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Abstract— In this paper we propose a method for learning
the materials in a scene in an unsupervised manner making
use of imaging spectroscopy data. Here, we view the input
image spectra as a data point on a manifold which corresponds
to a node in a graph whose vertices correspond to a set
of parameters that should be inferred using the Expectation
Maximisation (EM) algorithm. In this manner, we can pose the
problem as a statistical unsupervised learning one where the aim
of computation becomes the recovery of the set of parameters
that allow for the image spectra to be projected onto a set
of graph vertices defined a priori. Moreover, as a result of
this treatment, the scene material prototypes can be recovered
making use of a clustering algorithm applied to the parameter-
set. This setting also allows, in a straightforward manner, for
the visualisation of the spectra. We discuss the links between
our method and self-organizing maps and illustrate the utility
of the method as compared to other alternatives elsewhere in
the literature.

I. INTRODUCTION

Imaging spectroscopy relies on associating each pixel in
the image with a spectrum representing the intensity at each
wavelength. As a result, imaging spectroscopy provides an
information-rich representation of the scene which combines
spatial and compositional information which can be used for
a wide variety of applications spanning from remote sensing
to food security and health [20].

For spectral image classification, each pixel spectra can be
viewed as an input vector in a high dimensional space. This
treatment opens up the possibility of representing a scene in
terms of a number of spectral prototypes which correspond
to naturally occurring materials such as wood, paint, etc.
These materials have to be extracted from the scene and
are, in general, unknown a priori. Moreover, these material
prototypes should be consistent across pixels sharing similar
spectra. We illustrate this in Figure 1 where we show, in
the left-hand panel, a pseudocolour image taken from the
CAVE dataset1. The image depicts two faces, one is a printout
and the other is an actual human subject. In the right-hand
panel we show the corresponding material map where each of
the corresponding prototypes corresponds to a different hue.
Note that the two faces are well separated in hue, one being
magenta and the other one red. In the figure, the backgrounds
have also been separated, i.e. the printout background from
the cloth in the scene background.

1The data set can be accessed at http://www.cs.columbia.edu/
CAVE/databases/multispectral/

Fig. 1: Left-hand panel: Pseudocolour image depicting a print-
out of a face and a human subject; Right-hand panel: Material
map showing different hues for the spectral prototypes in the
scene.

From the figure, we can also appreciate that automatic
scene material extraction is often complicated due to the
confounding factors introduced by illumination and the
complex nature of real-world settings. Despite being a
challenging task, the automatic recovery of these prototypes
allows for avoiding cumbersome labelling of the scene spectral
signatures, which, at the moment, is mainly effected through
expert intervention [17]. The problem is somewhat related
to the recognition of spectral signatures, where algorithms
from statistical pattern recognition and machine learning have
been adopted to perform pixel-level spectral feature extraction
and classification [16]. These methods either directly use the
complete spectra, or often make use of preprocessing and
dimensionality reduction steps at input and attempt to recover
statistically optimal solutions. Linear dimensionality reduction
methods are based on the linear projection of the input
data to a lower dimensional feature space. Typical methods
include Principal Component Analysis (PCA) [12], Linear
Discriminant Analysis (LDA) [6], and Projection Pursuit
[11]. Almost all linear feature extraction methods can be
kernelised, resulting in Kernel PCA [21], Kernel LDA [19]
and Kernel Projection Pursuit [4]. These methods exploit
nonlinear relations between different segments in the spectra
by mapping the input data onto a high dimensional space
through different kernel functions [21].

Note that the algorithms above aim at solving the classifica-
tion problem at the pixel level rather than treating the problem
as a blind source labelling task which can be viewed as an
unsupervised learning problem. Such a problem can be tackled
in a number of ways. Here we note that generative models
have been proposed as probabilistic generalizations of ad-hoc
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learning methods mostly for unsupervised learning scenarios
[2]. One particular example is the Generative Topographic
Mapping [2], which can be seen as a generalization of
Kohonen’s self-organizing maps (SOMs) [15].

