
 
  

Abstract— This paper discusses a new setting of graph based 
semi-supervised learning (SSL) guided using pairwise constraints 
(PCs). Technically, we propose a novel Graph based Constrained 
Semi-Supervised Learning (G-CSSL) framework. In this setting, 
PCs are used to specify the types (intra- or inter-class) of points 
with labels. Because the number of labeled data is typically small 
in SSL setting, the core idea of this framework is to create and 
enrich the PCs sets using the propagated soft labels from both 
labeled and unlabeled data via special label propagation (SLP), 
and hence obtaining more supervised information for delivering 
enhanced learning performance. To obtain the predicted labels of 
unlabeled data, we calculate the sparse codes of all data vectors 
jointly to assign weights for SLP. To deliver enhanced inter-class 
separation and intra-class compactness, we also present a mixed 
soft-similarity measure to evaluate the similarity/dissimilarity of 
constrained sample pairs by using the sparse codes and outputted 
probabilistic values by SLP. Extensive simulations demonstrated 
the effectiveness of our G-CSSL for image representation and 
recognition, compared with other related SSL techniques.  1 

 Keywords- Label propagation; soft-similarity measure; sparse 
coding; constrained semi-supervised learning; subspace learning 

I. INTRODUCTION 
Labeled data is always expensive to achieve and the labeling 
process by humans is also costly, while unlabeled data can be 
readily available with low expense from real world, leading to 
considerable interests and lots of efforts on the study of semi-
supervised learning (SSL) [1][35]. The objective of SSL is to 
enhance the performance by using supervised information of 
labeled data and their relationships to unlabeled samples [1].  

Based on the clustering and manifold assumptions [1][12] 
[17], recent years have witnessed lots of efforts on the graph 
based SSL (G-SSL)[6][9-11][13-19][24-25][28-29][31-35] for 
its validity via considering the intrinsic geometrical structure 
inferred from both labeled and unlabeled data. G-SSL can be 
broadly divided into transductive and inductive. The inductive 
setting is mainly for classification based (either local or global) 
dimensionality reduction [28-29][31-34]. But local techniques 
often involve the step of estimating optimal neighbor number 
k and kernel width, which is challenging in reality. The other 
setting is label propagation (LP) that propagates the labels of 
labeled data to unlabeled data according to the distribution of 
both labeled and unlabeled data [9-10][13-19]. Three popular 
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LP methods include the harmonic function approach [16], the 
consistency method [17] and recent special label propagation 
(SLP) [19]. By comparing with the consistency and harmonic 
function methods, SLP can not only well detect outliers in data, 
but also output the labels as probabilistic values [18].   

The core step of LP is to construct an edge weight matrix 
W  to measure the similarities between vertices in a faithful 
graph. A graph is usually constructed by finding the neighbors 
using k- or  -neighborhood [12]. One most popular weight 
assignment for LP is the Gaussian kernel similarity [17], but 
estimating an optimal kernel width is difficult [9][15]. Linear 
Neighborhood Propagation (LNP) [9] was recently proposed 
to first approximate the whole graph by a series of overlapped 
linear neighborhood patches and the edge weights in each 
patch are then computed by applying the neighborhood linear 
projection. But LNP also suffers from the issue of setting fixed 
neighborhood size for each vertex and there is no reliable way 
to determine optimal k number. More recently, to achieve 
adaptive neighborhood for weight construction, sparse coding 
(SC) based formulations have attracted many interests (such as 
[13-15][18]). For a given data matrix  1 2, ,..., n N

NX x x x   , a 
similar idea is to compute the (non-negative) sparse codes for 
each ix  individually using 1l -norm minimization with X or the 
pre-calculated sparse neighbors of ix  as the dictionary [13-15] 
[18]. To capture the global structures of data, in this paper we 
calculate the nonnegative sparse codes of all sample vectors 
jointly by optimizing a 1l -norm based minimization problem.  

