
A Pairwise Algorithm for Training Multilayer Perceptrons with the
Normalized Risk-Averting Error Criterion

Yichuan Gui James Ting-Ho Lo Yun Peng

Abstract— Proper use of the normalized risk-averting error
(NRAE) criterion has been shown to avoid nonglobal local
minima effectively in the mean squared error (MSE) criterion.
For training on large datasets, a pairwise algorithm for the
NRAE criterion similar to the widely-used least mean square
algorithm for the MSE criterion is proposed. The gradual
deconvexification method employing this pairwise algorithm is
tested on examples with built-in nonglobal local minima that are
difficult to avoid and on recognition of handwritten numerals
with the MNIST dataset. Numerical experiments show that the
pairwise algorithm for the NRAE criterion is computationally
more economical than the corresponding batch algorithm and
delivers multilayer perceptrons with better performances than
training methods based on the MSE criterion.

I. INTRODUCTION

The mean squared error (MSE) criteria for training mul-
tilayer perceptrons (MLPs) are nonconvex with many non-
global local minima, causing the so-called local-minimum
problem. This problem has plagued the neural network
approach. Solving the problem has been a focal point of
much research work [1–9]. In recent years, methods of
convexifying and deconvexifying the MSE criterion have
been developed [10–15] and have been shown very effective
in numerous numerical experiments. The success rate of both
the NRAE-MSE [13, 14] and the gradual deconvexification
(GDC) [15] methods in all the performed training sessions
with randomly selected initial guesses of the weights is
100%. In those experiments, the training sessions were
conducted in the batch mode.

Generally, in training an MLP with backpropogation (BP)
algorithm, a training method can be performed in either
a batch or pairwise (also called ”on-line” or ”sequential”)
mode. Batch training accumulates weight changes over pre-
sentation of all training pairs before applying an update to
weights, while pairwise training updates weights immedi-
ately after presentation of each training pair. Researchers
often indicate that batch training is at least theoretically
superior to pairwise training, because batch training uses the
true gradient, or follow the true gradient more closely, to
update weights in training MLPs [5, 16]. Some researchers
also claim that batch training is as fast as or faster than
pairwise training [3, 5, 17].

Yichuan Gui and Yun Peng are with the Department of Computer Science
and Electrical Engineering of the University of Maryland, Baltimore County
(email: {yichgui1, ypeng}@umbc.edu).

James Ting-Ho Lo is with the Department of Mathematics and
Statistics of the University of Maryland, Baltimore County (email:
jameslo@umbc.edu).

This material is based upon work supported in part by the National
Science Foundation under Grant ECCS1028048, but does not necessarily
reflect the position or policy of the Government.

However, advantages of pairwise training have been no-
ticed in [6, 9, 18]. Several comprehensive summaries and
comparisons between batch and pairwise training in [19, 20]
point out that batch training is almost always slower by
orders of magnitude than pairwise training especially in
training with large datasets. Pairwise training is able to safely
use a large learning rate to achieve a reasonably good result
with a significantly fast convergence speed, but batch training
can only follow the true gradient very well along the error
surface when the learning rate is small enough to yield an
optimal outcome. As the size of the training dataset gets
larger, the magnitude of accumulated weights changed in
batch training becomes larger too. In this case, batch training
must use a small learning rate to prevent weight oscillations
across the weight space and avoid the risk of the neuron
saturation in MLPs. Accordingly, this learning manner lowers
the convergence speed of batch training. On the other hand,
pairwise training applies weight changes as soon as they
are calculated, thus it can handle different sizes of training
datasets without requiring a small learning rate. Therefore,
pairwise training is expected to improve the convergence
speed of NRAE-based training methods, thus leading these
methods to handle large datasets more efficiently.

This paper first describes a pairwise training method for
the NRAE criterion in Section II. Then, results of numerical
experiments in Section III-A are reported on approximation
of functions with fine features or under-sampled segments
to demonstrate effects of the pairwise training method with
GDC. Moreover, a handwritten numeral recognition task
using the well-known MNIST dataset is tested in Section
III-B, demonstrating the capability of the pairwise training
method with GDC in solving a real-world task on a large
dataset comparing to several reported benchmark results. At
last, conclusion and future work are discussed in Section IV.

