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Abstract— The aim of this work is to identify clinically-useful
and stable breast cancer subgroups using a reduced panel of
biomarkers. First, we investigate the stability of subgroups gen-
erated using two different reduced panels of biomarkers on
clustering of breast cancer data. The stability of the subgroups
found are assessed based on comparison of agreement levels
using Cohen’s Kappa Index on clustering solutions from ssFCM
methodologies, consensus K-means and model-based clustering.
The clustering solutions obtained from the feature set which
achieve the higher agreement is chosen for further biological and
clinical evaluation to establish the subgroups are clinically-useful.
Using a ssFCM methodology, we identified seven clinically-useful
and stable breast cancer subgroups using a reduced panel by Soria
et al. So far, the stability of the subgroups identified using the
reduced panel of biomarkers have not yet been investigated.
Keywords: semi-supervised FCM, feature reduction, breast cancer
classification, cluster stability

I. INTRODUCTION

Six clinically useful subgroups was found in the Nottingham
Tenovus Breast Cancer (NTBC) dataset [1], which contains
1076 breast cancer cases with cellular information based on 25
protein biomarkers. The six classes were derived by reaching
a consensus based on a semi-manual technique [1] featuring
manually-generated rules and clinicians’ expertise to combine
solutions from several different clustering algorithms. As a
result, 663 out of 1076 patients are classified. So far, no single
clustering algorithm has been found to automatically identify
the same subgroups. The overarching aim of our work is to ‘re-
produce’ classification by Soria et al. [1] (Soria’s classification
for short) with a single clustering method, using all 1076 patient
data. Previously, semi-supervised Fuzzy c-Means (ssFCM) has
been shown to achieve this [2], [3], [4]. However, most of our
studies have been applied on the 663 patients data where results
are matched with Soria’s classification for evaluation.

In this paper, we investigate the effect of two reduced panel
of biomarkers on clustering of all 1076 patient data. Previously,
15 important features were identified using ssFCM and Naive
Bayes-Recursive Feature Elimination (NB-RFE) [3]. In [5],
however, 10 important features have been found using an
exhaustive search of the best combination based on the Naive
Bayes (NB) classification results. The same 10 important fea-
tures were also used in to identify the key clinical phenotypes of
breast cancer [6]. Also, these features are used in the generation
of linguistic rule set a using fuzzy rule induction algorithm for
breast cancer classification [7]. The existence of two different
reduced panel of biomarkers (feature set) prompt the question
as to which feature set will produce better subgroups, in terms
of stability, biological meaningfulness and clinical relevance. In
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line with another previous study [3], our long term goal is to
produce a clinically useful classification using fewer features
(biomarkers), reducing the time and cost of running complex
and expensive clinical tests.

While it makes sense that having more features give more
discriminating power to distinguish between classes but, in prac-
tice, more features not only increase time requirements but also
the irrelevant or redundant features can worsen classification
accuracy. Hall [8] has described these features as “harmful
redundancies”. In our previous work [3], we have shown that
higher agreement with Soria’s classification can be achieved
using feature selection.

Jain [9] raised a fundamental issue of clustering, which is the
consistency of solutions from different clustering algorithms,
that is, the stability of these different clustering solutions.
Solutions from different clustering algorithms that are more
consistent (stable) build higher confidence in the clusters found.
For clustering of biomedical data, Bair and Tibshirani [10]
explained the difficulty and importance of finding relevance
between biological subgroups and clinical parameters for ac-
curate prognosis. As unsupervised approaches often do not use
clinical data to find subgroups, there is no assurance that the
subgroups found would be related to the clinical outcome. Fur-
thermore, the subgroups identified from clinical data may not be
biologically meaningful. Statistical tests are, therefore, needed
to determine the relevance between the biological subgroups
and clinical data, which in turn can validate the subgroups
identified. Therefore, to validate the biomedical subgroups, the
subgroups have to be biologically meaningful and reproducible.
Furthermore, the relevance between the subgroups and clinical
parameters have to exist and the stability of these subgroups
has to be addressed.

To do this, the breast cancer dataset are clustered with the
two considered features sets from [3] and [5] using ssFCM,
consensus K-means (CKM) and model-based clustering via
Bayesian Information Criteria (MBIC). The feature sets are
evaluated based on the stability of the subgroups produced.
The stability are assessed based on agreement levels between
clustering solutions using Cohen’s Kappa index 𝜅.

