
 
 

 

  

Abstract—Marginal Fisher analysis (MFA) is a well-known 
linear dimensionality reduction method. However, MFA does 
not utilize the local diversity information of the training data, 
which will degrade its performance. In order to enhance the 
discriminant power of MFA, this paper considers introducing 
local variation quantity to enlarge the distances between local 
neighborhood embeddings and proposes a flexible and efficient 
implementation of MFA (F-MFA) within the regularization 
framework. Therefore, the discriminant structure and diversity 
of data are preserved in low-dimensional subspace. 
Computationally, F-MFA is formulated as a trace differential 
optimization problem which can completely avoids the 
singularity problem as it exists in MFA. Further, an efficient 
algorithm is developed for implementing F-MFA via 
QR-decomposition. Experimental results on four face data sets 
demonstrate the effectiveness of our approach. 

I. INTRODUCTION 
N past decade, accompanying the advancement of 

sciences and technologies, scientific data has the tendency 
of growing in both size and complexity, such that extracting 
useful knowledge from it is often much harder. The 
techniques of dimensionality reduction have received broad 
attention in areas such as data mining, machine learning, and 
computer vision. It is an important data preparation step 
which transforms the original high-dimensional data into a 
lower-dimensional space with limited loss of information, 
leading us to better models for data analysis. 

The popular dimensionality reduction algorithms can be 
divided into two groups: linear and nonlinear. Currently, 
nonlinear methods can mainly be divided into two classes: 
manifold learning-based methods and kernel-based methods. 
The former aims to preserve the local structure of data points. 
The representative approaches are Locally Linear Embedding 
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(LLE) [1], Laplacian Eigenmaps (LE) [22], Hessian 
Eigenmaps (HE) [3], Isometric Mapping (ISOMAP) [4], 
Maximum Variance Unfolding (MVU) [5], Manifold 
charting (MC) [6], Local Tangent Space Alignment (LTSA) 
[7], and others. Kernel-based methods aim to map the input 
data points into a much higher feature space via a nonlinear 
mapping and then carry out a linear method using the mapped 
samples. Kernel principal component analysis (KPCA) [8] 
and Generalized Discriminant Analysis (GDA) [9] are the 
representative approaches, which are effectively applied to 
face recognition. With the help of kernel trick, non-linear 
problems can be solved in linear case. Though many of 
nonlinear methods have been validated to be effective, these 
methods are typically associated with high computational 
overhead, and the nonlinear projection defined only on the 
training data space cannot extended to testing data directly , 
which is also called out-of-sample problem, making them 
difficult to be applied on real-world data analysis problems. 

In recent years, linear dimensionality reduction techniques 
are of particular interest for researchers since they are simple 
to calculate and analytically analyze. Two traditional linear 
dimensionality reduction approaches are Principle 
Component Analysis (PCA)[10][11] and Linear Discriminant 
Analysis (LDA)[12][13]. PCA seeks a subspace, in which the 
projected global variance reaches maximization. LDA seeks a 
subspace projected onto which the data points of different 
classes are far away while the data points of the same class are 
close to each other. These global methods fail to discover the 
local structure of underlying manifold. In many real world 
applications such as face recognition, there may not be 
sufficient training samples. In this case, it may not be able to 
accurately estimate the global structure, thus the local 
structure becomes more important. 

Recently, Yan et al. proposed a general dimensionality 
reduction framework called graph embedding [14] which has 
been shown to be effective in discovering the local 
geometrical structure of data points. The typical graph based 
algorithms includes Locality Preserving Projections (LPP) 
[15], Unsupervised Discriminant Projection (UDP) [16], 
Local Discriminant Embedding (LDE) [17], Marginal Fisher 
Analysis (MFA)[14], etc. However, locality characterization 
of the data is not originally and essentially designed for 
pattern discrimination purpose. For example, if the patterns 
lied on multimanifolds and there may be several subclasses in 
on class, then the locality-preserving algorithms may result in 
overlapped embeddings belonging to different classes, which 
may impair the local topology of data, leading to unstable 
intrinsic structure representation and bad discrimination 
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performance [18]. Therefore, this can make the algorithm apt 
to overfit the training data and sensitive to the outliers. In 
other words, for classification problem, the locality quantity 
itself is not sufficient.  