II. PAIRWISE NRAE TRAINING METHOD

A standard problem of training a multilayer perceptron
(MLP) is the following: Given a set of input/output pairs
(xk, yk), k = 1, ...,K, that are related by

yk = f (xk) + ξk

where f is an unknown or known function and ξk are random
noises or zero, find an MLP y = f̂ (x,w) such that the
standard MSE criterion

Q(w) :=
1

K

K∑
k=1

∥∥∥yk − f̂ (xk, w)∥∥∥2 (1)

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 358

is minimized. The GDC method is facilitated by the use of
the normalized risk-averting error (NRAE) criterion [12–15]

Cλ (w) :=
1

λ
ln

[
1

K
Jλ (w)

]
(2)

where

Jλ(w) :=
K∑
k=1

exp

(
λ
∥∥∥yk − f̂ (xk, w)∥∥∥2) (3)

is called the risk-averting error (RAE) criterion [10, 11].
For notational simplicity, let

ŷk (w) := f̂ (xk, w)

εk (w) := yk − ŷk (w) .

For a vector w, let S (w) = argmaxk∈{1,...,K} ‖εk (w)‖
2

which set may contain more than one elements if a tie exists,
and M = mink {k|k ∈ S (w)} which is the smallest index
among all values in the set S (w). It follows that

‖εk (w)‖2 ≤ ‖εM (w)‖2 .

Let
ηk (w) := eλ(‖εk(w)‖2−‖εM (w)‖2)

then based on Eq. (3) and Eq. (2), we have

Cλ (w) =
1

λ
ln

[
1

K
Jλ (w)

]
=

1

λ
ln

[
1

K

K∑
k=1

e

(
λ‖yk−f̂(xk,w)‖2

)]

=
1

λ
ln

[
1

K
eλ‖εM (w)‖2

K∑
k=1

ηk (w)

]

=
1

λ
ln

1

K
+ ‖εM (w)‖2 + 1

λ
ln

[
K∑
k=1

ηk (w)

]
.

(4)

The first-order derivative of Cλ (w) can be computed as

∂Cλ (w)

∂wj
=

1

λJλ (w)

∂Jλ (w)

∂wj

=
1

λJλ (w)

[
−2λ

K∑
k=1

eλ‖εk(w)‖2εTk (w)
∂ŷk (w)

∂wj

]

=
−2λeλ‖εM (w)‖2 ∑K

k=1 ηk (w) ε
T
k (w) ∂ŷk(w)

∂wj

λeλ‖εM (w)‖2 ∑K
k=1 ηk (w)

=
−2
∑K
k=1 ηk (w) ε

T
k (w) ∂ŷk(w)

∂wj∑K
k=1 ηk (w)

(5)

In training an MLP on a pairwise mode with K in-
put/output pairs, a training epoch often contains K training
iterations where each iteration takes one training pair to
evaluate the gradient of the objective function. It is noticed
that Eq. (5) only works on a batch mode for calculat-
ing ∂Cλ(w)

∂wj
. Because the evaluations of

∑K
k=1 ηk (w) and∑K

k=1 ηk (w) ε
T
k (w) ∂ŷk(w)

∂wj
require to compute summations

with K training pairs, and Eq. (5) is unable to perform the
pairwise training through taking only one training pair to
compute ∂Cλ(w)

∂wj
in a training iteration. For a training dataset

where K is very large, the evaluation of ∂Cλ(w)
∂wj

in Eq. (5)
is not efficient on a batch mode.

Algorithm 1 Pairwise NRAE Training Method
Require: Initialize the weight vector wn randomly, choose

a desired training error ε, select λ >> 1, n← 1;
1: while Cλ(wn) > ε do
2: for k = 1 to K do
3: Evaluate ‖εk(wn)‖2 in respect to a weight vector

wn;
4: end for
5: Determine εM (wn);
6: D ← 0;
7: for k = 1 to K do
8: ηk(w

n)← eλ(‖εk(w
n)‖2−‖εM (wn)‖2);

9: D ← D + ηk(w
n);

10: end for
11: Set wn (1)← wn;
12: for k = 1 to K do

13:
∂Cλ(w

n(k))
∂wj

←
−2ηk(wn)εTk (w

n(k))
∂ŷk(wn(k))

∂wj

D ;