Moreover, neural networks and, more recently, deep belief
networks (DBNs) have proved popular as methods for learning
latent representations with the goal of tackling difficult
problems in AI [8], [1]. Here, we explore the use of a
generative model to produce a set of parameter vectors that
can be used to describe a graph whose vertices correspond
to a mapping of the spectra onto a feature space. We
adopt a probabilistic treatment of the problem where these
parameters can be inferred from the image data using the
EM algorithm [3]. The use of these parameter vectors has
two main advantages. Firstly, it allows for the visualisation of
the image spectra in a straightforward manner. Secondly, the
material prototypes can be easily recovered using clustering
methods, such as mean shift [7]. Moreover, by using a graph
theoretic setting, the inference process is a structured one
which explicitly includes topological information, preserving
similarity relations between input spectra.

II. PROBLEM SETTING

As mentioned above, here we cast the problem in hand
into a graph-theoretic setting. Let GM = (Y,EM ) be a graph
where the node set Y comprises of the samples in the input, i.e.
the image spectra, yi ∈ Rm. EM represents the connectivity
between the spectral values. Determining EM directly is a
hard problem. Instead we employ a second graph GQ =
(X,EQ) as illustrated in Figure 2. While GM is based on the
image data, GQ is constructed to help us derive the topology
of the manifold on which the input spectral data lies. The
vertex-sets for both graphs are linked as follows

xj =
∑
yk∈Y

I(xj ∼ yk)Γ(yk) (1)

where Y is the vertex set of GM , Γ(·) is a mapping function
such that Γ : <m 7→ <q and I(xj ∼ yk) is an indicator
function which is unity if xj is adjacent to yk and zero
otherwise. In the figure, we show these two graphs, each of
which is realised in disjoint manifolds, i.e. M ∈ <m and
Q ∈ <q. This formalism is important since, as we will see
later, we can use the metrics on these manifolds to define the
affinities between vertices in each graph.

We now view the graph GQ as a Gibbs Field. This treatment
is important since, by viewing the vertices of the graph as
random variables, the joint probability in a Gibbs Field can
be written as the product of clique potentials, i.e. any fully
connected subset of the the graph. Consider the clique Cxi
centred at the vertex xi. We can now write the conditional
probability of the vertex under consideration as a weighted
product of the pairwise potentials as follows

P (xi | Cxi) =
1

ZQ

∏
xj∈Cxi

fQ(xj , xi) (2)

where ZQ is the partition function and fQ(xj , xi) is the
potential function between the vertices xj and xi.

Fig. 2: Left-hand panel: Conceptual illustration of the relation-
ship between the graphs and manifolds using in our problem
setting; Right-hand panel: Introduction of the parameter
vectors.

Note that the potential function fQ(xj , xi) can be effec-
tively viewed as the edge-weight between the vertex pair xj-
xi. This will provide, later on in the paper, a means to perform
a maximum-likelihood estimation (MLE) on the vertex-set
Y ∈ GM based upon the vertices X ∈ GQ. Moreover, we
can constraint this process using the metrics on the manifolds
M and Q. Recall that, in Equation 1 we expressed the vertex
xj as a sum over the product I(xj ∼ yk)Γ(yk). If the actual
correspondences xj ∼ yk are not in hand, we can employ
the prior ηi so as to relax Equation 1 and write

xj =
∑
yk∈Y

ηjK(yk, ξj) (3)

where K(·) is a kernel function with parameter set ξj . In
the left-hand panel of Figure 2, we provide an intuitive
interpretation to this relaxation process. Note that ξj is now,
in practice, a kernel variable on the manifold M which has a
correspondence relationship to the vertex xj . This treatment
leads to a setting such as that shown in the right-hand panel
of Figure 2, where the vertices in GQ correspond to each of
the parameter vectors ξj , which, in turn, are supported by the
vertex set Y .

