
Robust LS-SVR Based on Variational Bayesian
and Its Applications

Kefeng Ning1, Min Liu*1,2, Senior Member, IEEE, Mingyu Dong1, and Zhansong Wu3
1Department of Automation, Tsinghua University, Beijing, 100084, China

2College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
3Department of Thermal Engineering, Tsinghua University, Beijing, 100084, China

lium@tsinghua.edu.cn

Abstract—Outliers often exist in the data for modeling in
actual industrial processes. If these outliers are used as sup-
port vectors, the obtained Support Vector Regression function
maybe unreliable. In this paper, we propose a new Robust
Least Squares Support Vector Regression based on variational
Bayesian (RB-LSSVR). The main idea of RB-LSSVR is to
learn the parameters of LSSVR in Bayesian framework, but
replace the Gaussian distribution with Student’s t-distribution
as the probability density function of residuals of the model
output and real output, which makes the model more robust
to outliers. In order to solve RB-LSSVR, the Student’s t-
distribution is written as a scale-mixture form and variational
approximation is used to iteratively learn the parameters of
RB-LSSVR. The hyperparameters of the Gamma distribution
that can’t be solved explicitly are optimized by using Newton
method. And, by using variational Bayesian, the user-specified
parameters selection is simplified in RB-LSSVR. The numerical
results based on several benchmark regression problems and
one actual industrial modeling problem show the proposed RB-
LSSVR can handle outliers very well.

I. INTRODUCTION

Considering the large computational complexity of con-

ventional Support Vector Regression (SVR) for large-scale

problems, Least Squares Support Vector Regression (LSSVR)

is proposed by Suykens et al. [1], [2]. LSSVR is known as

LSSVM for classification problems. In LSSVR, the inequali-

ty constraints in SVR are replaced by equality constraints.

Then, the solution follows from solving a set of linear

equations, instead of solving quadratic programming for

classical SVR [1]. After that, different variants of LSSVR

have been proposed, such as twin LSSVR [3], fuzzy LSSVR

[4], LSSVR with confidence/prediction interval [5], recur-

sive reduced LSSVR [6], weighted LSSVR [7], and so on.

LSSVR-based methods have been successfully applied to

many real-world applications [8], [9], [10], [11], [12].

However, compared with SVR, LSSVR is less robust

because of the sensitivity of sum square error (SSE) [13].

While in real-world industrial systems, data used for mod-

eling is always subject to outliers [14]. Outliers may be

generated by many reasons, such as measurement error, noise

disturbance, and wrong records. Take an actual modeling

problem in the steel refining process as an example. The

measured value of the steel temperature depends on not only
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the steel temperature itself but also the direction, angle, and

depth of the temperature measuring gun inserted into the

liquid steel. Also, the temperature measuring gun may be

damaged sometimes and wrong values maybe recorded into

the system. So, outliers often exist in the steel temperature

modeling problem. When these outliers are used as training

data unaware and taken as support vectors in SVR, the

learning process may try to fit those unwanted data and

the learned model becomes unreliable [14]. The conventional

method for handling outliers is to identify them and exclude

or downweight them in some way. However, outliers are

not always easy to be identified, especially in industrial

applications when the dimension of the input data is high

and the mechanism is complex.

Considering the above situation, a robust model based on

LSSVR is desired for the industrial modeling of data with

outliers. In the view of Bayesian framework, the conventional

LSSVR is learned under the assumption of the residuals

follow Gaussian distribution, which is not robust to outliers.

However, The Student’s t-distribution is one of the heavy-

tailed distributions and gives higher probability for extreme

values, which is more robust to outliers. In this paper, we

propose a new Robust Least Squares Support Vector Regres-

sion based on variational Bayesian, named as RB-LSSVR. In

RB-LSSVR, we first learn the parameters by using the con-

ventional LSSVR, then optimize the in a Bayesian framework

with the Student’s t-distribution as the probability density

function of the residuals to replace the general used Gaussian

distribution. Unfortunately, the above problem is computation

intractable when the Student’s t-distribution is used. In order

to solve this problem, the Student’s t-distribution is written

as a scale-mixture of infinitely many Normal distributions

and a Gamma distribution. Then, a variational approximation

procedure is derived to iteratively learn the parameters. And,

the hyperparameters of the Gamma distribution that can’t be

solved explicitly are optimized by using Newton method.

The rest of this paper is organized as follows: In Section

II, LSSVR is briefly reviewed. And, Section III presents

the motivation and derivation of the RB-LSSVR in details.