  In typical SSL settings, the number of labeled data is often 
small, so it will be greater advantageous to apply the pairwise 
constraints (PCs) than the class labels to reflect supervised 
information of samples, since PCs can be obtained by minimal 
effort and can provide more supervised information if there 
are enough samples with labels available [28-31]. But if the 
labeled number is too limited, the advantages of PCs over the 
class labels will not exist any more. To address the insufficient 
data labeling problem, we construct the PCs sets based on the 
propagated soft labels from both labeled and unlabeled data 
through SLP in this paper. More specifically, we propose an 
adaptive neighborhood based SLP process induced pairwise 
constrained SSL framework, called Graph based Constrained 
Semi-Supervised Learning (G-CSSL), for feature extraction 
and classification. To achieve the adaptive neighborhood, the 
sparse codes are employed to assign the edge weights in SLP 
process of our framework. In addition, to deliver the enhanced 
inter-class separation and intra-class compactness, based on 
the outputted probabilistic values by SLP and the sparse codes 
over both labeled and unlabeled data, we also propose a voting 
strategy based Mixed Soft-similarity Measure (MSM) method 
for evaluating the similarity/dissimilarity of data pairs in PCs 
sets, with the weight values determined using the SLP process 
and nonnegative SC process at the same time.  
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The paper is outlined as follows. Section II introduces the 
adaptive neighborhood by sparse coding for SLP. In Section 
III, we propose the G-CSSL framework and the MSM method. 
Section IV describes the settings and tests our technique using 
real datasets. Finally, the paper is concluded in Section V.  

II. ADAPTIVE NEIGHBORHOOD BASED SLP 

In this section, we show the 1l -norm minimization problem for 
calculating the sparse codes to assign weights for SLP. Then 
we define the PCs sets based on the predicted soft labels by 
SLP. Let  , n l u

L UX X X       , where 1 2, ,..., n l
L lX x x x       

is a labeled set and 1 2, ,..., n u
U l l l uX x x x 

        is unlabeled 
set. We assume that there are c classes and all the classes are 
present in the labeled set. Each point in LX  is associated with 
a class label  il x  in 1,2, ,c . SLP is a transductive process 
that propagates label information of LX  to UX [19].   

A. Sparse Coding (SC) for Weight Assignments 
Given a set of data vectors , 1,2,...,ix i N , SC represents each ix  
by using as few points that most compactly expresses ix  from 

 1 2, ,..., n N
NX x x x    as possible [20-23]. By setting X  itself 

as the dictionary, this paper calculates the nonnegative sparse 
codes of all vectors   1i

N

ix
  jointly from the following criterion:  

 
  T T

1 1,
, Subj , 0, 0,

S E
Min S E X XS E Diag S S e S e      ,   (1) 

 
where SC enforces   0Diag S   to avoid the trivial solution 
S I  (where I  is an identity matrix), 1  is the 1l -norm, i.e., 

,1 , i ji j
E E , Ne   denotes a column vector of all ones,   

is a positive parameter, X XS  identifies the errors E, 1l -
norm is imposed on E to fit the random corruptions [2], and 
the sum-to-one constraint T Te S e  can enable the solution to 
reflect certain local properties of data [20]. For efficiency, in 
this paper we use the inexact Augmented Lagrange Multiplier 
(ALM) method [3] to solve the above problem. Firstly, it can 
be transformed to the following equivalent one:   
 

 

 

1 1

T T

, ,
, , arg min

Subj , , 0, 0,
Q S E

Q S E Q E

S Q X XS diag S S e S e

 

    
.        (2) 

 
The augmented Lagrangian function of the above problem 

can be addressed as  
  

 
1 2 11 1

2 2
2

, , , , , ,

,
2 F F

J Q S E Y Y Q E Y X XS

Y S Q X XS S Q

 



    

    
.         (3) 

We first solve Q by fixing S. When solving 1kQ   at the 
(k+1)-iteration, 2Y  and S  are set to 2

kY  and kS  respectively. 
Thus 1kQ   can be inferred as  

      2

1 21arg min 1 / 1 / 2 /k
k k k kQ F

Q Q Q S Y      ,         (4) 
 
which can be effectively solved by the shrinkage operator [3]. 
Then we can infer the solution of 1kS   as  

   1T T T T
1 1 1 2 /k k

k k kS X X I Q X X X E X Y Y 


 
        ,    (5) 

 

where TX  denotes the transpose of X  and   1TX X I


  is the 
inverse of matrix TX X I . After 1kQ   and 1kS   are obtained at 
the (k+1)-iteration, the sparse error term 1kE  can be computed 
as       2

1 1 11
arg min / 1 / 2 /k

k k k kE F
E E E X XS Y        , 

which can be similarly solved by the shrinkage operator [3]. 
The solution * * * *

1 2, ,..., NS s s s     is the “sparsest presentation” of 
the original data, where *

is  denotes the coefficient vector to 
reconstruct ix  and *

is  is naturally sparse. Note that *S  can also 
be used to define the edge weight matrix W (i.e., *W S ) of an 
undirected graph to represent the sparsity of the datasets and 
measure the similarity between points [27], i.e., heavy weights 