By substituting Equation 3 into Equation 2, we get

P (xi | Cxi , Y ) =
1

ZQ

∏
xj∈Cxi

fQ

( ∑
yk∈Y

K(yk, ξj), xi

)
(4)

The equation above is telling since it implies that, by using
the cliques in GQ, the vertex sets X and Y , a maximum
likelihood estimate of the parameter ξj can be obtained based
upon our choice of kernel and potential functions.

III. PARAMETER LEARNING

Moreover, note that the potential function fQ(·) are defined
in the probability space corresponding to X , i.e. the graph
GQ, whereas the kernel function K(·) and the parameter
vector ξj are supported by the graph GM . This opens-up the
possibility to recover the parameter vector-set making use
of maximum likelihood estimation. This is important since,
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once these are in hand, the vertices of the graph GM can be
mapped onto the manifold Q based upon the topology of the
graph GM .

To take our analysis further, we note that, since the vertex-
set for the graph GQ is a Gibbs Field, it should follow a
Gibbs distribution. Hence, we employ the potential function

fQ(xj , xi) =
∑
yk∈Y

αi,j exp

{
− 1

T
dM (yk, ξj)

2

}
(5)

where dM (·)2 is the squared geodesic distance on the
Manifold M , αi,j are pairwise mixture weights, and the
temperature T controls the sharpness of the distribution. With
the equation above, we can write the likelihood as follows

P (xi | Cxi , Y ) =
1

ZQ

∏
xj∈Cxi

∑
yk∈Y

αi,j exp

{
− 1

T
dM (yk, ξj)

2

}
(6)

From inspection, it is clear that we can view the MLE task
at hand as that corresponding to a mixture model which can
be tackled using the EM algorithm [3]. The idea underpinning
the EM algorithm is to recover maximum likelihood solutions
to problems involving missing or hidden data. To do this,
we view the parameter vectors ξj as a set of variables to
be estimated and the mixture weights αi,j as the posterior
probabilities that the vertex xi belongs to the jth component
of the mixture.

Since the EM algorithm is an iterative one, we commence
by indexing the expected log-likelihood to iteration number
t. In the M-step, we aim at maximising the expected log-
likelihood with respect to the parameter variables. This yields

ξt+1
j =

∑
yk∈Y
xi∈Cj

αti,j exp

{
− 1

T dM (yk, ξ
t
j)

2

}
yk

∑
yk∈Y
xi∈Cj

αti,j exp

{
− 1

T dM (yk, ξtj)
2

} (7)

In the E-step, the posterior probabilities are estimated. For
the likelihood in Equation 6, this yields

αt+1
i,j =

τi
∑

yk∈Y
xj∈Ci

αti,j exp

{
− 1

T dM (yk, ξ
t
j)

2

}
∑
xl∈X τl

∑
yk∈Y
xj∈Ci

αti,j exp

{
− 1

T dM (yk, ξtj)
2

}
(8)

where τi can be viewed as the posterior for each of the cliques
in the graph. This is given by

τi =

∑
xk∈Ci α

t
k,i∑

xl∈X
xk∈Ci

αtl,k
(9)

IV. DISCUSSION

Note that, so far, we have arrived to Equations 7-9 making
use of an unsupervised learning approach such that the
topology of the graph GQ constrains the inference process
through its clique-set, whereas the parameter vectors ξi govern
the kernel function K(·).

A. Energy Functions

It is worth noting in passing that the use of the potential
function in Equation 5 corresponds to a Gibbs measure. This
accounts for a Boltzmann distribution [14] whose energy is
the squared geodesic distance dM (·)2. This can be easily seen
by writing

fQ(xj , xi) = αi,j
∑
yk∈Y

exp

{
− 1

T
Eξj (yk)

}
(10)

where Eξj (yk) = dM (yk, ξj)
2 is the energy of yk with respect

to the parameter vector ξj and αi,j is a function of the
vertex-pair xi-xj . Note that, for instance, in Equation 5, its
straightforward to set αi,j = ηiηj so as to write fQ(xj , xi) =
ηiηjK(yk, ξj) such that

K(yk, ξj) =
∑
yk∈Y

exp

{
− 1

T
dM (yk, ξj)

2

}
(11)

This treatment is consistent with that commonly given to
priors in Bayesian inference on multivariate mixtures [18]
and opens up the possibility of using other kernels such as
box functions or robust estimators [9].