Then, the numerical comparisons of RB-LSSVR and LSSVR

on several regression problems are discussed in Section IV.

Finally, Section V gives the concluding remarks.
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II. LEAST SQUARES SUPPORT VECTOR REGRESSION

This section briefly reviews LSSVR [1], [2]. For N arbi-

trary distinct samples (xi, ti) ∈ Rn × R, the output of the

ith sample can be written as,

ti = wTϕ(xi) + b+ εi i = 1, ..., N (1)

where xi is a n × 1 input vector (xi,1, xi,2, ..., xi,n), ti is

one dimensional output, εi is the residual of the ith output,

ϕ(·) is a nonlinear mapping that maps the input feature into

a high-dimensional feature space.

Then, LSSVR can be formulated as the following opti-

mization problem, with (1) as its constraints:

min
1

2
wTw + CεT ε (2)

where ε = [ε1, ..., εN ]T and C ∈ R is the parameter for

regulation.

By introducing the Lagrangian function, we can get

L :=
1

2
wTw+CεT ε+

N
∑

i=1

λi(ti−wTϕ(xi)−b−εi) (3)

where λi, i = 1, ..., N are the Lagrange multipliers.

The KKT necessary and sufficient optimality conditions

for (3) are given by
⎧
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∂L
∂w = 0 ⇒ w =

N
∑

i=1

λiϕ(xi)

∂L
∂b = 0 ⇒

N
∑

i=1

λi = 0

∂L
∂εi

= 0 ⇒ λi = Cεi
∂L
∂λi

= 0 ⇒ ti −wTϕ(xi)− b− εi = 0

(4)

Eliminating w and ε, we can get
[

K+ I
C e

eT 0

] [

λ
b

]

=

[

t
0

]

(5)

where Kij = k(xi,xj) = ϕ(xi)
Tϕ(xj) , k(·, ·) is the kernel

function, and e = [1, ..., 1]T .

Given a new input x, when λ and b obtained, we can

predict its output by

f(x) = wTϕ(x) + b =
N
∑

i=1

λik(x,xi) + b (6)

III. ROBUST BAYESIAN LSSVR

A. Problem Description

The robust Bayesian LSSVR can be simply summarized as

learn its parameters in LSSVR as the initial parameters and

then adjust them in the Bayesian framework with the Studen-

t’s t-distribution. As ϕ(·) maybe infinitely dimension and un-

known, w can’t be solved directly. In order to make LSSVR

can be learned in the Bayesian form, we have to make a

few transforms. Let ˜K(x) = [k(x,x1), ..., k(x,xN ), 1]T ,

w̃ = [λ1, ..., λN , b]
T , then (6) can be written as,

f(x) = w̃T
˜K(x) (7)

The ith residual of model output and real output can be

written as,

εi = ti − f(xi) = ti − w̃T
˜K(xi) (8)

Usually, εis are assumed to follow Normal distribution,

which is not robust to outliers. In this paper, the Student’s

t-distribution (one of the heavy-tailed distributions) is used

as the conditional distribution of the ith residual,

p(εi|ν, σ) =
Γ( ν+1

2 )

Γ( ν2 )
√
πνσ

×
(

1 +
1

ν

(εi
σ

)2
)− ν+1

2

. (9)

(9) can be written as a scale-mixture of infinitely many

Normal distributions and a Gamma distribution [15]:

p(εi|c, d) =
∫

p(εi|βi)p(βi|c, d)dβi (10)

where p(εi|βi) is a Normal distribution and p(βi|c, d) is a

Gamma distribution:

p(εi|βi) = (
1

2π
)
N
2

N
∏

i=1

β
1
2
i e
− βi2 ε2i (11)

p(βi|c, d) = dc

Γ(c)
βc−1i e−βid. (12)

Gaussian distribution is usually used as the prior distribu-

tion over w̃,

p(w̃|α) =
( α

2π

)
Ñ
2

Ñ
∏

i=1

e−
α
2 w

2
i =

( α

2π

)
Ñ
2

e−
α
2 w̃T w̃ (13)

where ˜N = N + 1.