,i jW  will be imposed to the edges connecting “close” vertices. 
The intrinsic discriminant information of samples can also be 
preserved by *S  because of the nature of sparse representation. 
Due to sparse representation, W  has a natural discriminating 
power. To make a connection to the normalized graph, we 
symmetrize W  as  T 2W W W   or  , , , 2i j i j j iW W W  . 
Then resembling [17], we normalize W  as  1 2 1 2W D WD   or 


, ,i j i j ii jjW W D D , where D  with ,1

l u
ii i jj

D W


  

is a diagonal 
matrix. Note that this normalization can help strengthen the 
weights in low-density region and weaken the weights in high-
density region, which is useful for handling the cases that the 
density of dataset varies dramatically [19].  
B. Label Propagation via SLP over Adaptive Neighborhood 
Based on the normalized weight matrix  1 2 1 2W D WD  , we 
can predict the labels of unlabeled samples using SLP. Denote 
by    1

1 2, , , c l u
l uY y y y   
      the initial labels of all the 

samples. For the labeled sample jx , , 1i jy   if jx  belongs to 
the i-th class, otherwise , 0i jy  ; for unlabeled data jx , , 1i jy   
if 1i c  , otherwise , 0i jy  . Note that SLP adds an additional 
class 1c   to detect outliers, so the sum of each column of Y  
is 1 [19]. Also let    1

1 2, , , c l u
l uF f f f   
      denote the 

predicted soft label matrix, where if  is a column vector with 
the entries satisfying ,0 1i jf  , and the biggest ,i jf  in each 
column decides the class assignment of sample ix .  

Denote a stochastic matrix  1
D W


  , where D  is a diagonal 
matrix with each element satisfying  

,1
l u

ii i jjD W
 . Then, we 

consider an iterative process for label propagation. At each 
iteration, SLP expects that the class label of each sample point 
is partially received from its neighborhoods and the rest is 
from its own label. Hence the label information of samples at 
the (t+1)-th iteration can be  

        1F t F t I YI     ,                    (6) 
where    l u l uI

    is a diagonal matrix with each input 
element being j , I I I   ,  0 1j j    is a parameter 
for sample jx  to balance the initial label information of jx  
and the label information received from its neighbors during 
the iteration. According to [19], the regularization parameter 

j  for the labeled sample jx  is set to l , and the parameter 
j  for the unlabeled sample jx  is set to u  in the simulations. 

Based on the above iterative process, we can have 
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      

1

0
0

tt k
k

F t F I YI I  



    .               (7) 

 
Based on the matrix properties, namely  lim 0t

t I    
and     11

0lim kt
t k I I I 


     , so the iterative process of 

SLP can converge to 

                   1limtF F t YI I I 


    .         (8) 
 

Note that it can be easily proved that the sum of each column 
in F  is equal to 1, which indicates that the elements in F  are 
the probability values and ,i jf  can be treated as the posterior 
probability of jx  belonging to the i-th class. If 1i c  , ,i jf  
represents the probability of jx  belonging to outliers. Based 
on the SLP process, the outliers in data can be detected and the 
soft labels of data can be obtained at the same time [19].  

III. GRAPH BASED CONSTRAINED SEMI-SUPERVISED 
LEARNING (G-CSSL) FRAMEWORK 

The core idea of G-CSSL is to create and enrich the PCs sets 
using the propagated soft labels of samples by SLP. We also 
address a mixed soft-similarity measure (MSM) approach for 
similarity measurements in this section.  

A. Traditional Constrained Learning Problem 
In traditional pariwise constrained problem, for a given set of 
labeled data samples, a Must-link (ML) constraint set and a 
Cannot-link constraint (CL) set are constructed as  

             = , ,| , |i j i ji j i jML x x x xl x l x CL l x l x   ,      (9) 
 

where    1,2,...,il x c  is the class label of ix  and c  is the 
class number. Then one aims at pushing data pairs  ,i jx x ML  
close together in the reduced space by minimizing pairwise 
distances between them, and separating data pairs  ,i jx x CL  
via maximizing their pairwise distances. So we can define the 
following maximum margin criterion [38] based problem:    

   
 

 

   
 

 

2

,
,

2

,
,

1  
2

 
2

n d

i j

i j

CL
i j i j

x x CLCL

ML
i j i j

x x MLML

T
Max h x h x W

N

h x h x W
N










 