14: update wn(k) to wn(k + 1) by using ∂Cλ(w
n(k))

∂wj
;

15: end for
16: wn ← wn(K + 1) and n← n+ 1;
17: end while
18: return the optimal weight vector w∗;

For a weight vector wn obtained in the n-th training epoch,
a formula which applies the pairwise training to compute
∂Cλ(w

n(k))
∂wj

is described as

∂Cλ(w
n(k))

∂wj
=
−2ηk(wn(k))εTk (wn(k))

∂ŷk(w
n(k))

∂wj∑K
i=1 ηi(w

n(k))
(6)

where

ηk(w
n(k)) = e

λ
(
‖εk(wn(k))‖2−‖εM(k)(w

n)‖2
)

K∑
i=1

ηi(w
n(k)) =

K∑
i=1

e
λ
(
‖εi(wn(k))‖2−‖εM(k)(w

n)‖2
)
.

Although Eq.(6) is able to perform the pairwise training, it
costs too much computational time to evaluate ηk(w

n(k))
and

∑K
i=1 ηi(w

n(k)) especially when K is very large.
Because Eq.(6) has to decide εM(k)(w

n) for K times in
each training iteration, while it will cost K2 evaluations
on ηk(w

n(k)) and K2 evaluations on
∑K
i=1 ηi(w

n(k)) per
training epoch.

In order to reduce the expensive cost in Eq.(6), we propose
a method to estimate the true value of ∂Cλ(w

n(k))
∂wj

as

∂Cλ(w
n(k))

∂wj
=
−2ηk(wn)εTk (wn(k))

∂ŷk(w
n(k))

∂wk∑K
k=1 ηk(w

n)
(7)

359

where
ηk(w

n) = eλ(‖εk(w
n)‖2−‖εM (wn)‖2) .

It can be observed that Eq. (7) uses εM (wn) to compute
ηk(w

n), thus it does not need K evaluations to decide
εM(k)(w

n) in each training iteration like Eq. (6). Moreover,
Eq. (7) solely computes ηk(wn) K times and

∑K
k=1 ηk(w

n)
once at the beginning of each training epoch, then it es-
timates ∂Cλ(w

n(k))
∂wj

for K times without updating ηk(w
n)

and
∑K
k=1 ηk(w

n) anymore in each training epoch. There-
fore, only K evaluations on ηk(w

n) and one evaluation on∑K
k=1 ηk(w

n) are needed per training epoch in Eq. (7). A
pairwise NRAE training method using Eq. (7) is described
in Algorithm 1.

III. NUMERICAL EXPERIMENTS

Four function approximation examples designed to have
nonglobal local minima and one recognition of handwritten
numerals task using the MNIST dataset are applied to
demonstrate effects of the pairwise NRAE training method.
The GDC method in [15] is chosen to perform the NRAE
training for all numerical experiments. In all training ses-
sions, the derivatives of the MLP outputs are computed by BP
algorithm, and the MLP weights are updated by the standard
gradient descent optimization method with a momentum
term. Several general parameters in training MLPs are chosen
with the aid of suggestions in [19]: each synaptic weight
in a weight vector is randomly selected from a uniform
distribution between −2.4/Fi and 2.4/Fi, where Fi is the
number of input neurons of the connected unit; all input and
output values defined in the training data are normalized into
[−1, 1]; the activation function in each training neuron is
chosen as the hyperbolic tangent function ϕ(v) = atanh(bv),
where a = 1.7159 and b = 2/3.

A. Approximation of Functions designed with Nonglobal
Local Minima

In our experiments, we test and compare four differ-
ent training methods: Pairwise training method with GDC
(pairwise GDC training), batch training method with GDC
(batch GDC training), pairwise training method with least
mean square (LMS) error (LMS training), and batch training
method with MSE (MSE training). For each function ap-
proximation example, ten different initial weight vectors of
an MLP with a certain architecture are randomly chosen.
Starting with such an initial weight vector, one pairwise
GDC training, one batch GDC training, one LMS training,
and one MSE training are performed. These four training
sessions for the same initial weight vector are considered as a
training group. The corresponding value of MSE of the MLP
is recorded as the training error for each session after the
training is converged. To compare different training methods
in approximating functions, we collect the mean and standard
deviation of training errors among ten training groups for
each training method. In addition, we consider the time in
seconds as the training cost of each session, and we compute
the mean of training costs among ten training groups as the

average training cost for each training method. The training
time of each session is recorded after the corresponding
training is converged.