Based on (8) and (11), the likelihood function of the

training data set can be written as

p(t|w̃,β) = (
1

2π
)
N
2

N
∏

i=1

β
1
2
i e
− βi2 (ti−w̃T K̃(xi))

2

. (14)

In order to optimize w̃ and β, the posterior distribution is

constructed by Bayes’ rule:

p(w̃,β|t, α, c, d) = p(t|w̃,β)p(w̃|α)p(β|c, d)
p(t)

. (15)

B. Parameters Learning
Unfortunately, (15) is not tractable when the Student’s t-

distribution is used. We introduce the variational approxima-

tion method [16] here to obtain an approximate optimization

solution for the optimization of (15). Variational approxima-

tion has been applied in Gaussian Process models [17] and

Relevance Vector Machine [18].

The goal is to find an approximation for the posterior

distribution p(w̃,β|t, α, c, d) and the model evidence p(t).
And, the log model evidence ln p(t) can be reformed as

the sum of a lower bound of itself and the KL divergence

between two related distributions[16],

ln p(t) =

∫

q(w̃,β) ln p(t)dw̃dβ

= L(q(w̃,β), α, c, d)
+ KL(q(w̃,β))||p(w̃,β|t, α, c, d))

(16)
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where

L(q(w̃,β), α, c, d) =
∫

q(w̃,β) ln
p(t, w̃,β|α, c, d)

q(w̃,β)
dw̃dβ

(17)

KL(q(w̃,β))||p(w̃,β|t, α, c, d)) =
−
∫

q(w̃,β) ln
p(w̃,β|t, α, c, d)

q(w̃,β)
dw̃dβ.

(18)

(18) is the KL divergence (non-negative) between q(w̃,β)
and p(w̃,β|t, α, c, d), and it equals to zero when q(w̃,β) =
p(w̃,β|t, α, c, d). So L(q(w̃,β), α, c, d) ≤ ln p(t) and it

is a lower bound of ln p(t). The main idea of variational

approximation is to choose a distribution q(w̃,β) to approx-

imate p(w̃,β|t, α, c, d), and then optimize the lower bound

L(q(w̃,β), α, c, d) instead of ln p(t).
The iteration learning procedure of the variational approx-

imation method in this paper can be summarized as follows

(in the k + 1th iteration): the E step choose a distribution

q(w̃,β) to approximate p(w̃,β|t, α, c, d) by minimizing

KL(q(w̃,β))||p(w̃,β|t, α, c, d)), i.e.

q(w̃)(k+1) ← arg min
q(w̃)

KL(q(w̃,β))||p(w̃,β|t, α, c, d))

q(β)(k+1) ← arg min
q(β)

KL(q(w̃,β))||p(w̃,β|t, α, c, d))
(19)

and the M step maximizes L(q(w̃,β), α, c, d) with respect

to α, c and d

α(k+1) ← arg max
α

L(q(w̃,β)(k+1), α, c, d)

c(k+1) ← arg max
c

L(q(w̃,β)(k+1), α, c, d)

d(k+1) ← arg max
d

L(q(w̃,β)(k+1), α, c, d).

(20)

q(w̃,β) are usually assumed to be in the expression of

factorized distributions[16].

q(w̃,β) = q(w̃)q(β) (21)

where q(w̃) and q(β) are assumed as the same distribution

types as p(w̃|α) and p(β|c, d),

q(w̃) = N (w̃|μ̃, ˜Σ) (22)

q(β) =

N
∏

i=1

Gamma(βi|c̃i, ˜di). (23)

Based on the above assumptions, (19) leads to the follow-

ing equation [15]

q(w̃)(k+1) ∝ exp E
q(β)

ln p(t, w̃,β, |α, c, d)

q(β)(k+1) ∝ exp E
q(w̃)

ln p(t, w̃,β, |α, c, d) (24)

where E means the expectation.

The optimal solution of q(w̃) (i.e. q�(w̃)) can be obtained

from

ln q�(w̃) = E
q(β)

ln p(t, w̃,β|α, c, d)

= E
q(β)

(

−α
2
w̃T w̃− 1

2

N
∑

i=1

βi(ti − w̃T
˜K(xi))

2

)

+const

= −α
2
w̃T w̃ − 1

2
w̃T

˜KTB ˜Kw̃ + w̃T
˜KTBt+const

(25)

where

B = diag
{

E(β1),E(β2), ...,E(βN )
}

. (26)

˜K =

⎡

⎢

⎣

k(x1,x1) · · · k(x1,xN ) 1
...

...
...