,         (10) 

where   T
i ih x T x  is the low-dimensional representation of ix , 

  is a control parameter, MLN  and MLN  are the number of the 
ML and CL constraints respectively,  MLW  and  CLW  denote 
the weight matrices for measuring the pairwise similarities/ 
dissimilarities over the ML and CL constraints. There are two 
popular ways (either global [28-29][39] or local [26][30-31]) 
to set the weights. In global setting, each data pair  ,i jx x ML  
or  ,i jx x CL  is equally treated (i.e., hard-similarity measure). 
In this case,  

, 1ML
i jW   for each  ,i jx x ML  and  

, 1CL
i jW   for 

each  ,i jx x CL ; otherwise    
, , 0ML CL

i j i jW W  . The local setting 
incorporates local information of data into the definition of 
PCs sets, and only neighbors from the ML and CL sets are 
weighted with nonzero values; else zeros. In this case, either 
hard (e.g., simple-minded method [12]) or soft measure (e.g., 
heat kernel [12]) can be used. Note that the local settings also 
need to estimate optimal neighborhood size or kernel width.  

It is also noted that the above issue is usually solved under a 
supervised setting, with the PCs are obtained from the ground-
truth labels of data. Although PCs exhibits some advantages 
over the class labels, if the number of labeled data is too few, 
the PCs guided problems will have not superiority any more 
and even a disadvantage in special cases. For instance, if there 
are only two labeled data (either intra- or inter-class), we can 
only derive one single ML or CL constraint. To address the 
insufficient labeled data sampling problem, in what follows 
we will propose to address the above problem under a semi-
supervised setting, where the PCs sets defined based on the 
propagated soft labels from both labeled and unlabeled data. 

B.  Our Proposed G-CSSL Framework 
Based on the predicted soft label matrix F (where the entries 
of each column if  are probabilistic values of each data point 
belonging to different classes), one can easily obtain the labels 
of unlabeled data according to the biggest probability values in 
each column. Thus, the insufficient data labeling issue can be 
naturally addressed. Then based on the predicted soft labels, 
the PCs sets can be similarly constructed as Eq.9, but note that 
the ML and CL constraint sets are defined over the first c 
classes obtained from F in this framework, similarly as [8] that 
also use the first c rows of F for scatter matrix construction. 
This is mainly because the discovered novel class by SLP, i.e., 
the (c+1)-th class, mainly include outliers or ambiguous points 
from different classes that are difficult for classification. Since 
we have sufficient samples with labels now, the superiority of 
PCs over the class labels can be highlighted to the greatest 
extent possible. In what follows, we first construct two weight 
matrices  MLW  and  CLW  with size N N  for the similarity 
measurements via defining a voting strategy based mixed soft-
similarity measure (MSM) before formulating the objective 
function of our G-CSSL framework.  
 
Proposed mixed soft-similarity (MSM) measure 
The matrices  MLW  and  CLW  are first initialized with all zeros. 
Note that the sparse representation *S  is naturally discriminant 
[20][21], that is, it selects a set of samples that most compactly 
expresses the given points and exclude all other less compact 
samples. So, if there are sufficient samples from each subject, 
each data point can be represented using a linear combination 
of samples from the same subject. In addition, the pairs, that 
contribute more together involving nonzero bigger values *

,i js , 
are most likely to be “neighbors”. Next we first symmetrize 

*S  as  * * *T / 2S S S  . Then, for each data pair  ,i jx x ML , 
this paper assigns the following Cosine similarity based edge 
weights to measure the similarities between them:    

        
 

   
* † †
,

, † †

exp cos , , ,
with cos

0 , ,

i j i j i jML
i j

i ji j

s if x x ML f f
W

f fif x x ML




   
 

, 

              (11)         
where  exp   is exponential function, and *

,i js  is the (i,j)-th 
entry of *S . †

if  denotes a column vector of the truncated 
version (i.e.,  † † †

1 2
† , , , c l u

l uf f fF  
  

   ) of the predicted 
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label matrix    1
1 2, , , c l u

l uf f fF   
  

   , where †
if  is the 

truncated if  including the first c elements of if , and the 
entries of †

if  satisfy †
,0 1i jf  . The Cosine similarity (  0,1 ) 

measures the similarity between two sample vectors through 
computing the cosine of the angle between them. The main 
idea of the above weighting approach is based on a voting 
strategy. Note that one major contribution of this paper is to 
create the pairwise constraints based on the propagated soft 
labels by SLP for delivering more supervised information. So 
ideally, if the predicted labels of samples by SLP are accurate, 
the data vectors †

if  and †
jf  will be undoubtedly “close”. As a 

result, the corresponding Cosine similarity (i.e.,  cos  ) is 
also higher. Note that based on this condition we also consider 
information from the sparse codes to make the final decision 
for the weight assignments, that is, a voting result is adopted. 
Two conditions are considered here. On one hand, if the 
predicted labels of data pair  ,i jx x ML  by SLP are accurate 
(i.e.,  cos   is bigger), and at the same time the samples ix  
and jx  contribute more together (i.e.,  *