The aim is to identify the same subgroups as identified by
Soria et al. [1] using a relevant reduced feature set in the breast
cancer dataset and using all 1076 patients data. This means that
the same relevant feature set is able to produce stable subgroups
using different clustering algorithms. This investigation helps to
identify stable subgroups and demonstrate whether these stable
subgroups are biologically useful and clinically relevant. This
investigation also helps to ascertain whether the reduced feature
set can reproduce the same subgroups as with all 25 features.
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Algorithm 1 Semi-supervised fuzzy c-means [11]
1: Initialise 𝑐, labelled data membership matrix F and initial mem-

bership matrix U(0)

2: Calculate cluster centres using

v𝑖 =

∑𝑁
𝑗=1 𝑢

2
𝑖𝑗x𝑗∑𝑁

𝑘=1 𝑢
2
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑐. (2)

3: Compute fuzzy covariance matrices.
4: Compute squared distances 𝑑2𝑖𝑗 between cluster centres v𝑖 and data

patterns x𝑗 .
5: Update partition matrix, U using equation :

𝑢𝑖𝑗 =
1

1 + 𝛼

⎧⎨
⎩

1 + 𝛼(1− 𝑏𝑗
∑𝑐
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(
𝑑𝑖𝑗
𝑑𝑙𝑗

)2 + 𝛼𝑓𝑖𝑗𝑏𝑗

⎫⎬
⎭ (3)

6: If ∣∣U′ −U∣∣ < 𝜖, stop. Else, go to Line 2 with U = U′

II. SELECTED ALGORITHMS

A. Semi-supervised Fuzzy c-Means

The objective function of the ssFCM proposed by Pedrycz
and Waletzky [11] contains unsupervised learning in the first
term and supervised learning in the second term as follows:

𝐽 =

𝑐∑

𝑖=1

𝑁∑

𝑗=1

𝑢𝑝𝑖𝑗𝑑
2
𝑖𝑗 + 𝛼

𝑐∑

𝑖=1

𝑁∑

𝑗=1

(𝑢𝑖𝑗 − 𝑓𝑖𝑗𝑏𝑗)𝑝𝑑2𝑖𝑗 , (1)

where 𝑢𝑖𝑗 is the membership value of data pattern 𝑗 in cluster
𝑖, 𝑐 is the number of clusters, 𝑑𝑖𝑗 the distance (Euclidean in
this case) between data pattern 𝑗 and cluster centre 𝑣𝑖, 𝑓𝑖𝑗 the
membership value of labelled data pattern 𝑗 in cluster 𝑖, 𝑏𝑗
indicates if data pattern 𝑗 is labelled, 𝑝 is the fuzzifier parameter
(which is commonly 2) and 𝛼 is a scaling parameter for
maintaining balance between the supervised and unsupervised
learning components such that supervised learning does not
dominate. The authors recommend 𝛼 to be proportional to
𝑁/𝑀 , where 𝑀 is the number of labelled data. The algorithm
is summarised in Algorithm 1.

The ssFCM algorithm can be enhanced using initialisation
techniques [12] to calculate initial clusters, which we previously
used for ssFCM classification [2]. Another enhancement is the
adjustment of scaling parameter 𝛼 to adjust the influence of
labelled data [13].

B. Consensus k-means

A simple algorithm is devised, which is referred as CKM for
short, to reach a consensus of K-means clustering solutions as
shown on Algorithm 2.

The parameter 𝜖 is chosen by visual inspection of biplot of
the six lists, which are essentially the six clusters. The choice of
𝜖 is arbitrary. A small 𝜖 will increase the tendency for clusters
to merge or overlap and a large 𝜖 will create more compact
clusters at the cost of ignoring some data patterns.

C. Model-based clustering via Bayesian information criterion

Fraley and Raftery [14] implemented a model-based clus-
tering (MBIC) which uses the Maximum A Posteriori (MAP)
estimate from a Bayesian analysis to estimate model param-
eters, instead of Maximum Likelihood Estimation (MLE) in
the Expectation-Maximization (EM) algorithm and a modified
Bayesian Information Criterion (BIC) for model selection. MAP

Algorithm 2 Consensus k-means
1: Run K-means 5000 times to generate 𝑐 (six) clusters. The output

is a 5000 × 𝑁 matrix containing cluster labels 𝑐1, ...𝑐𝑁 for data
patterns 𝑥1, ..., 𝑥𝑁 for each run. A large number of run is chosen
to ensure that similar data can be identified over many runs.

2: For data pattern 𝑥𝑖, count the number of times it is in the same
cluster as other data patterns, 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 = 𝑐𝑜𝑢𝑛𝑡(𝑐𝑖 == 𝑐𝑗), in all
runs.