...

k(xN ,x1) · · · k(xN ,xN ) 1

⎤

⎥

⎦
(27)

and E(βi) can be calculated by the expectation of the Gamma

distribution

E(βi) = c̃i/˜di i = 1, 2, ..., N. (28)

From (22) and (25), we obtain the parameters (μ̃ and ˜Σ)

of (22) as

μ̃ = ˜Σ ˜KTBt (29)

˜Σ = (αI+ ˜KTB ˜K)−1. (30)

Simularly, the optimal solution of q(β) (i.e. q�(β)) is given

by

ln q�(β) = E
q(w̃)

ln p(t, w̃,β, |α, c, d)

= E
q(w̃)

(

−α
2
w̃T w̃ − 1

2

N
∑

i=1

βi(ti − w̃T
˜K(xi))

2

+
1

2

N
∑

i=1

lnβi+(c−1)
N
∑

i=1

lnβi−d
N
∑

i=1

βi

)

+const

=
N
∑

i=1

(c− 1

2
) lnβi −

N
∑

i=1

βi

(

d+
1

2
(t2i

−2ti ˜K(xi)
T
E(w̃) + ˜K(xi)

T (E(w̃w̃T )) ˜K(xi))
)

.

(31)

Compared (23) with (31), we have

c̃i = c+
1

2
(32)

˜di = d+
1

2

(

t2i − 2ti ˜K(xi)
T
E(w̃)

+ ˜K(xi)
T (E(w̃w̃T )) ˜K(xi))

) (33)

where i = 1, 2, ..., N . E(w̃) and E(w̃w̃T ) can be calculated

by the properties of Normal distribution,

E(w̃) = μ̃

E(w̃w̃T ) = μ̃μ̃T + ˜Σ.
(34)

When (24) (30) (32) and (33) are determined, we can
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fix q(w̃) and q(β) and maximize L(q(w̃,β), α, c, d) with

respect to α, c and d respectively, let

∂L(q(w̃,β), α, c, d)
∂α

=

∂ E
q(w̃)

ln p(w̃|α)
∂α

= 0
(35)

we have
˜N

2α
=
α

2
(μ̃T μ̃+ tr(˜Σ)) (36)

From (36), α can be calculated by

α =
˜N

μ̃T μ̃+ tr(˜Σ)
(37)

Similarly, let

∂L(q(w̃,β), α, c, d)
∂c

=

∂ E
q(β)

ln p(β|c, d)
∂c

= 0
(38)

∂L(q(w̃,β), α, c, d)
∂d

=

∂ E
q(β)

ln p(β|c, d)
∂d

= 0.
(39)

Two formulations contain c and d can be gotten

ln d = ψ(c)−
N
∑

i=1

(ψ(c̃i)− ln ˜di)/N (40)

c

d
=

1

N

N
∑

i=1

c̃i
˜di

(41)

where ψ() is the digamma function.

There is no closed-form solution for (40) and (41). How-

ever, we observed c ∝ d in (41), then we have

d = Nc/

N
∑

i=1

c̃i
˜di
. (42)

Eliminate d based on (42), (40) becomes

ln c− ψ(c) = δ. (43)

where

δ = ln

N
∑

i=1

c̃i
˜di
− lnN −

N
∑

i=1

(ψ(c̃i)− ln ˜di)/N. (44)

Now we observe that the right-hand side of (43) δ is a fixed

value, and the left-hand side of (43) is differentiable and

strictly decreases monotonically. So, we can use gradient-

based optimization method to solve (43). In this paper,

Newton method is used.

C. Algorithm Outline

The RB-LSSVR can be summarized as follows. Suppose

the original training data sets are {(xi, ti)|xi ∈ Rn, ti ∈
R, i = 1, ..., N} .

Step 1) Select the kernel function k(·, ·) (if gaussian

kernel are chosen, the user-specified parameter τ
should be selected too) and regulator C. Initialize

the user-specified parameters α and β. Set k = 0.

Step 2) Calculate w̃ (i.e. λ and b) using (5).

TABLE I
SPECIFICATION OF DATA SETS

Data Sets #Samples #Train #Outliers #Test #Inputs

Sinc (A) 201 101 10/20 100 1

Auto-mpg (B) 392 196 20/39 196 7

Bodyfat (C) 252 126 13/25 126 14

LF Steel Temperature (D) 1157 579 58/116 578 20

TABLE II
SPECIFICATION OF OUTLIERS

Case Outlier Distribution Parameters Outlier Rate

1 Normal (0, 12) 0.1

2 Normal (0, 12) 0.2

3 Normal (0, 22) 0.1

4 Normal (0, 22) 0.2

Step 3) Compute the parameters of q(k)(β) and q(k)(w̃)
using (24)-(34) repeatedly until convergence.