,exp i js is bigger), 
heavier weight  

,
ML

i jW  will be incurred. On the other hand, 
supposing that there exist two ambiguous sample points and 
are incorrectly predicted by SLP to be the same class. In this 
case, *

,i js  may be equal to zero or a very small number, that is, 
 *

,exp 1i js   or  *
,exp 1i js  . Thus, a relatively lighter weight 

 
,

ML
i jW  will be incurred. In conclusion, the weight  

,
ML

i jW  will be 
the heaviest if and only if both  *

,exp i js  and  cos   are bigger 
at the same time, that is both the special label propagation and 
sparse coding processes have reached a consensus. Hence the 
proposed weighting method is called voting strategy based 
mixed soft-similarity measure.  

Based on similar idea of the voting strategy, we can define 
the following weights for each pair of instances  ,i jx x CL  
predicted using SLP to measure the similarity between them:   

        
 

*
,

,

,

,

exp 1 1 cos ,

0 ,
i j

i j

i jCL
i j

x x CL

x x CL

s if
W

if

 



    


.      (12) 

Analogously, the heaviest penalty will be imposed on the 
edge weights  

,
CL

i jW  for data pair  ,i jx x CL  if and only if both 
 *

,exp 1 i js  and  1 cos   are bigger at the same time. 
Otherwise, a lighter penalty will be incurred.   
 
The objective function of G-CSSL 
After the weight matrices  MLW  and  CLW  are constructed, we 
can define the following objective function for our G-CSSL 
approach to compute a projection matrix n dT   onto which 
enhanced inter-class separation and intra-class compactness 
can be obtained at the same time:  

  
        
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 
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2 2
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2
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,
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1 1 +
2 2

 , Subj
2

i j

i j

n d

N
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i j i j i j i j
i j x x CLCL
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i j i j

x x MLML

T
Max h x h x W h x h x W

N

h x h x W T T I
N



 




 

  

 



 , 

(13) 
where  *

i ix Xs  denotes the reconstructed sample by the sparse 
coefficient vector *

is ,   T
i ih x T x  represents the transformed 

low-dimensional representation of ix , and , 1/i jW N  for each 
pair of instances (i.e.,     2

,, 1

l u

i j i ji j
h x h x W


  is the principal 

component analysis (PCA) operator [5]), so this regularization 
    2

,, 1

l u

i ji j i jh h Wx x


  is mainly added to preserve the global 

covariance structures of all samples including both labeled and 
unlabeled data, especially useful for the extreme case such that 
labels of all unlabeled data are incorrectly predicted by SLP to 
be c+1 class. In this extreme case, the number of constraints 
obtained from the labeled data is few, thus the motivation for 
exploiting unlabeled data is to combine them for enhancing 
performance. Note that the above modeling is similar to the 
formulation of [28], but we used the reconstructed data ix  and 
our mixed soft-similarity weights in the optimizations. We can 
have a concise form for Eq.13:    

         
 

 

 
      

  

T

2 2

, ,
, 1 ,

, ,

,

,

1   
2 2

1 / ,

,

i j

N
CL ML

i j i j i j i j
i j x x MLML

CL
i j CL i j i jCL

i j

i j i j

T T I
Max h x h x h x h x W

N

W N W if x x CL
where

W if x x CL



 
   

    
 

 
, 

(14)  
Because        2

T T T T T T
T

i j i ji jT T T x T x T x T xx x tr      
, based 

on the matrix interpretation, Eq.14b can be converted into  
      TT T, Subj

n d

CL ML

T
Max tr T X L L X T T T I



    
,        (15) 

where      ML ML MLL D W  and      CL CL CLL     denote the graph 
Laplacian matrices,      

, ,1 /ML ML
i j ML i jW N W ,  MLD and  CL  are 

diagonal matrices with    
,

ML
i j

ML
ii j

WD   and    
, ,
CL CL

i j i jj
  , 

 tr  is trace operator and    
1 2, ,..., NX x x x    .   is a parameter 

for trading-off terms    TCLtr X L X  and    TMLtr X L X , where 
   TCLtr X L X  can measure the separation degree of data points 

and    TMLtr X L X  measures the compactness degree of data. 
From the above problem, the projection matrix n dT   can 
be obtained including the orthogonal eigenvectors according 
to leading d eigenvalues of the following eigenvalue problem: 
      TCL ML

j j jX L L X     . After T  is obtained, dimension 
reduction of X  can be performed in the form of TT X  and T  
can be used for embedding new data in classification. More 
specifically, when a new test data is input, its low-dimensional 
embedding can be obtained by projecting it onto the projection 
axes. For complete presentation of the method, we summarize 
our G-CSSL framework in Algorithm 1. Note that a detailed 
version of this work appeared in [6] that also presented a two-
stage SC to gain adaptive neighborhood for SLP and conducts 
a thorough simulation evaluation on classification.   