Recently, following the basic idea of MFA, many variants 
of dimensionality reduction algorithms have been developed.  
Quanxue Gao et al.[19] demonstrated that the local variation 
among the same class characterizes the most important modes 
of variability of patterns, which will help to improve the 
stableness of the algorithm. They proposed an algorithm 
named Stable Orthogonal Local Discriminant Embedding 
(SOLDE).  However, the formulation of SOLDE reduces to 
the solution of a generalized eigenproblem that requires the 
scatter matrices in the denominator to be nonsingular. This 
can become problematic when the dimensionality is larger 
than the number of samples, which is also called small sample 
size (SSS)[20] problem. Besides, these algorithms implicitly 
consider that the inter-class and intra-class relations are 
equally important. This reduces the flexibility of the 
algorithm. 

To remedy these deficiencies, we propose a flexible and 
efficient algorithm for Marginal Fisher Analysis (F-MFA), to 
perform linear supervised dimensionality reduction. 
Motivated by the idea of SOLDE, F-MFA takes local 
discriminant information and local variation into account 
simultaneously in the modeling of manifold, and presents an 
objective function that seeks to maximize the difference, 
rather than the ratio, between the regularized local inter-class 
scatter and local intra-class scatter. Thus, F-MFA can obtain 
the mutually orthogonal projection directions efficiently. 
Experimental results on several face databases demonstrate 
the effectiveness of the proposed algorithm. 

The paper is organized as follows. Section 2 analyzes the 
problem. In Section 3 we propose regularized extension of 
MFA. An efficient algorithm is presented in Section 4. We 
conduct the empirical comparisons in Section 5 and conclude 
in Section 6. 

II. PROBLEM STATEMENTS 

A. Problem Formulation and Notation 
Before starting, it is useful to define general terms in this 

paper we used. Let { }1 2, , , d n
nX x x x R ×= ∈  be a data matrix 

whose columns are training samples and rows are features. 
The label of a sample denoted by ( )ilabel x C∈ , here C is class 
label set { }1 2, , , mC c c c= . For linear dimensionality 
reduction methods, we particularly assume that each data 
point xi is mapped to a lower dimensional point yi through a 
linear transformation matrix V, which can be written as 

TY V X= , where d rV R ×∈                        (1) 
here r<d. As it is known that orthogonality is of utmost 
importance to discriminant analysis, since redundant features 
can be combined back to the same number of variables 
through orthogonal transformation of the measurement space.  

Graph based dimensionality reduction methods represent 

the data samples as nodes and quantify the similarity among 
pairs of samples as edges. For completeness, the process of 
constructing the affinity graph is summarized here, and the 
details can be found in [1] and [2]. 

B. Graph Preserving Criterion 
Generally speaking, dimensionality reduction is conducted 

based on a well-defined criterion. Yan et al. [14] claimed that 
most dimensionality reduction algorithms can be unified into 
a general framework, namely graph embedding which is 
described as follows. 

Let { , }G X W=  be an undirected weighted graph with 
vertex set X and weight matrix n nW R ×∈  which is the distance 
(or similarity) measure between data vertex. The Laplacian 
matrix L of the graph G are defined as[21] 

L D W= −                                            (2) 

here D is a diagonal matrix and
1

n

ii ij
j

D W
=

=∑ . Clearly, L is 

symmetric and positive semi-definite. The weight could be 
realized by the heat kernel (Gaussian kernel) [2] that is 
defined as 

2

exp i j
ij

x x
W

t

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                    (3) 

where 0t >  is called local scaling regulator and controls the 
overall scale or the smoothing of the space.  

In dimensionality reduction, there is an assumption that 
nearby data points are likely to have the low-dimensional 
representation with similar property or structure. Thus, a 
natural local information preserving criterion can be defined 
as 

2

, 1
min

n

ij i j
i j

W y y
=

−∑                               (4) 

For any data point xi, the objective function (4) computes 
the weighted sum of all squared pairwise Euclidean distances 
between the data points xi and xj that are within the k-nearest 
neighborhood of xi. By simple algebra formulation, the 
objective function (4) can be reduced to following concise 
matrix form. 