Step 4) Compute α(k) according to (37). Set c(k) =
10−10 as the initial value, and iteratively optimize

c(k) and d(k) by solving (43) and (42) with Newton

method until convergence. And Let k = k + 1.

Step 5) Run Step 3) and Step 4) iteratively until conver-

gence.

IV. NUMERICAL COMPUTATIONS

The performance of the proposed RB-LSSVR is evaluat-

ed and compared with LSSVR by numerical computations

with one synthetic data set, several benchmark problems

and one actual industrial problem. The Gaussian kernel

(k(x,y) = exp(−τ‖x − y‖2)) is used in both LSSVR and

RB-LSSVR. The user-specified parameter τ and C is selected

from [10−10, 10−9, ..., 1010] using cross validation. And, the

basic specification of all data sets is shown in Table I. Also,

the training data of all data sets are contaminated by synthetic

outliers. The synthetic outliers are generated from random

distributions, and the details of which can be seen in Table

II. All data sets are normalized to [−1, 1] except the sinc

function data set. The training and testing data of all data

sets are reshuffled at each trial of simulation, and the results

are averaged on 10 trails.

A. Modeling of sinc Function

The sinc function is usually used as a benchmark problem

for evaluating regression models, and it is defined as:

y = sinc(x) =

{

sin(πx)
πx x �= 0,

1 x = 0.
(45)

Two hundred and one patterns of this function are uni-

formly produced with x in the range of [-3, 3]. Fig.1 plots

the approximation results of the sinc function with outliers

generated by normal distribution. From Fig.1, we see that

LSSVR are affected by outliers in most cases, especially in
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Fig. 1. Modeling of sinc function with outliers generated by normal distribution
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the two ends of the sinc function. While the proposed RB-

LSSVR fits the sinc function very well even in the two ends

of the sinc function. In Table III, RMSE is used for evaluating

the model performance. And the corresponding parameters of

best RMSE results and simulation time are also listed in the

table. Table III shows that RB-LSSVR outperforms LSSVR

in all cases.

B. Several Benchmark Regression Problems

Two data sets (Auto-MPG and Bodyfat) come from S-

tatLib [19] are used as benchmark regression problems. The

objective of the Auto-MPG problem is to predict city-cycle

fuel consumption in miles per gallon with the information

of cylinders, displacement, horsepower, weight, acceleration,

model year, origin, and car name. The objective of the

Bodyfat problem is to estimate the percentage of body fat

from density, age, weight, height, and various skin-fold

measurements (e.g. neck circumference).

Table IV shows the best RMSE results that each model

obtains in all data sets under all outlier cases. We can see

that RB-LSSVR outperforms LSSVR in all data sets. And,

Fig.2 shows that the performance of LSSVR is sensitive to

the user-specified parameters (C, τ ). While in RB-LSSVR,

the performance only depends on τ , and different C with

same τ will lead to the same performance. So, only τ needs

to be chosen in RB-LSSVR, which means the user-specified

parameters selection of RB-LSSVR is simplified.

C. Actual Industrial Problem (data set D)

In the Iron & Steel industry, in order to meet the demands

of the steel casting process, the liquid steel temperature in

the ladle furnace at the end of the refining process should

be controlled in an appropriate range. However, the liquid

steel temperature is very high, and there are no measurements

can measure the liquid steel temperature online yet. So,

constructing a model to predict the liquid steel temperature

becomes very important. There are many process variables

affecting the liquid steel temperature. The main input features

used in this paper are listed in Table V.

Table VI shows the simulation time and best RMSE of

LSSVR and RB-LSSVR under different user-specified pa-

rameters. The RMSE of RB-LSSVR outperforms LSSVR in
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TABLE III
SINC FUNCTION APPROXIMATION.

data set Outlier Case
LSSVR RB-LSSVR

C τ Simulation Time (s) RMSE C τ Simulation Time (s) RMSE

A

1 1 1 0.55991 0.132379 1 10 1.88876 0.000002
2 1 1 0.52924 0.144953 1 10 1.66078 0.000003
3 1 1 0.61429 0.140957 1 10 1.94597 0.000003
4 1 1 0.63124 0.162382 1 10 1.68511 0.000002