B. Relation to Self-organizing Maps

Note that other energy functions may be used without any
loss of generality. Moreover, in practice, there is often the
case whereby the alpha weights do not need to be estimated
but rather can be computed from the vertex-set X . In such
cases, the inference process presented earlier is reminiscent
of a self-organizing map (SOM) [15]. Consider a sampling
process in M and set

αi,j = I(xj ∼ ρ)h

(
1

T
dQ(xi, xj)

2

)
(12)

where h(·) is a real-valued positive function, dQ(xi, xj) is
the geodesic distance on Q between the vertices xi and xj ,
T is, as before, the temperature of the system and I(xj ∼ ρ)
is an indicator function which is unity for the vertex xj
corresponding to the parameter variable ξj whose distance
to the sample yk is minimum, i.e. the best matching unit ρ,
and zero otherwise.

Moreover, consider the case where the energy function
Eξj (yk) is constant. With these ingredients, the sampling
process is then such that the update strategy in Equation 8
will draw the parameter vector ξt+1

j towards the vector ξtρ
corresponding to the vertex ρ in GQ which is closest to the
input sample yk, i.e. the neighbours of the best matching unit
ρ. The resulting scheme is also consistent to the notion that,
as the system “cools down”, the influence of the geodesic
distance upon the update decreases.

To illustrate this behaviour, in Figure 3 we show the 2-
dimensional responses, visualised using a red-green colour
space, when only the best matching unit is used for the
inference process and the distance on Q in Equation 12
is given by dQ(xi, xj)

2 = (xi − xj)2 (SOM-Euclidean) or
dQ(xi, xj)

2 ≡ a, where a is a constant (SOM-Constant).
This, from the structural point of view, can also be viewed
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Input

(a) Pseudocolor

(b) PCA

SOM-Euclidean

(c) Parameter map

(d) Visualisation

SOM-Constant

(e) Parameter map

(f) Visualisation

Our method

(g) Parameter map

(h) Visualisation

Fig. 3: Left-hand panels: (a) Input image in pseudocolour. (b) Input visualised using the first three principal components of
the spectra. Right-hand panels: (c), (e), (g) Organisation of the ξj parameters after 1/4, 1/2, 3/4 of iterations and the final result
for three alternatives. (d), (f), (h) Visualisation of the image using the ξj variables as pixel values.

as the case where the edge-weights over each of the cliques
in the graph GQ are given by an exponential function or a
constant, respectively. In the figure, we have used uniformly
distributed vertices, i.e. units, and, for the clique size | Cxi |,
we have linearly decreased the number of nearest neighbours
on each dimension of the red-green lattice. We have done
this for the sake of simplicity and so as to provide a direct
analogy to a 2-dimensional SOM.

In Fig. 3, we also show the input in pseudo-colour as
computed using the colour matching functions of Stiles and
Burch [22] (Fig. 3a), the visualisation delivered by the three
principal components (PCA, Fig. 3b) of the spectra when these
are used as pixel colour values and the mapping delivered by
our method (Fig. 3h) when αi,j = 1

T exp
{
− 1

T (xi − xj)2
}

,
i.e. dQ(xi, xj)

2 = (xi − xj)2 in Equation 12.