3: repeat
4: For data pattern 𝑥𝑖, a list, 𝑙𝑖 for 𝑖 = 1, ..., 𝑁 is created

containing other data patterns that share the same clusters for
𝑐𝑜𝑢𝑛𝑡𝑖𝑗 > 𝜖.

5: If 𝑥𝑗 ∈ 𝑙𝑖 and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙𝑖∩ 𝑙𝑗) > 20, each list 𝑙𝑖 is then updated
by performing a union with all other lists that share common
data patterns 𝑙𝑖 = 𝑙𝑖 ∪ 𝑙𝑗 , 𝑗 ∕= 𝑖 . If the other list 𝑙𝑗 fulfills this
condition with 𝑙𝑖, 𝑙𝑗 is deleted.

6: The largest six lists are chosen as the clusters and other lists,
usually with much smaller number of members are ignored.

7: Present the six lists in a biplot.
8: until A biplot of clusters most similar to those by Soria et al. is

produced. Repeat with different 𝜖 values if necessary. 1

is used to avoid the failure of the EM algorithm in the presence
of singularities or degeneracies. The mixture model with density
for generating data 𝑦 = (𝑦1, ..., 𝑦𝑛) in model-based clustering
is defined as:

𝑓(𝑦) =

𝑛∏

𝑖=1

𝐺∑

𝑘=1

𝜏𝑘𝑓𝑘(𝑦𝑖∣𝜃𝑘), (4)

where 𝑓𝑘(𝑦𝑖∣𝜃𝑘) is a probability distribution with parameters
𝜃𝑘, 𝜏𝑘 is the probability of belonging to the 𝑘𝑡ℎ component and
𝜃𝑘 = (𝜇𝑘,Σ𝑘), 𝜇𝑘 are the means and Σ𝑘 the covariances of 𝑓𝑘.
These parameters of the model are estimated using MLE in the
EM algorithm.

To eliminate EM failure to converge due to singularity in
covariance estimate, the authors proposed a prior distribution
on the parameters that can eliminate the singularity problem
while maintaining stability on results obtainable without a prior
probability. The Bayesian predictive density for the data is in
the form:

ℒ(𝑌 ∣𝜏𝑘, 𝜇𝑘,Σ𝑘)𝒫(𝜏𝑘, 𝜇𝑘,Σ𝑘∣𝜃), (5)

where ℒ is the mixture likelihood:

ℒ(𝑌 ∣𝜏𝑘, 𝜇𝑘,Σ𝑘) =
𝑛∏
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𝐺∑
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𝜏𝑘𝜙(𝑦𝑖∣𝜇𝑘,Σ𝑘)

=
𝑛∏
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𝐺∑

𝑘=1

𝜏𝑘∣2𝜋Σ𝑘∣− 1
2

exp

{

−1

2
(𝑦𝑗 − 𝜇𝑘)𝑇Σ−1𝑘 (𝑦𝑗 − 𝜇𝑘)

}

,

and 𝒫 is a prior distribution on the parameters 𝜏𝑘, 𝜇𝑘, 𝜎𝑘 and
𝜃. The 𝑓𝑘 in (4) is the multivariate Gaussian density 𝜙 with
parameters 𝜇𝑘 as its mean and Σ𝑘 as its covariance.

The BIC [15] selects the best fitted model from a finite set
of models using maximum likelihood. It is defined [14] as:

𝐵𝐼𝐶 ≡ 2logℒ𝑚𝑎𝑥 − 𝑘log(𝑁) (6)

where ℒ𝑚𝑎𝑥 is the maximum likelihood of the estimated model,
𝑘 the number of parameters in the model and 𝑁 the number
of data patterns used in the estimation. The BIC is modified
by replacing the first term in (6), 2logℒ𝑚𝑎𝑥 by twice the log-
likelihood evaluated using MAP in (5).
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III. THE NOTTINGHAM TENOVUS BREAST CANCER

DATASET

The Nottingham Tenovus Breast Cancer (NTBC) dataset con-
tains immunohistochemical data of 1076 patients with primary
operable (stages I, II and III) invasive breast cancer between
1986 and 1998. The data is in the form of modified histochem-
ical score (H-score) based on immunohistochemical reactivity
of 25 proteins, determined using microscopical analysis. The
H-score is calculated based on a semiquantitative assessment
of both intensity of staining and percentage of positive cells at
each intensity. The intensity of staining is scored 0 to 3, which
correspond to negative, weak, moderate and strong positivity.
The H-score ranges between 0 and 300, based on the formula:

H-score = (1×% of cells with intensity 1)

+ (2×% of cells with intensity 2)

+ (3×% of cells with intensity 3) (7)

The 25 protein biomarkers (features) are the same ones listed
in [1] and illustrated on Table I. The dataset also contains
clinical data such as histologic grade, histologic tumour type,
vascular invasion, tumour size, lymph node stage, patient age
and menopausal status. Survival (in months) from the date of
primary treatment to the time of death is recorded at 3-months
intervals initially, then every 6 months, and finally, annually
for a range of 1-192 months, with a median period of 58
months. The Nottingham Prognostic Index (NPI) [16] score
is also recorded. It is calculated based on prognostic factors
according to the formula: NPI Score = (0.2 × tumour size) +
histologic grade+ lymph node stage where a poor prognosis is
indicated by a high NPI score.