For all training sessions performed on function approxima-
tion examples, we set the learning rate and the momentum
term of the gradient descent optimization method equal to
0.01 and 0.5, respectively. For the GDC method, we set λ =
104 as the initial value, E = 1000 as the maximum training
epochs to check the deviation of cost function values, T =
10−8 as the threshold to decide when the deconvexification
is needed, and R = 0.9 as the deconvexification rate of λ.

Target functions applied in function approximation ex-
amples are presented in Fig. 1. Definitions of these target
functions with training data and MLP architectures for the
experiments are described as following:

1) Three-notch: A function with three notches is defined
by

y = f(x) =

0 if x ∈ [0, 1.0] ∪ [2.2, 2.3] ∪ [3.5, 4.5]
0.25 if x ∈ [2.8, 3.0]
0.5 if x ∈ [1.5, 1.7]
1 otherwise

(8)
where x ∈ X = [0, 4.5]. For the training data, input
values xk are selected by randomly sampling 2000 different
numbers from a uniform distribution on X , and correspond-
ing output values yk are computed by Eq. (8). Then, a
training dataset of 2000 (xk, yk) pairs is obtained. MLPs
with the 1:16:1 architecture are used in all training sessions
to approximate the three-notch function.

2) Fine Features: A smooth function with two fine fea-
tures as spikes is defined by

y = f(x) = g

(
x,

1

6
,
1

2
,
1

6

)
+ g

(
x,

1

64
,
1

4
,

1

128

)
+ g

(
x,

1

64
,
11

20
,

1

128

) (9)

where x ∈ X = [0, 1], and g is defined as

g (x, α, µ, σ) =
α√
2πσ

cos

(
(x− µ)π

σ

)
exp

(
− (x− µ)2

2σ2

)
.

(10)
For the training data, input values xk are selected by ran-
domly sampling 2000 different numbers from a uniform
distribution on X , and corresponding output values yk are
computed by Eq. (9). Then, a training dataset of 2000
(xk, yk) pairs is obtained. MLPs with the 1:15:1 architecture
are used in all training sessions to approximate the fine
features function.

3) Under-sampled Segments: A smooth function with two
under-sampled segments is defined by

y = f(x) = g

(
x,

1

5
,
1

4
,
1

12

)
+ g

(
x,

1

5
,
3

4
,
1

12

)
+ g

(
x,

1

64
,
5

4
,
1

12

) (11)

where x ∈ X = [0, 1.5] and g is defined in Eq. (10). For
the training data, input values xk are collected by using 50

360

0 4.5
−0.5

1.5

X

Y

(a) Three-notch

0 1
−0.6

1.2

X

Y

(b) Fine Features

0 1.5
−0.8

1.2

X

Y

(c) Under-sampled Segments

0

6

0

6

0

1

X

Y

Z

(d) Under-sampled Square

Fig. 1. Target functions for function approximation examples in Section III-A. Numbers on horizontal and vertical axes in each subfigure represent the
input and output of the function, respectively. From Fig. 1(a) to Fig. 1(c), red dots denote to the target training data. In Fig. 1(d), different colors (blue
and red) are used to distinguish different output values (0 and 1) of the target function on vertical axis.

grid points from a uniform grid on [0, 0.5], 50 grid points
from a uniform grid on [1.0, 1.5], and 2000 grid points from
a uniform grid on (0.5, 1.0). Corresponding output values
yk are computed by Eq. (11). These form a training dataset
of 2100 (xk, yk) input/output pairs. MLPs with the 1:12:1
architecture are used in all training sessions to approximate
the under-sampled segments function.