C. Visualisation

For all the methods in Fig. 3 we have used a linear cooling
schedule, i.e. the temperature T decreases at regular intervals
throughout the update process. In the figure we also show the
states of the graph on Q as it converges over 50 000 iterations
(Fig. 3c,e,g), corresponding to 20 % of the image data being
sampled. In each of the panels, the top-left map corresponds
to iteration t = 12 500, top-right to t = 25 000, bottom-left to
t = 37 500 and bottom-right to the final, i.e. 50 000th, update.
In these panels, the graph nodes are distributed in a lattice
and, for visualisation purposes, we have encoded the colour

using the parameter vector ξj as follows

u =
∑
yk∈Y
xj∈Cρ

I(xj ∼ yk) exp

{
− 1

T
dQ(xj , ρ)2

}

exp

{
− 1

T
(yk − ξρ)2

} (13)

where we have written ξρ and Cρ to imply that the parameter
variable and clique under consideration correspond to the
best matching unit ρ. Note that u is essentially the potential
function fQ(·) presented earlier when Equations 11 and 12
are combined and the corresponding distance and indicator
functions are applied accordingly.

Note that, for the methods in Figure 3, i.e. SOM-Euclidean,
SOM-Constant and ours, the final parameter vectors ξj are
organised in a similar manner. This is somewhat expected due
to the similarities between the distance functions used in the
three methods under consideration. This hints to the use of a
SOM-like training process to recover the variables ξj and the
use of the clique information for the evaluation of the potential
functions for testing once the parameter vectors are in hand.
This, in effect, delivers a means for a computationally efficient
training stage while delivering the advantages of using clique
information for the testing of the spectra.

This is more evident by visualising a natural scene from
the imagery described in [5] using the ξj vectors as pixel
values. In Figure 4, we have recovered the vectors ξj using the
SOM-Constant alternative presented above. In the top row of
the figure, from left-to-right, we show the input image and the
visualisation induced by the use of the clique contributions by
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(a) Input in pseudocolour (b) Visualisation using only the best matching unit (c) Visualisation recovered using clique information

Fig. 4: Left-hand column: Pseudocolour and detail, also in pseudocolour, of a natural scene from the imagery described in
[5]; Right-hand columns: Visualisation of the input image and its detail using the ξj variables as pixel values for both, the
case when only the best matching unit and clique information are used.

our method as compared with that of the best matching unit
alone. In the bottom row, we show the detail, corresponding
to the red square on the input image, for the visualisation in
the top row. From the figure, it becomes evident that the use
of the contribution of the vertices in the clique Cρ in Equation
13 in our method better preserves detail while still delivering
a sharp differentiation between materials in the scene.

V. EXPERIMENTS

We now test our method’s capabilities on unsupervised
material learning making use of publicly available data sets.
Here, we use the images acquired by Foster et al. [5],
which contain natural scenes. The data set is well suited
for benchmarking as it contains natural scenes with a high
spatial resolution. It was acquired using a multispectral sensor
equipped with a tunable liquid-crystal filter and contain 33
bands in the range of 400nm to 720nm with an effective
spatial resolution of approximately 1020 x 1340 pixels.

We have also used the CAVE dataset and the D.C. Mall
remote sensing image2. This provides a good mix of remote
sensing, lab-acquired and real-world imagery for our evalua-
tions with images of different spectral and spatial resolutions.
This is as the CAVE imagery comprises 31 bands in the
visible range at 10nm intervals whereas the D.C. Mall image
depicts 191 bands in the spectral range of 400nm−2475nm.
In all our experiments, and as the sole preprocessing step,
we normalise the spectral vectors (image pixels) to unit L2

norm in accordance with [10]. Also, here, we compare our

2The image can be accessed at https://engineering.purdue.
edu/˜biehl/MultiSpec/hyperspectral.html

method with that of Huynh and Robles-Kelly [10], hereby
denoted as HRK. This method also employs deterministic
annealing to recover material association probabilities and is
generative in nature.