In Soria’s classification [1], 663 data patterns are classified
while 413 remains not classified (n.c) , as shown in Table II.
Based on classification by Soria et al. [1], there are three main
clinical groups, Luminal, Basal and HER2. These main groups
are further divided into six subgroups where class 1, 2 and 3
belong to the Luminal group. Class 4 and 5 belong to the Basal
group and class 6 to HER2. Each class is named (in square
brackets) and their key features identified by Soria et al. [1] are
tabulated in Table III. In [7], Soria et al. proposed a quantifier-
based classification system with a reduced panel of biomarkers
to refine the previous classification in [1], classifying the entire
dataset into seven subgroups where class 6 is split into two
classes, class 6 (HER+/ER+) and class 7 (HER+/ER-).

IV. EXPERIMENTAL METHODS

First, using ssFCM methodologies, CKM and MBIC, the
dataset is clustered into six subgroups where the sixth subgroup
(HER2) is manually split into two subgroups (HER2/ER+)
and (HER2/ER-) [6]. For ssFCM, 663 labels from Soria’s
classification [1] is used as these have been shown to be
clinically-useful. In our previous study [4], we experimented
using FCM, Hierarchical Clustering (HC), K-means and MBIC
and found that the latter two produced favourable results. For
this reason, the two algorithms are used in this study.

Next, the stability of the clustering solutions based on each of
the two reduced feature sets are assessed. The stability between
clustering solutions are calculated using the Cohen’s 𝜅 Index

TABLE I

PROTEIN BIOMARKERS AND THEIR DILUTIONS.
Antibody, clone Short name Dilution
Luminal phenotype
CK 7/8 [clone CAM 5.2] CK7/8*+ 1:2
CK 18 [clone DC 10] CK18+ 1:50
CK 19 [clone BCK 108] CK19+ 1:100

Basal phenotype
CK 5/6 [clone D5/16134] CK5/6*+ 1:100
CK 14 [clone LL002] CK14 1:100
SMA [clone 1A4] Actin 1:2000
p63 ab-1 [clone4A4] p63 1:200

Hormone receptors
ER [clone 1D5] ER*+ 1:80
PgR [clone PgR 636] PgR*+ 1:100
AR [clone F39.4.1] AR+ 1:30

EGFR family members
EGFR [clone EGFR.113] EGFR* 1:10
c-erbB-2 HER2*+ 1:250
c-erbB-3 [clone RTJ1] HER3*+ 1:20
c-erbB-4 [clone HFR1] HER4*+ 6:4

Tumour suppressor genes
p53 [clone DO7] p53*+ 1:50
nBRCA1 Ab-1 [clone MS110] nBRCA1+ 1:150
Anti-FHIT [clone ZR44] FHIT+ 1:600

Cell adhesion molecules
Anti E-cad [clone HECD-1] E-cad 1:10/20
Anti P-cad [clone 56] P-cad 1:200

Mucins
NCL-Muc-1 [clone Ma695] MUC1*+ 1:300
NCL-Muc-1 core [clone Ma552] MUC1co+ 1:250
NCL muc2 [clone Ccp58] MUC2 1:250

Apocrine differentiation
Anti-GCDFP-15 GCDFP 1:30

Neuroendocrine differentiation
Chromogranin A [clone DAK-A3] Chromo 1:100
Synaptophysin [clone SY38] Synapto 1:30
* 10 features identified by Soria et al. [5]
+ 15 features identified by Lai and Garibaldi [3]

TABLE II

POPULATION OF EACH CLASS AND THE NUMBER OF NOT CLASSIFIED (N.C)

AND CLASSIFIED (C) DATA PATTERNS ACCORDING TO CLASSIFICATION BY

SORIA et al. [1]

class 1 class 2 class 3 class 4 class 5 class 6 n.c c
202 153 80 82 69 77 413 663