IV. SIMULATION RESULTS AND ANALYSIS 
This section examines our G-CSSL method for image feature 
extraction and representation, along with illustrating results. 
Because G-CSSL is a SLP process induced PCs based SSL 
algorithm, its classification performance is mainly compared 
with Semi-Supervised Dimensionality Reduction (SSDR) [28], 
Semi-Supervised Metric Learning (SSML) [29], Marginal 
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Semi-Supervised Sub-Manifold Projections (MS3MP) [26], 
orthogonal MS3MP (OMS3MP) [26] and the Semi-supervised 
Orthogonal Discriminant Analysis (SODA) [8]. It is noted that 
SSDR, SSML, MS3MP and OMS3MP are pairwise constrained 
SSL algorithms, while the SODA technique performs SSL via 
label propagation. SSML, MS3MP, OMS3MP and SODA have 
a common parameter (i.e., neighborhood size k) to estimate. In 
addition, SLP uses the Gaussian kernel to assign edge weights, 
so it has a parameter (i.e., kernel width  ) to estimate. To 
provide a reasonable estimation for  , the Gaussian kernel 
width is defined as  /   ,   2

2
,

/i ji j
x x N N     with 

a carefully chosen , similarly as [7][19]. For the k-neighbor 
search based methods, the number of k is carefully tuned from 
 5,7,9,11  and the best classification performance is reported. 
We perform all simulations on a PC with Intel (R) Core (TM)2 
Quad CPU Q9550 @ 2.83GHz 2.83 GHz.  
 
Algorithm 1: Graph based Constrained Semi-Supervised Learning 
Inputs:  
Data matrix n NX   including labeled LX  and unlabeled UX ;  
The reduced dimensionality d n .  
Output: The transformation matrix n dT  .  
1. Predict the soft labels of data by using the adaptive neighborhood 

based SLP process;  
2. Construct the PCs sets based on the propagated labels and define 

the MSM approach;  
3. Solve the eigen-value problem:       TCL ML

j j jX L L X    , where 
 1 2, ,...., dT      according to d leading eigenvalues  

1

d

j
j




.  
 
 

The recognition process of our G-CSSL and other methods 
are described as follows. Each dataset is randomly split into a 
training set TrX  and a test set TeX . The training set including 
labeled data LX  and unlabeled data UX  is used to train a 
learner. Prior to subspace learning, PCA is used to eliminate 
the null space of training set. The data TeX  is then embedded 
onto the reduced space with the projection matrix learned from 
training data. Finally, the learner is used to evaluate the test 
accuracies. The one-nearest-neighbor (1NN) classifier with 
Euclidean metric is used for classification due to its simplicity. 
Note that we show the whole procedures of applying our G-
CSSL for recognition in Figure 1. In this study, one synthetic 
set and two real problems are tested. The first one is a “two 
moon” dataset; the second one is COIL-20 database (available 
from http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php); the third one is the COIL-100 database (available 
from http://www.cs.columbia.edu/CAVE/software/softlib/coil-
100.php). As is common practice, all images are resized to 
20×20 pixels due to the computational consideration, so each 
image corresponds to a point in a 400-dimensional space.  

A. Object Recognition on COIL-20 
The COIL-20 database has a total of 1440 gray object images 
with black background for 20 different subjects (objects), with 
72 images from each subject. In the experiments, the PCs sets 
in SSDR and SSML are created based on whether class labels 

of samples in LX  are the same or different [28][29], while the 
PCs sets are obtained relying on whether the class labels of 
neighboring points in LX  are the same or not in MS3MP and 
OMS3MP [26]. For fair comparison, the labels of unlabeled 
data are predicted by SLP for SODA and our method. In the 
simulations, the parameters   in our proposed G-CSSL and   
in the SC are carefully chosen from  10 | 6, 5,...,6i i     for fair 
comparison and the best classification results will be reported. 
In the simulations below, the regularization factor l  is set to 
0 and u  is carefully tuned from  1 10 | 3,5,...,15i i   for SLP. 
 