( )

( )

2

2
, 1 , 1

, 1 , 1

( )( )

2

2

n n
T

ij i j ij i j i j
i j i j

n n
T T

ij i i ij i j
i j i j

T

W y y W tr y y y y

W y y W y ytr

tr YLY

= =

= =

− = − −

⎛ ⎞⋅ − ⋅= ⎜ ⎟
⎝ ⎠

=

∑ ∑

∑ ∑           (5) 

where T
YS YLY= is the scatter matrix in the low-dimensional 

space. Thus, the trace of scatter matrix measures the distance 
between some specific data points. 

For a specific dimensionality reduction algorithm, there 
may exist two graphs, the intrinsic graph { , }G X W=  and the 
penalty graph { , }P PG X W=  with P P PL D W= −  and 

p p
ii ijj i

D W
≠

=∑ . The intrinsic graph characterizes data 

properties that the algorithms aim to favor and the penalty 
graph describes properties that the algorithms aim to avoid. A 
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linear graph preserving criterion is imposed for these two 
objectives. 

2

2arg max
T T p

i j iji j

V T T
i j iji j

V x V x W

V x V x W
≠

≠

−

−

∑
∑

                    (6) 

which can be further formulated in trace ratio form: 
( )arg max
( )

T P T

T TV

tr V XL X V
tr V XLX V

                              (7) 

This trace ratio form has been successfully used as a 
general criterion for dimensionality reduction previously. In 
some case, we can consider the difference-form formulation 

( )( )max T P Ttr W X L L X W−                         (8) 

This trace different criterion has been successfully in many 
algorithms, such as Maximum Margin Criterion (MMC)[22] 
and Locality Sensitive Discriminant Analysis (LSDA) [23]. 

C. Limitations of MFA 
It can be seen that the objective function of MFA well 

preserves the similarity of local intra-class data points and 
discriminant of local inter-class data points. However, the 
objective function (7) results in the following problems. 
(1) Distort the local intrinsic geometry of data. MFA 

emphasizes the data pairs with large distance pairs, 
which may result in that points with small distance are 
not embedded nearby in the embedding space. Thus, it 
may impair the local topology. Moreover, it ignores the 
variation, which characterizes the different geometrical 
properties, i.e. diversity of data, resulting in unstable 
intrinsic structure representation and making it cannot 
unfold the manifold structure of data. 

(2) It suffers from the small sample size problem. A 
difficulty in using the MFA method for image 
recognition is the high-dimensional nature of the image 
space, in such a space, the XDXT matrix is always 
singular, which makes the direct implementation of the 
MFA algorithm impossible. 

(3) The projection vectors obtained by MFA are not 
orthogonal. This makes it difficult to reconstruct the 
data. The advantage of employing orthogonal 
transformation is that the correlations among candidate 
features are decomposed so that the significance of 
individual features can independently be evaluated [24]. 

III. PROPOSED METHOD 

A. Motivations 
As above mentioned, the diversity among nearby data is 

very important for intrinsic geometry preserving and local 
manifold structure unfolding. 

Similar with graph embedding framework, the 
characterization of local variation in F-MFA is based on the 
diversity graph that incorporates the neighborhood 
information of the data points, and by contrast, the 
characterization of discriminant information is based on a 
similarity graph and dissimilarity graph that embodies the 
neighborhood information of the data points belongs to same 

and different classes, respectively. In this way, the 
geometrical and discriminant structure of the data manifold 
can be accurately characterized by these three graphs. The 
learning procedure is illustrated in Fig. 1. The detail will be 
described in following subsections. 

 

(a) (b) 
Fig.1. (a) The center point has six neighbors. The points with the same color 
and shape belong to the same class. (b) After projection, the margin between 

different classes is maximized and the local variation is preserved. 

B. Similarity Preserving Model 
In order to preserving the similarity of data, the nearby 

points belonging to same class in the observed data space 
should be mapped as close together as possible in the 
embedding space. 