TABLE III

KEY BIOMARKERS FOR THE 6 CLASSES (C) [1].
c Subgroup Name Biomarkers
1 Luminal A ER+ PgR+ CK7/8+ CK18+ CK19+ HER3+ HER4+
2 Luminal N ER+ PgR+ CK7/8+ CK18+ CK19+ HER3- HER4-
3 Luminal B ER+ PgR- CK7/8+ CK18+ CK19+ HER3+ HER4+
4 Basal-p53 altered ER- p53+ CK5/6+ CK14+
5 Basal-p53 normal ER- p53- CK5/6+ CK14+
6 HER2 ER- HER2+

which is available using the command confusionMatrix
from the caret R package [17]. The ssFCM methodologies
that are explored are ssFCM, ssFCM with KKZ initialisation
proposed by Katsavounidis, Kuo and Zhang [12] (denoted as
SK) and ssFCM with KKZ and 𝛼 set to 30 (denoted as SKA).
The enhanced ssFCM methodologies SK [3] and SKA (unpub-
lished) were previously found to improve ssFCM performance.
They all use Euclidean distance. Furthermore, ssFCM clustering
solution with 25 features (ssFCM25) are also compared as
a clustering solution that maintain a high agreement with all
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Fig. 1. Biplots based on clustering 1076 patients using the 15 important features with CKM(a) and with MBIC(b).

solutions using as few features as possible is desirable.
Confusion matrices based on the highest agreement levels for

each clustering algorithm and reduced feature set are shown.
To show where the disagreement occurs with respect to indi-
vidual subgroups (classes), sensitivity and specificity measures
are used. Sensitivity measures the rate of true positives and
specificity measures the rate of true negative. The confusion
matrix, Cohen’s 𝜅 Index and sensitivity and specificity measures
are implemented using confusionMatrix from the caret
R package [17]. To ensure that the subgroups identified are
biologically useful and clinically relevant, biological (using
biplots) and clinical (using association measures) evaluation
are conducted on the clustering solutions. To measure associa-
tion between subgroups with clinical parameters, the Cramer
V coefficient is used. The p-value presented in brackets is
based on Pearson’s chi-squared test of independence. This is
implemented using the assocstats function in the vcd R
package [18].

V. RESULTS

Table IV shows the agreement levels between the various
clustering methods using the 15 features identified in [3] and
10 features in [5]. Table V shows the agreement between
the different clustering solutions using 10 and the original 25
features. The reduced feature set used is indicated with the
number of features at the end of the clustering method used.
Figure 1 shows that CKM15 and MBIC15 produced different
subgroups from those identified by Soria et al. [1] such that
the cluster labels are difficult to align for direct comparison,
particularly for MBIC15. Thus, only biplots are presented for
them. Although CKM15 has high agreement with ssFCM25, the
biplot showed that CKM15 cannot distinguish between class
4 and class 5. High agreement of above 0.87 is maintained
between ssFCM methodologies with 10 features and ssFCM25.
Agreement with ssFCM25 is higher for SKA10 than SK10
and ssFCM10. These observations indicate that more stable
subgroups can be generated using the 10 features [5] than
using 25 or 15 features. For this reason, SKA10, CKM10 and
MBIC10 are chosen for further analysis.

Furthermore, comparing Table V with Table 4 in [1], the
agreement between clustering solutions of HC (agglomerative),
ART, KM and PAM in [1] is lower (agreement range of 0.2
to 0.6) than the agreement between clustering solutions here
obtained using the reduced feature set (agreement of above 0.6).

TABLE IV

AGREEMENT LEVELS USING COHEN’S 𝜅 INDEX OF CLUSTERING

SOLUTIONS BASED ON REDUCED PANELS OF 15 AND 10 FEATURES.
6 subgroups 7 subgroups

CKM15 MBIC15 ssFCM25 CKM15 MBIC15 ssFCM25
ssFCM25 0.727 - - 0.729 - -
ssFCM15 0.730 - 0.983 0.732 - 0.983
SK15 0.728 - 0.976 0.730 - 0.976
SKA15 0.730 - 0.968 0.733 - 0.968

CKM10 MBIC10 ssFCM25 CKM10 MBIC10 ssFCM25
ssFCM25 0.650 0.625 - 0.716 0.628 -
ssFCM10 0.715 0.691 0.873 0.716 0.694 0.874
SK10 0.717 0.691 0.874 0.719 0.694 0.875
SKA10 0.699 0.674 0.881 0.701 0.676 0.882

TABLE V

COMPARING AGREEMENT (COHEN’S 𝜅 INDEX) BETWEEN CLUSTERING

SOLUTIONS USING 10 [5] AND 25 FEATURES.