 
Figure 1: Illustration of the recognition procedures using our 

proposed G-CSSL algorithm.  
 
Object recognition results 
In this study, three experimental settings over various numbers 
of labeled data points (i.e. 5, 10 and 15 labeled respectively) 
randomly selected from each object class are tested. For each 
case, the number of unlabeled samples is double the number of 
labeled samples. For each setting, we regulate the numbers of 
the reduced dimensions from 3 to 60 with interval 3, and the 
test results are averaged over first 15 best records based on 20 
realizations of training/test sets. We report the mean accuracy, 
best record and the optimal image subspace (i.e., Dim), where 
the optimal subspace corresponds to the highest recognition 
accuracy of each method in each setting, in Table 1. For fair 
comparison, SSDR, SSML, MS3MP and OMS3MP also use all 
available constraints to learn the projections. We have the 
following similar observations. First, the accuracies of all the 
algorithms are improved when the number of training samples 
increases. Second, our proposed G-CSSL can always achieve 
comparable and even better accuracies than other methods. 
Most importantly, our proposed G-CSSL criterion is capable 
of delivering the best results using smaller number of reduced 
dimensions in each case. The major reason may owe to the 
adaptive neighborhood and noise removal by applying the SC 
process. Third, MS3MP are comparable to OMS3MP, and both 
are highly competitive with SODA for recognizing the objects. 
SSDR is the worst method for this dataset.  

Object recognition against pixel corruptions 
We also address an experiment to examine the robustness of 
our G-CSSL in recognizing the objects under various degrees 
of random pixel corruptions. This simulation considers three 
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settings over different levels of corruptions: one is with 10% 
pixels corrupted, one is with 20% pixels corrupted and the last 
one is with 40% pixels corrupted. For each pixel selected to be 
corrupted, its pixel value   is replaced by its inverse pixel, i.e., 
subtracting   from the biggest pixel value of images. We 
show typical samples in the training set, including the original 
images and corrupted images under various levels in Figure 2. 
The number of labeled data per object is fixed to 10 and the 
number of unlabeled data is still double the labeled number. 
To investigate the robustness of each method against pixel 
corruptions, half of the labeled set, half of the unlabeled set 
and the whole test set are corrupted. In each setting, the first 
half of the labeled data (and unlabeled data) per object class 
are chosen to be corrupted. For each method, the training set, 
including labeled and unlabeled data, is applied to train the 
classifier and the test set is used for performance evaluation. 

We describe the averaged results of the cases handing pixel 
corruptions in Table 2. We find that: (1) the increasing level of 
pixel corruptions can decrease the recognition power of each 
approach. Specifically, SSDR and SSML are more sensitive to 
the pixel corruptions in the images, because their accuracies 
decreased faster than other methods. SODA, MS3MP and our 
G-CSSL are more robust against corruptions in all cases due 
to their reasonable motivations and formulations. OMS3MP 
works well in the first two cases, but when the level of pixel 
corruptions is increased to 40%, the performance of OMS3MP 
is significantly weakened. (2) Our G-CSSL can outperform the 
other methods in delivering the boosted accuracies in most 
cases. SODA obtains comparative highest records with our G-
CSSL technique in most cases. Note that SSDR and SSML 
deliver the worst results in all cases. (3) Our G-CSSL method 
achieves the highest records with smaller number of reduced 
dimensions involved in most cases.  

 
Table 1: Performance comparison of the algorithms on the COIL-20 object database.   

COIL-20 (5 labeled) COIL-20 (10 labeled) COIL-20 (15 labeled) Result 
Method Mean  Best Dim  Mean  Best Dim  Mean  Best Dim  

SSDR 0.7597 0.7886 51 0.8683 0.8881 36 0.9090 0.9259 24 
SSML 0.7886 0.8193 36 0.8993 0.9161 15 0.9201 0.9364 18 
MS3MP 0.8352 0.8538 21 0.9176 0.9312 12 0.9397 0.9537 18 
OMS3MP 0.8320 0.8515 12 0.9121 0.9248 33 0.9405 0.9540 24 
SODA 0.7943 0.8529 60 0.9077 0.9378 60 0.9432 0.9578 57 
SC based G-CSSL 0.8476 0.8578 12 0.9253 0.9361 12 0.9528 0.9627 15 

  

(a) 10% pixels corrupted (b) 20% pixels corrupted (c) 40% pixels corrupted  
 Figure 2: Typical samples of the original images and corrupted images under various levels.  

 
Table 2: Performance comparison of the algorithms on the COIL-20 dataset with pixel corruptions.   