A. Implementation details

In our implementation, for the sake of efficiency, we
train using a SOM-like scheme. Our graph GQ is a three-
dimensional lattice with an initial clique size of 103, i.e.
10 neighbours per dimension. We randomly sample 100 000
image spectra and use a linear cooling schedule. Likewise,
the clique size decreases linearly in each dimension as the
iteration number increases. This is in accordance to regular
SOM training, with a linear decay in both learning rate and
neighborhood radius [15].

Based on the learned parameter vectors, we can then infer
material prototypes as well as a global segmentation of the
image according to material associations. To do this, we first
perform clustering on the vectors ξj using a mode-seeking
algorithm. Each image spectrum can then be associated to a
cluster given the mapping described in Eq. 1. Furthermore, the
modes obtained during clustering can be seen as the material
prototypes of the scene. Here, we employ an efficient variant
of mean shift, i.e. Fast Adaptive Mean Shift (FAMS) [7].
Our choice hinges in the fact that FAMS is well suited
for a high dimensional feature space by using adaptive
bandwidths and a fast nearest-neighbor approximation during
its kernel density estimation. As our feature space only
contains of 103 = 1000 vectors, we can abstain from the
nearest neighbour approximation. The bandwidth for each data
point ξj is chosen so that k = 0.6

√
|X| nearest neighbours
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(a) Input in pseudocolour (b) HRK [10] (c) Our method

Fig. 5: Material segmentation results on the Cbrufefields, Cyflower, and Ribeira scenes in [5].

lie within its bounds, as suggested by [13]. Additionally, we
weight the bandwidth of each ξj by the number of image
spectra yk that are associated with it. The rationale behind
this is that, in this manner, an accurate approximation of the
original spectral distribution can be easily obtained.

For the alternative, we have used the code provided by
the authors and, due to memory constraints, performed a 1:2
subsampling of the images (a 4-fold reduction of image size
without smoothing). Both methods were run with the same
parameter settings on all images.

B. Material associations and Prototypes

We commence by illustrating the behaviour of our method
for purposes of recovering material associations. Figure 6
depicts a segmentation of three images from Foster et al.’s
dataset [5] based upon the abundance of each material scene at
each pixel location, i.e. the material associations for each pixel.
In the figure, the segment colors have been randomly assigned.
Observe that both methods are capable of discerning most
relevant materials in the scene. Nonetheless, in the middle row,
i.e. Cyflower, HRK suffers from under-segmentation over
several image regions. Further, several clusters are generated
from the noisy background of the image. In the third image,

Ribeira (bottom row), HRK achieves a good material
separation of the scene, but still is affected by noise on
the roof of the buildings, which cause cluster fragmentation.

Figure 7 depicts the material prototypes found in the
images as shown in Fig. 6. These prototypes are derived
from the clustering results as follows. In the case of HRK,
the mean of each cluster is considered as described in [10].
For our method, we use a mode-seeking algorithm [7] so as
to take advantage of the parameter vectors directly. Fig. 6a
shows the visualization of the normalised image spectra using
the Parallel Coordinates method of the Gerbil hyperspectral
visualization framework3. In the plot, all the spectra contained
in the image are used to obtain a spectral power histogram.
Fig. 6b and Fig. 6c show the extracted prototypes using our
method and the alternative.

We can observe that both methods succeed in capturing the
prominent materials in the scene as the extracted prototypes
give a good hint at the respective image’s spectral power
distribution. It is worth noting that HRK requires a user-
determined number of clusters (20 in this experiment) while
our mode-seeking approach is devoid of any parameters. In the

3Downloadable at http://www.gerbilvis.org/
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(a) Image spectra (b) HRK [10] (c) Our method

Fig. 6: Comparison of extracted prototypes for the Cbrufefields, Cyflower, and Ribeira scenes. (a) Spectral power
histogram; (b), (c) Material prototypes yielded by our method and the alternative.

case of HRK, some of the clusters found are more descriptive
than others. A good example is the Cyflower scene, where
several prototypes delivered by HRK correspond to noise in
the data. In this particular case, some materials prototypes
are affected by noise. This produces “spiky” spectra that do
not follow the intuition of smooth radiance in the spectral
domain across the image.