6 subgroups 7 subgroups
CKM10 MBIC10 CKM10 MBIC10

SKA10 0.699 0.674 0.701 0.676
CKM10 - 0.860 - 0.861

CKM25 MBIC25 CKM25 MBIC25
ssFCM25 0.587 0.765 0.600 0.767
CKM25 - 0.590 - 0.592

This further supports that more stable subgroups are obtained
using the reduced panel of 10 features.

Comparison between ssFCM25 and SKA10 using confusion
matrices in Table VI show that there is only small disagreements
between the three main groups, and the disagreements within
the same main groups between their respective subgroups
are considered small. Based on the confusion matrices and
the sensitivity and specificity measures, it is observed that
disagreements tend to occur within clusters 1 or 3 where
there is low sensitivity (in italics) found using CKM10 and
MBIC10. Nevertheless, their average sensitivity of above 0.7
and specificity of above 0.9.

Based on Figure 2, identical subgroups (as shown on the
biplots) as those from Soria’s classification could be found using
the three clustering algorithms with 10 features. Furthermore,
their respective survival curves show clinical relevance in terms
of overall survival outcome. The separability between the six
survival curves which correspond to their biological subgroups
reflected the three main breast cancer groups and six subgroups,
similar to Soria’s classification.

Figure 3 shows the survival curves based on subgroups
3616
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(g) MBIC10
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Fig. 2. PCA biplots of Soria’s classification [1](a) and clustering 1076 patients using SKA10(c), CKM10(e) and MBIC10(g) and their respective survival curves.

identified by the clustering algorithms with HER2 group divided
into two. Survival curves based on subgroups by Soria’s clas-
sification and MBIC10 distinctively maintain both the 3 main
groups and their respective subgroups. For CKM10, survival
curves for Basal and HER 2 group is not clear while for

SKA10, the distinction between these two main groups is not
as clear as Soria’s or MBIC10’s. Table VII shows the survival
curve differences based on subgroups from SKA10 using G-rho
family of tests proposed by Harrington and Fleming [19]. The
test determines whether there is a difference between one or
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(c) CKM10
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(d) MBIC10
Fig. 3. Survival curves based on biological subgroups from Soria’s classification [1](a) and clustering 1076 patients using SKA10(b), CKM(c) and MBIC(d).

TABLE VI

CONFUSION MATRICES BETWEEN CLUSTERING SOLUTIONS FROM

SSFCM25 AND SKA10, CKM AND MBIC.

1 2 3 4 5 6 total
SKA10 ssFCM25

1 275 12 7 0 0 8 302
2 7 241 4 0 4 4 260
3 15 5 125 0 3 3 151
4 0 1 2 92 0 6 101
5 0 4 1 1 119 5 130
6 4 2 1 2 2 121 132

Total 301 265 140 95 128 147 1076
Sensitivity 0.914 0.909 0.893 0.968 0.930 0.823
Specificity 0.965 0.977 0.972 0.991 0.988 0.988

P-value 0.00

CKM10 ssFCM25
1 186 2 33 0 1 1 223
2 13 208 8 0 4 0 233
3 98 49 68 0 15 25 255
4 0 1 1 87 3 5 97
5 0 1 22 4 94 2 123
6 2 1 2 2 2 102 111

o.c 2 3 6 2 9 12 34
Total 301 265 140 95 128 147 1076

Sensitivity 0.622 0.794 0.507 0.935 0.790 0.756
Specificity 0.950 0.968 0.794 0.989 0.969 0.990

P-value 0.00

MBIC10 ssFCM25
1 172 5 24 0 1 1 203
2 5 182 7 0 5 0 199
3 119 72 98 0 17 30 336
4 0 1 3 92 2 15 113
5 0 0 4 0 100 2 106
6 5 5 4 3 3 99 119

Total 301 265 140 95 128 147 1076
Sensitivity 0.571 0.687 0.700 0.968 0.781 0.673
Specificity 0.960 0.979 0.746 0.979 0.994 0.978

P-value 0.00

more survival curves where a p-value of less than 0.05 means
that they are different. It is implemented using the survdiff

TABLE VII

DIFFERENCES IN SURVIVAL CURVES IN SKA10 USING KAPLAN-MEIER

P-VALUES.
Clusters 1 2 3 4 5 6
2 0.743
3 0.989 0.785
4 1.58E-05 6.15E-07 3.84E-04
5 6.40E-05 4.00E-06 1.25E-03 0.632
6 1.27E-08 1.80E-10 3.33E-06 0.260 0.105
7 1.01E-07 1.16E-09 2.18E-05 0.466 0.214 0.575

function from the survival R package [20]. Survival curves
differ significantly between Luminals (clusters 1-3) and the
other 2 groups, Basals (clusters 4 and 5) and HER2 (clusters 4
and 5), showing poorer prognosis in the more aggressive groups
Basals and HER2 [1]. Furthermore, the separability between
the survival curves which reflects the prognosis of biological
subgroup indicates clinical relevance, which indicates that these
subgroups are clinically useful.