Fig. 2. Performances of LSSVR and RB-LSSVR using Gaussian kernel with user-specified parameters (C, τ ): Data Set B
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TABLE IV
BENCHMARK PROBLEMS.

data set Outlier Case
LSSVR RB-LSSVR

C τ Simulation Time (s) RMSE C τ Simulation Time (s) RMSE

B

1 1 0.1 0.31181 3.66166 1 0.1 8.46644 3.20528
2 1 0.1 0.39998 4.28511 1 0.1 7.53808 2.96537
3 10 0.01 0.38582 3.54184 1 0.1 7.90403 2.99669
4 109 0 0.49805 3.85705 1 1 12.3427 3.21290

C

1 109 0 0.12292 4.27318 1 0.1 1.84939 1.40780
2 1 0.1 0.13159 4.63450 1 0.1 1.57853 1.78234
3 10 0.001 0.11674 6.09098 1 0.1 2.09920 1.56433
4 107 0 0.24464 5.76767 1 0.1 1.70724 1.00744

TABLE V
MAIN INPUT FEATURES USED IN DATA SET D.

initial temperature of the steel span of the refining process
thermal state of the ladle materials added into the steel
energy from heating system temperature of the environment
temperature of the cooling water flow rate of the cooling water
temperature of the flue gas flow rate of the flue gas
temperature of the ladle wall flow rate of ar blow

all simulations. Although the simulation time of RB-LSSVR

is longer than LSSVR, it doesn’t mean the learning of RB-

LSSVR is much slower than LSSVR. As in RB-LSSVR, the

user-specified parameter C is fixed to one, so RB-LSSVR

saves a lot of time on cross validation.

D. Cross-Validation Time Analysis

We have listed the simulation time under given user-

specified parameters (C, τ ) in Tables III, IV, and VI. From

these tables, we know that RB-LSSVR is much slower

than LSSVR for a given (C, τ ) as it needs an additional

step to adjust its parameters. However, the user-specified

parameter C can be fixed to one in RB-LSSVR, and τ
is the only user-specified parameter need to be determined

by cross-validation. So, RB-LSSVR saves a lot of time

for cross-validation, which makes the total cross-validation

time of RB-LSSVR is comparable to LSSVR. Suppose

that the user-specified parameter C and τ are selected

from [10−10, 10−9, ..., 1010], the total cross-validation time

of LSSVR is 21∗21 times of its single simulation time, while

the total cross-validation time of RB-LSSVR is 21 times of its

single simulation time. Fig. 3 shows the total cross-validation

time spent by LSSVR and RB-LSSVR. From Fig. 3, we can

see that the total cross-validation time of RB-LSSVR is less

than LSSVR in Sinc, Auto-pmg, and Bodyfat. In data set

LF steel temperature, the total cross-validation time of RB-
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TABLE VI
ACTUAL INDUSTRIAL PROBLEM.

data set Outlier Case
LSSVR RB-LSSVR

C τ Simulation Time (s) RMSE C τ Simulation Time (s) RMSE

D

1 10 0.01 2.37588 8.08505 1 0.1 120.09243 7.80847
2 1000 0.001 2.80668 9.31798 1 0.01 111.73943 7.97532
3 10000 0.0001 2.17065 8.04410 1 0.01 98.50746 7.71068
4 0.1 0.1 2.67462 12.36915 1 0.1 127.96642 8.14831

Fig. 3. Total cross-validation time spent in different data sets

Sinc Auto−mpg Bodyfat LF Steel Temp.
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LSSVR is more than LSSVR. In indeed, if we want to use

RB-LSSVR in large data sets, the concept of using fixed size

support vectors in RB-LSSVR may be a possible solution.

V. CONCLUSION

In this paper, a new Robust Bayesian LSSVR (RB-LSSVR)

is proposed for the modeling problem with outliers. The Stu-

dent’s t-distribution is introduced into the Bayesian LSSVR

as the probability density function of the model output, which

makes the model more robust to outliers. In LSSVR, the

user-specified parameters C and τ should be both chosen

carefully, if not, the results can be very poor. However,

in RB-LSSVR, C is only used in the parameters initial-

ization phase and can be chosen randomly. The only user-

specified parameter should be determined by cross validation

is τ in RB-LSSVR. And the training time of RB-LSSVR

is comparable to LSSVR (considering the cross validation

procedure). In addition, the numerical computational results

of several regression problems show that the proposed RB-

LSSVR outperforms LSSVR and it is a robust model for

modeling with outliers.
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