C. Distance preservation

We now turn our attention to a qualitative analysis of the
mapping Γ : <m 7→ <q . Recall that, as described in Eq. 1, our
method provides a mapping from a manifold with dimension
m to one of dimensionality q. In the case of our experiments,
m accounts for the number of wavelength indexed bands in
the imagery and q = 3. By assuming local linearity in the
mapping between the manifolds M and Q (this is reasonable
since we have used the equivalent of Euclidean distance
functions dM (·) and dQ(·)), we can assess the relationship
between distances on both manifolds employing the notion
that those spectral radiance vectors yj that are close in M
should be linked to vectors xj on our mapping that are,
likewise, close to one another in Q.

To evaluate this property, for each pixel yj in an image,
we randomly select 40 other pixels and, for each of those
selected yi, we compute ‖yi − yj‖2 as well as ‖u− v‖2,
where u and v correspond to the visualisation vectors for yi

and yj , respectively, computed using Eq. 13. In this manner,
the resulting distance pairs can be computed so as to assess the
linearity of the distance relationships induced by the mapping
Γ. In Figure 7, we show the scatter plot histograms for these
pairwise relationships. In the figure, we show plots for three
images taken from each of the datasets under consideration.
We have done this so as to explore the effects of spectral and
spatial resolution on the linearity of Γ.

From the figure, we can appreciate that small distances
exhibit a high correlation for the three images. Larger
distances diverge slightly from a strictly linear relationship.
This is somewhat expected since underlying manifolds may
not be well approximated by a Euclidean metric as the
pairwise distances increase.

D. Running times

Note that a straightforward approach to obtain a similar
clustering as ours would be to run the mean shift algorithm
directly on the normalized image spectra. We would like to
mention in passing that the mean shift has a computational
complexity of O(n2) in the number of pixels. Our profiling
throughout the experiments revealed that over 95 % of the
computation time for the mean shift is spent on the vector
distance calculation. This makes the high dimensionality of
multispectral data an additional burden to the method. This
contrasts with our method, where we effectively find a sparse
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(a) Egyptian Statue (CAVE) (b) Cbrufefields (Foster) (c) D.C. Mall (Remote Sensing)

Fig. 7: Scatter plot histograms for pairwise distances induced by the mapping Γ. Colour bars indicate the frequency-hue scale.

representation of the spectral distribution first and then run
mean shift on a reduced data set.

To compare performance with our method, we run the
FAMS algorithm using an Intel Core i7-2600 CPU and 16
GB RAM on the Foster images. In this case, we employ
the approximate nearest neighbour speedup scheme [7]. With
these settings, the clustering computation on the raw image
radiance takes 10 to 11 hours per image. For our method, the
running time consistently lies under 120 seconds per image
being in average about 1 min. Note that the training time
is low due to the updates being constrained by the clique
size and the temperature of the system. Moreover, the timing
above for our method comprises the full training, clustering
and back-propagation steps of the algorithm. This makes
our method also considerably faster then that of Huynh and
Robles-Kelly [10], which took, in average 6 mins per image
and is typically performed on subsampled versions of the
input imagery.

VI. CONCLUSIONS

In this paper we propose an unsupervised method for
learning the materials in a scene from imaging spectroscopy
data. We have presented a structural unsupervised statistical
learning method where the inference process is effected
using the EM algorithm. Furthermore, we have discussed the
links between our method and the SOM and the relationship
between our method and energy functions used elsewhere
in the literature. We have illustrated the ability of our
method to recover material prototypes, perform scene material
segmentation, visualization and dimensionality reduction on
several datasets comprising imagery acquired in lab envi-
ronments, real-world settings and remote sensing platforms.
Moreover, our method provides a margin of improvement as
compared to a state-of-the-art method for material association
recovery, being more computationally efficient in terms of
computational power and memory use.
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