As the 10 features produced stable subgroups using different
clustering algorithms and ssFCM is able to retain Soria’s
classification completely, clinical association of the subgroups
found by SKA10 is presented in Table VIII. Based on Cramer’s
V and, presented in brackets, p-values, significant association
with clinical parameters that are not involved in clustering has
been found. Note that patients with missing clinical information
(indicated by discrepancies in the total for each class) are
not included in the Cramer’s V test. The clinical association
between six identified by other clustering methods are compared
in Table IX. The subgroups identified by SKA10 have clinical
associations that are competitive with Soria’s classification and
that are higher in more clinical parameters than CKM10 and
MBIC10. Note that Soria’s classification considers only 663
patients, while subgroups from SKA10, CKM10 and MBIC10
consider all 1076 patients.
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TABLE VIII

CLINICAL ASSOCIATION OF SKA10 CLUSTERS. THE CRAMER’S V

COEFFICIENT (IN ITALICS) AND P VALUES (IN BRACKETS) ARE SHOWN.
Parameter Cramer’s V cla.1 cla.2 cla.3 cla.4 cla.5 cla.6
Age 0.13 (0.00)
≤35 12 6 5 12 8 5
35<Age≤45 150 123 92 30 47 53
45<Age≤55 50 41 20 27 35 29
>55 90 90 34 32 40 45
Total 302 260 151 101 130 132

Grade 0.42 (0.00)
1 71 70 15 0 3 1
2 129 142 37 2 13 20
3 101 48 99 99 114 111
Total 301 260 151 101 130 132

Size 0.12 (0.00)
≤1.5cm 110 109 42 19 31 29
1.5cm<Size≤2cm 31 19 21 9 24 28
2cm<Size≤2.5cm 78 71 43 28 35 37
2.5cm<Size≤3cm 52 44 25 24 27 23
<3cm 31 17 20 21 13 15
Total 302 260 151 101 130 132

Stage 0.14 (0.00)
1 190 174 75 60 94 61
2 96 67 63 28 25 53
3 16 18 13 13 11 16
Total 302 259 151 101 130 130

Death 0.26 (0.00)
No 283 244 139 81 105 99
Yes 10 13 6 16 20 31
Total 293 257 145 97 125 130

NPI 0.23 (0.00)
≤ 2.4 (EPG) 51 47 9 0 1 3
2.4<NPI≤3.4 (GPG) 74 93 21 1 8 9
3.4<NPI≤4.4 (MPG1) 78 60 38 35 44 37
4.4<NPI≤5.4 (MPG2) 62 39 46 35 55 38
<5.4(PPG) 37 21 37 30 22 45
Total 302 260 151 101 130 132

Figures 4 and 5 show the NPI distribution of the 6
and 7 subgroups based on the different clustering algorithms
respectively. Subgroups from SKA10 produced similar NPI
distributions as Soria’s classification while subgroups from
CKM10 and MBIC10 have similar NPI distributions where
their cluster 3 have a higher NPI dispersion than those from
Soria’s classification and SKA10. Furthermore, similar NPI
distributions for all seven subgroups as those in [6] were found
using CKM10 and MBIC10.

VI. DISCUSSION

Using the 10 features identified in [5], stable subgroups
have been found, which were assessed using agreement levels
between three clustering algorithms. Based on the clinical
evaluation using association between biological subgroups and
clinical parameters, survival analysis and NPI boxplot analysis,
the subgroups identified using all three clustering algorithms
to be clinically relevant with ssFCM subgroups having highest
association with grade, stage, NPI and death in comparison with
subgroups identified by CKM and MBIC.

Further comparison were made with the 7 subgroups iden-
tified by Green et al. [6], the latest development of subgroup
identification in the NTBC dataset. The HER2 group is manu-
ally split into two such that those with ER more than zero goes
into the HER2/ER+ group (class/cluster 6) and those with zero
ER expression goes into the HER2/ER- group (class/cluster 7).
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Fig. 4. Boxplots showing NPI distribution for 6 subgroups.
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Fig. 5. Boxplots showing NPI distribution for 7 subgroups.

