 39.23 33.15 19.69 49.79 17.76 9.12 5.73 13.68 48.06
SVM (quad) 39.33 31.95 26.62 25.62 49.64 17.56 10.41 6.18 12.88 49.00
SVM (poly) 33.47 33.23 29.63 26.09 49.44 22.05 13.48 7.40 18.45 47.75
TSVM 21.38 31.23 20.32 30.04 48.96 1377 21.63 9.15 14.54 45.65
SGT 17.83 12.94 14.63 26.50 49.64 14.11 6.72 491 13.57 48.50
LDS 17.46 36.48 18.90 23.48 49.02 13.19 8.39 4.49 19.33 47.31
Laplacian RLS 27.10 26.67 18.03 18.68 49.38 16.04 7.83 4.88 11.76 46.11
Attr. Forces 27.64 27.42 18.31 18.31 49.64 21.63 10.24 6.41 12.44 45.63

35.08 34.70 23.84 70.21 49.90 20.02 12.47 8.11 78.99 48.64 BL=2

29.48 29.80 22.57 55.15 49.81 17.24 9.43 6.44 58.04 47.99 51 =3

27.57 27.98 21.88 46.44 49.87 17.17 8.80 6.20 40.70 47.69 B =4

Our technique 27.00 27.72 23.37 39.29 49.71 17.51 8.75 6.41 30.27 47.50 B =
27.24 28.16 26.28 35.72 49.75 17.90 8.97 6.98 25.14 47.38 B1 =6
- - - 35.52 49.72 - - - 20.43 47.54 B1 =38
- - - 36.75 49.86 - - - 19.48 47.03 B1 =10

Our rank (/13) 5 5 9 13 12 6 4 8 12 6

et al. [4]. Results on the original datasets, without PCA pre-
processing, can be found in Chapelle’s book [1]. We set
oy = 0.01 for Digitl, a; = 0.02 for g241c, g241d, and USPS,
and oy = 0.04 for BCI datasets. Measures were made after
750 time steps. Each entry on the table (for our technique) is
the average of 12 splits x 10 executions per split.

From these experiments, we see that our flocking-like
technique has good performance on datasets g241c and g241d,
has average performance on Digitl, and has poor performance
on USPS and BCI. Actually, all the algorithms have poor
performance on BCI. The best results from the literature have
an error rate of 47.95 and 44.83% (10 and 100 initially labeled
items, respectively). A simple blind guessing would result in
an error around 50%, almost the same as obtained from all the
algorithms.

Oddly, our technique results in error much above 50% for
low values of 3; on dataset USPS. We clearly see that the
accuracy depends strongly on (31, but even for higher values,
poor results are still obtained. Actually, the dependency on the
value of 81 can be noticed on all the datasets.

Datasets g241c, g241d, and Digitl each follows, respec-
tively, one of three assumptions as discussed by Chapelle et
al. [1], namely cluster, smoothness, and manifold assumption.
Hence, these experiments suggest that the proposed technique
acts quite well for cluster and smoothness assumptions.

The k-NN technique is very fast, having a linear time
complexity, assuming that the number of labeled items is much
smaller than the unlabeled ones. However, it is so simple that
it usually leads to worse classification, as shown if Fig. 4.
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Actually, it does not even take the unlabeled distribution into
account. On the other hand, most of the other techniques
have at least a quadratic time complexity. In particular, graph-
based techniques usually employ an adjacency matrix, which
ultimately leads to a quadratic complexity. As discussed in
the complexity section, our technique has a sub-quadratic
time complexity, so we achieve a balance between good
classification accuracy and acceptable computational cost.

V. CONCLUDING REMARKS

We are aware that this flocking-like learning technique is a
bit complicate, having many details and many parameters to be
adjusted. However, we expect that such details can provide us
more richness than difficulties. The decentralized, distributed
interactions among the data items are quite robust. The rich
set of variables of this dynamical system may provide us
information about the dataset under analysis, such as class
overlapping, wrong labeling, etc. Deeper studies over this
model are in course, in order to get a better understanding
of its potentialities and limitations. Those studies may also
reveal simpler ways to set the model parameters, i.e., given
a dataset, some procedure could be used to automatically set
almost all the parameters.

Experiments on artificial and benchmark datasets gave an
idea about the classification accuracy that can be achieved.
Specially on artificial datasets, we see that this model is able to
evidence regions under dispute between different classes (like a
class overlapping). More than just propagating the labels from
labeled to unlabeled items, this feature could also be used to
perform soft labeling.



Despite the richness of this flocking-like learning model,
we have also focused in keeping this model fast enough to
work on large datasets. A great effort was given by developing
and applying a space-partitioning technique, which enables
a sub-quadratic time cost, although a deeper, more precise
analysis is still needed.
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