4) Under-sampled Square: A three-dimensional function,
which has a letter ‘L’ shape and an under-sampled square
raised from a plane, is defined on [0, 6]× [0, 6] by

z = f(x, y) =

1 if x ∈ [1.0, 5.5] and y ∈ [1.0, 2.0]
1 if x ∈ [1.0, 2.0] and y ∈ [2.0, 5.5]
1 if x ∈ [3.0, 5.5] and y ∈ [3.0, 5.5]
0 otherwise

(12)
In the training data, input values xk and yk are the 289 grid
points from the uniform grid on (2.5, 6]× (2.5, 6] and 2522
grid points from the uniform grid on [0, 6]×[0, 6]−(2.5, 6]×
(2.5, 6]. Corresponding output values zk are computed by
Eq. (12). These form a training dataset of 2811 (xk, yk) pairs.
MLPs with the 2:9:3:1 architecture are used in all training
sessions to approximate the under-sampled square function.

Fig. 2 shows means and standard deviations of training
errors achieved by four tested training methods in function
approximation examples. The result demonstrates that both
the pairwise and batch GDC training methods consistently
achieve lower average training errors and standard deviations
than the LMS and MSE training methods. Therefore, it con-

firms that the GDC method has the ability to avoid nonglobal
local minima, thus producing better training results than the
LMS and MSE method in training MLPs. Furthermore, the
pairwise GDC training method reaches the same level of
average training errors as the batch GDC training, implying
that the pairwise GDC training method is capable to be
applied to train MLPs in solving practical tasks such as the
function approximation.

In Fig. 3, it presents average training costs of four tested
training methods in function approximation examples. The
pairwise GDC training reduces nearly 42%, 56%, 16%,
and 11% average training costs comparing to the batch
GDC training in approximating the three-notch, fine features,
under-sampled segments, and under-sampled square func-
tions, respectively. In addition, it can be observed in Fig. 3
that the LMS and MSE training take less computational time
than the pairwise and batch GDC training, respectively. The
reason is that the formulas of the objective functions and
gradients of the LMS and MSE criteria are simpler than the
NRAE criterion to be evaluated. However, comparing to the
GDC training, even the LMS and MSE training are fast,
training errors achieved by both of them never outperform the
results obtained by the GDC method in all training sessions
of our experiments.

B. Handwritten Numeral Recognition using the MNIST
Dataset

To test the capability of the pairwise training method
with GDC in training a large MLP on a large real-world

361

Pairwise GDC Batch GDC LMS MSE

10
−4

10
−3

10
−2

10
−1

10
0

Mean SD

(a) Three-notch

Pairwise GDC Batch GDC LMS MSE

10
−4

10
−3

10
−2

10
−1

10
0

Mean SD

(b) Fine Features

Pairwise GDC Batch GDC LMS MSE

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Mean SD

(c) Under-sampled Segments

Pairwise GDC Batch GDC LMS MSE

10
−4

10
−3

10
−2

10
−1

10
0

Mean SD

(d) Under-sampled Square

Fig. 2. Means and standard deviations of training errors for function approximation examples in Section III-A. Blue bars surrounding by solid lines and
red bars surrounding by dash lines in each subfigure denote to the means and standard deviations of training errors collected among ten different training
sessions, respectively. The corresponding value of MSE of the MLP is collected as the training error for each session after the training is converged. Vertical
axes in each subfigure apply the logarithmic scale with the base 10.

362

Three−notch Fine Features Under−sampled Segments Under−sampled Square
0

1

2

3

4

5

6

7

8

9

10
x 10

4

A
v

e
r
a
g

e
 T

r
a

in
in

g
 C

o
s
t

(s
e

c
o

n
d

s
)

Pairwise GDC Batch GDC LMS MSE

Fig. 3. Average training costs for function approximation examples in Section III-A. Blue bars and red bars denote to the pairwise/batch GDC training
and the LMS/MSE training, respectively. Bars surrounding by solid lines represent pairwise training methods, and bars surrounding by dash lines represent
batch training methods. Numbers on the vertical axis shows the average training costs in seconds for tested training methods.

task, it is used to train an MLP for recognizing handwritten
numerals on the MNIST dataset [21]. The MNIST dataset
is commonly used as a benchmark to compare performances
of different classifiers including many neural networks. The
MNIST dataset contains 60,000 training samples and 10,000
test samples of handwritten numerals. Each sample has 784
features which are obtained from a 28× 28 black and white
image. Each feature value is the anti-aliasing normalized gray
level of the corresponding pixel in an image.