COIL-20 (10% corrupted) COIL-20 (20% corrupted) COIL-20 (40% corrupted) Result 
Method Mean  Best Dim  Mean  Best Dim  Mean  Best Dim  

SSDR 0.7829 0.8085 21 0.6961 0.7512 60 0.3991 
0.5054 

0.5054 60 
SSML 0.7104 0.7625 60 0.5890 0.6509 60 0.4229 0.4664 51 
MS3MP 0.8505 0.8857 12 0.7949 0.8303 24 0.6347 0.6852 24 
OMS3MP 0.8649 0.8930 21 0.8066 0.8305 18 0.5633 0.6560 12 
SODA 0.8159 0.8705 60 0.7339 0.8299 60 0.5539 0.6505 60 
SC based G-CSSL 0.8753 0.9018 15 0.8315 0.8510 15 0.6606 0.7129 12 

  

B. Object Recognition on COIL-100 Database 
This study examines the recognition capability of our G-CSSL 
on the COIL-100 database. This database has 7200 images of 
100 objects. The objects were placed on a motorized turntable 
against a black background. The turntable was rotated through 

360 degrees to vary object pose with respect to a fixed color 
camera. Images of the objects were taken at pose intervals of 5 
degrees, corresponding to 72 different poses per object. We 
show some typical sample images of the database in Figure 3.  

In this simulation, the first 40 objects (totally 2880 images) 
of the database are selected. We prepare three settings under 
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different numbers of labeled samples (i.e. 5, 10 and 15 labeled 
respectively) that are randomly selected from each object class. 
For each setting, the number of unlabeled data is double the 
labeled number and the numbers of reduced dimensions are 
regulated from 3 to 60 with interval 3 for each fixed training 
size. Table 3 summarizes the mean and the highest accuracies 
under various numbers of reduced dimensions, where we also 
describe the experimental setting of training set. We have the 

following findings. First, the increasing numbers of training 
samples significantly boost the performance of each algorithm. 
Second, the mean and highest accuracies of the MS3MP and 
OMS3MP methods are comparable to G-CSSL in most cases. 
SSDR outperforms SSML in each case. SODA delivers the 
comparable results to SSDR and SSML in most cases, and 
SODA obtains close results to MS3MP, OMS3MP and our G-
CSSL if more reduced dimensions are used in each setting.  

 

 
               Figure 3: Typical sample images of first 50 objects of the COIL-100 database.  

 
Table 3: Performance comparison of the algorithms on the COIL-100 object database.   

COIL-100 (5 labeled) COIL-100 (10 labeled) COIL-100 (15 labeled) Result 
Method Mean  Best Dim  Mean  Best Dim  Mean  Best Dim  

SSDR 0.7298 0.7508 36 0.8306 0.8529 33 0.8741 0.9048 48 
SSML 0.6956 0.7241 30 0.7983 0.8230 21 0.8272 0.8614 51 
MS3MP 0.8024 0.8220 24 0.8824 0.8997 27 0.9086 0.9261 30 
OMS3MP 0.8026 0.8147 27 0.8786 0.8926 27 0.9046 0.9173 27 
SODA 0.7222 0.7870 60 0.8394 0.9069 60 0.8852 0.9399 60 
SC based G-CSSL 0.8118 0.8289 12 0.8932 0.9063 27 0.9260 0.9381 54 

 

V. CONCLUDING REMARKS 
This paper has introduced a novel mechanism to achieve more 
supervised information of samples in graph based constrained 
semi-supervised learning through creating and enriching the 
pairwise constraint sets based on the propagated soft labels by 
SLP. In order to improve the performance by enhancing intra-
class compactness and inter-class separation, a voting strategy 
guided mixed soft-similarity measure approach built based on 
the propagated outputs and the sparse codes is also proposed. 
Finally, we propose a novel graph based constrained semi-
supervised learning framework, called G-CSSL, to reduce the 
dimensionality of data and embed new points for classification. 
The orthogonal projection matrix of G-CSSL can be obtained 
by eigen-decomposition analytically.  

This paper mainly tests G-CSSL for image representation. 
Although promising results are delivered by our algorithm, the 
following future directions are still worth investigating. First, 
exploring how to speed up the sparse coding process with the 
effectiveness ensured is required. Second, when there are no 
sufficient clean data X available, the robustness of SC to noise 
and outliers may be greatly weakened by setting the matrix X 
itself as the dictionary [4], thus it is important to explore the 
effective approach of designing an optimal clean informative 
dictionary for the sparse coding process.  
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