On comparison of clinical association with subgroups by Green
et al. [6], competitive association levels were found with the
subgroups found using the ssFCM framework. NPI distributions
of subgroups based on CKM10 and MBIC10 are similar to those
of Green et al. [6]. This further ascertain the importance of the
10-feature set in identifying stable subgroups using different
clustering techniques and methodologies.

Based on the observation of increased agreement in clustering
solutions between ssFCM and CKM and more drastic increased
agreement between CKM and MBIC, this suggests that the
subgroups from different clustering algorithms stabilise with
a suitable, reduced feature set. The significant increase in
agreement between CKM and MBIC with 10 features warrants
further investigation between agreeing solutions, which may
produce clearer distinction between Basal and HER2 group for
the 7 subgroups of CKM10.
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TABLE IX

CLINICAL ASSOCIATION OF CLUSTERING BASED ON SORIA et al. [1], SKA10, CKM10 AND MBIC10 MEASURED BY CRAMER’S V AND THEIR RESPECTIVE

P-VALUES IN BRACKETS BASED ON 6 AND 7 SUBGROUPS (SG).
Soria et al.[1] SKA10 CKM10 MBIC10

Parameters 6 SG 7 SG 6 SG 7 SG 6 SG 7 SG 6 SG 7 SG
Age 0.15 (0.00) 0.16 (0.00) 0.13 (0.00) 0.13 (0.00) 0.15 (0.00) 0.16 (0.00) 0.14 (0.00) 0.14 (0.00)
Grade 0.47 (0.00) 0.47 (0.00) 0.42 (0.00) 0.42 (0.00) 0.40 (0.00) 0.40 (0.00) 0.40 (0.00) 0.40 (0.00)
Size 0.15 (0.00) 0.15 (0.00) 0.12 (0.00) 0.12 (0.00) 0.13 (0.00) 0.13 (0.00) 0.12 (0.00) 0.12 (0.00)
Stage 0.15 (0.001) 0.16 (0.001) 0.14 (0.00) 0.14 (0.00) 0.10 (0.029) 0.10 (0.036) 0.11 (0.005) 0.11 (0.011)
NPI 0.26 (0.00) 0.26 (0.00) 0.23 (0.00) 0.24 (0.00) 0.22 (0.00) 0.22 (0.00) 0.21 (0.00) 0.22 (0.00)
Death 0.30 (0.00) 0.30 (0.00) 0.26 (0.00) 0.26 (0.00) 0.24 (0.00) 0.25 (0.00) 0.23 (0.00) 0.23 (0.00)

The 15 features found using ssFCM and NB-RFE are useful
for achieving high classification accuracy when assigning new
patients to classes [2], but from this study, they may not be use-
ful for finding stable subgroups when used with unsupervised
clustering algorithms. This may be due to several reasons. The
15 features were identified based on Soria’s classification labels
of the 663 patients [1], not all 1076 patients. Perhaps, we should
derive features using ssFCM and NB-RFE [3] using Soria’s
latest classification [7]. Furthermore, Soria’s classification may
be incorrect, given only 663 out of 1076 (about 61% of 1076)
were classified. This suggests Soria’s subgroups may not be as
robust as assumed although they are shown to be biologically
meaningful. This can greatly affect the selection of the 15
features found and on the stability of subgroups, as we chose
CKM subgroups that highly agree with Soria’s subgroups [1].
Furthermore, other useful collections of protein biomarkers that
can be rationalised by other expert clinicians may exist.

The increased stability of subgroups generated by clustering
algorithms using a reduced panel of protein biomarkers opened
up two research questions, which to the best of our knowledge,
are currently not answered:

1) Can feature selection help clustering algorithms produce
more stable clusters?

2) Can the stability of clusters be an evaluation criteria for
unsupervised feature selection using clustering algorithms
to find relevant features?

VII. SUMMARY

In this study, clustering is performed using ssFCM with
experimentation on two different feature sets, 10 from [5] and
15 [3]. Using 15 features, ssFCM achieved high agreement with
ssFCM25. But, poor agreement were found using CKM15 and
MBIC15, indicating that the subgroups found were unstable.
Using the 10 features, SKA10 identified stable breast cancer
subgroups, which were assessed based on agreement measure
with solutions from CKM10 and MBIC10. Furthermore, results
from biological and clinical evaluation showed that the sub-
groups are biologically useful and clinically relevant. Therefore,
stable and clinically useful breast cancer subgroups have been
successfully identified using a single clustering method, SKA10.
The six subgroups found using 10 features were manually split
into seven to make comparison with other subgroups found
in [6]. Competitive clinical association and similar NPI distribu-
tions in the seven subgroups were found, further confirming the
importance of the 10 features in identifying stable subgroups.
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