In our experiments, we test the MNIST dataset on a 2-
layer MLP with the architecture of 784:300:10, where each
of the ten output nodes is associated with one of the ten
numerals, 1, 2, ..., 9, and 0. For the training of the MLP,
the target value of an output node is 1 if the input is the
numeral associated with the node, and is −1 otherwise. After
the MLP is trained, the numeral associated with the output
node of the MLP outputting the highest value among the
ten output nodes is selected as the result of classifying the
input image. The classification accuracy of the trained MLP
is defined as the percentage of test images that are correctly
classified in the test dataset, and the test error rate is defined
as 100% minus the classification accuracy of the trained
MLP. Five different initial weight vectors are used to perform
five training sessions. In each training session, 60000 training
samples are used to train the MLP. After the corresponding
training is converged, 10000 testing samples are used to test
the trained MLP, and the test error rate is computed for each
testing session as well.

For all training sessions performed on the MNIST dataset,
we set the learning rate and the momentum term of the
gradient descent optimization method equal to 0.0001 and

0.5, respectively. For the GDC method, we set λ = 104 as
the initial value, E = 10 as the maximum training epochs
to check the deviation of cost function values, T = 10−5 as
the threshold to decide when the deconvexification is needed,
and R = 0.9 as the deconvexification rate of λ.

Table I presents test error rates of the MNIST dataset
obtained by different MLP classifiers. For the pairwise GDC
training, the mean and standard deviation of the test error
rates among five testing sessions are shown in the table. Four
major advantages of the pairwise GDC method in training an
MLP classifier are described in following:

1) Experimental results in Table I show that the MLP
classifier trained by the pairwise GDC method has
the lowest test error rate than many benchmark MLP
classifiers. Based on our experiments, the MLP classi-
fiers trained by the pairwise GDC method consistently
achieve low test error rates on all five testing sessions
with the same settings of MLPs. It indicates that
the pairwise GDC training method has the ability to
provide satisfactory generalization results with differ-
ent initial weight vectors, thus requiring no multiple
selections of initial weight vectors for the training.

2) For three benchmark MLP classifiers listed in Table
I, one classifier uses 1000 hidden nodes on a 2-
layer MLP, and other two classifiers are built by
3-layer MLPs where each classifier has more than
300 hidden nodes in its hidden layers. However, the
MLP classifier trained by the pairwise GDC method
solely uses 300 hidden nodes on a 2-layer MLP. It
demonstrates that the pairwise GDC method has the
ability to avoid nonglobal local minima and maintain

363

TABLE I
TEST ERROR RATES OF THE MNIST DATASET FOR MLP CLASSIFIERS1

CLASSIFIER TEST ERROR RATE (%)

Pairwise Linear classifier (1-layer MLP) with image deskewing 7.6

2-layer MLP 784:300:10, MSE 4.7

2-layer MLP 784:300:10, Pairwise GDC 2.7± 0.03

2-layer MLP 784:1000:10, MSE 4.5

2-layer MLP 784:300:10, MSE with image distortions 3.6

2-layer MLP 784:1000:10, MSE with image distortions 3.8

3-layer MLP 784:300:100:10, MSE 3.05

3-layer MLP 784:500:150:10, MSE 2.95

a high level of generalization without applying a large
MLP architecture comparing to the listed benchmark
MLP classifiers.

3) It is noticed that there are two benchmark MLP clas-
sifiers listed in Table I perform training sessions by
applying image distortions to increase the sizes of the
training samples. The technique of image distortions
improves test error rates of the two benchmark MLP
classifiers, but the results obtained by those MLP
classifiers are still worse than the test error rate of the
MLP classifier trained by the pairwise GDC method
without image distortions. It indicates that the MLP
classifier is able to be trained effectively by the pair-
wise GDC method in achieving low test error rate. In
fact, through applying image distortions, the pairwise
GDC method is expected to lead the MLP classifier
to achieve a lower test error rate than the result of
the MLP classifier trained without the aiding of image
distortions.

4) A batch GDC training applying the same experimental
settings as the pairwise GDC training is also tested
on the MNIST dataset. Since the batch GDC training
converges very slow comparing to the pairwise GDC
training, there is no converged batch GDC training
session has been obtained in our experiments, thus no
tested result is included in Table I. The lowest test error
rate achieved by the batch GDC training is nearly 10%,
which costs almost 15,000 training epochs. However,
in all pairwise GDC training sessions, the total number
of training epochs for each session is less than 1,000.
It presents a significant advantage of the pairwise GDC
training comparing to the batch GDC training in saving
computational costs on a large training dataset.

1The row highlighted by bold fonts is the result of the MLP clas-
sifier trained by the pairwise GDC method. The test error rate of this
classifier is presented as the mean and standard deviation computed
among five testing sessions. Other results without highlighted are bench-
mark test error rates trained by different kinds of MLP classifiers. More
classifiers and benchmark results are available at the MNIST website:
http://yann.lecun.com/exdb/mnist/index.html.

IV. CONCLUSION

A pairwise training method to execute gradual deconvex-
ification (GDC) is proposed and tested on both function
approximation and handwritten numeral recognition. Numer-
ical experiments demonstrate that the pairwise GDC method
achieves an accuracy level similar to that of the batch GDC
training, but requires much less computation especially in
training a large dataset. It is appropriate to note that the
pairwise training method with GDC is able to train an MLP
classifier on the MNIST dataset and achieve a better test
error rate than those in many benchmark results. Future work
will be done on improving the pairwise training method to
speedup GDC and enhancing the generalization capability
for challenging image recognition tasks, such as CIFAR-10
/ CIFAR-100 and ImageNet datasets.

REFERENCES

[1] E. Aarts and J. Korst, The Neuron. Oxford University Press, 1989.
[2] J. M. Zurada, Introduction to Artificial Neural Networks. St. Paul,

MN: West Publishing Company, 1992.
[3] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Cam-

bridge, Massachusetts: MIT Press, 1995.
[4] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, third edition. New York: Springer, 1999.
[5] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive

Systems: Fundamentals through Simulations. New York: John Wiley
and Sons, Inc., 2000.

[6] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY: Springer, 2006.

[7] K.-L. Du and M. Swamy, Neural Networks in a Softcomputing
Framework. New York, NY: Springer, 2006.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 3rd ed. New
York, NY: Cambridge University Press, 2007.

[9] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper
Saddle River, New Jersey: Prentice Hall, 2008.

[10] J. T.-H. Lo and D. Bassu, “An adaptive method of training multilayer
perceptrons,” in Proceedings of the 2001 International Joint Confer-
ence on Neural Networks, vol. 3, Jul. 2001, pp. 2013–2018.

[11] J. T.-H. Lo, “Convexification for data fitting,” Journal of Global
Optimization, vol. 46, no. 2, pp. 307–315, Feb. 2010.

[12] J. T.-H. Lo, Y. Gui, and Y. Peng, “Overcoming the local-minimum
problem in training multilayer perceptrons with the NRAE training
method,” in Advances in Neural Networks - ISNN 2012, vol. Part I,
Jul. 2012, pp. 440–447.

[13] J. T.-H. Lo, Y. Gui, and Y. Peng, “Overcoming the local-minimum
problem in training multilayer perceptrons with the NRAE-MSE
training method,” in Advances in Neural Networks - ISNN 2013, vol.
Part I, Jul. 2013, pp. 83–90.

364

[14] J. T.-H. Lo, Y. Gui, and Y. Peng, “The normalized risk-averting
error criterion for avoiding nonglobal local minima in training neural
networks,” to appear in Neurocomputing, 2014.

[15] J. T.-H. Lo, Y. Gui, and Y. Peng, “Overcoming the local-minimum
problem in training multilayer perceptrons by gradual deconvexifica-
tion,” in Proceedings of the 2013 International Joint Conference on
Neural Networks, Aug. 2013, pp. 635–640.

[16] L. Fausett, Fundamentals of Neural Networks. Englewood Cliffs,
New Jersey: Prentice Hall, 1994.

[17] H. Demuth and M. Beale, Neural Network Toolbox User’s Guide.
Natick, MA: MathWorks, Inc., 1994.

[18] Y. Bengio, Neural Networks for Speech and Sequence Recognition.
New York, NY: International Thomson Computer Press, 1996.

[19] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller, “Efficient backprop,”
Lecture Notes in Computer Science in Neural Networks: Tricks of the
Trade, vol. 1524, pp. 9–50, 1998.

[20] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch
training for gradient descent learning,” Neural Networks, vol. 16,
no. 10, pp. 1429–1451, Dec 2003.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

365