In the similarity graph, the weight matrix W is defined as: 

1 1( ) 1 ( ) ( )

0
k kS

ij

i N j j N i
W

otherwise

+ +⎧ ∈ ∨ ∈⎪= ⎨
⎪⎩

                  (9) 

Here 
1
( )kN i+   indicates the index set of the k1 nearest 

neighbors of the sample xi in the same class. In the projected 
low-dimensional space, the intra-class compactness is 
characterized by the following objective functions: 

2 ( )

,
min T T S

i j ij
i j

V x V x W−∑                    (10) 

Equivalently, it can be rewritten as 
( )( )min T S Ttr V XL X V                             (11) 

where ( ) ( ) ( )S S SL D W= −  is the Laplacian matrix of 
similarity graph. The objective function (10) on the similarity 
graph incurs a heavy penalty if neighboring points xi and xj 
are mapped far apart while they are actually in the same class. 
Therefore, minimizing (10) is an attempt to ensure that if xi 
and xj are close and sharing the same label, then their 
corresponding low-dimensional representations are close as 
well. 

C. Dissimilarity Preserving Model 
In the dissimilarity graph, the weight matrix W is defined 

as: 

2 2( ) 1 ( ) ( )

0
k kD

ij

i N j j N i
W

otherwise

− −⎧ ∈ ∨ ∈⎪= ⎨
⎪⎩

                (12) 

here 
2
( )kN i−   is the index set of the k2 nearest neighbors of the 

sample xi in the different class. According to graph preserving 
criterion,  it follows that 

2 ( )

,
max T T D

i j ij
i j

V x V x W−∑                  (13) 

Equivalently, it can be rewritten as 
( )( )max T D Ttr V XL X V                            (14) 
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where ( ) ( ) ( )D D DL D W= −  is the Laplacian matrix of 
dissimilarity graph. The objective function (13) on 
dissimilarity graph incurs a heavy penalty if neighboring 
points xi and xj are mapped close together while they actually 
belong to different classes. Therefore, maximizing (13) is an 
attempt to ensure that if xi and xj are close but have different 
label, then their corresponding low-dimensional 
representations should be mapped far apart. 

D. Diversity Preserving Model 
In real-world applications, data points in the neighborhood 

may come from different classes, and the variation of data 
points from the same class may reflects the diversity of data 
points, while the variation of data points from different 
classes characterizes the discriminating information. Then the 
weight matrix of local variation can be defined as[25] 

2exp ( ) ( )

0

i k j j k iLV
ij i j

t x N x x N x
W x x

otherwise

⎧ ⎛ ⎞
⎪ ⎜ ⎟− ∈ ∨ ∈⎪ ⎜ ⎟= ⎨ −⎝ ⎠⎪
⎪⎩

  (15) 

Here ( )k iN x   indicates the index set of the k nearest 
neighbors of the sample xi. In the projected low-dimensional 
space, the total local variation [24] is preserved by the 
following minimization problem: 

2 ( )

,
max T T LV

i j ij
i j

V x V x W−∑                  (16) 

Equivalently, it can be rewritten as 
( )( )max T LV Ttr V XL X V                          (17) 

where ( ) (LV) (LV)LVL D W= −  is the Laplacian matrix of 
diversity graph. By maximizing local variation, we obtain a 
low-dimensional space that well preserves the intrinsic 
geometrical structure that characterizes the diversity and 
discriminating information of data. 

As for the diversity preserving model, its properties and the 
corresponding advantages can be summarized as follows: 

Property 1: For data points in any local region, if the 
variation among nearby data points in the original data space 
is large, then the variation among the corresponding 
low-dimensional representations should be large. This gives a 
certain chance to the points in the same class to be “less 
similar”, i.e. to have a certain value of diversity. This is 
suitable for multimodal data classification tasks.  

Property 2: LV
ijW is monotonously increasing with respect 

to the pairwise Euclidean distance between xi and xj. The 
comparison between weight function (3) and (15) is showed 
in Fig. 2. With the decreasing of the Euclidean distance, the 
local variation weight decreases toward 0. It means close 
points should have a smaller value of diversity. On the other 
hand, a heavy weight is put between mutually distant samples, 
which is useful in emphasizing atypical samples and, 
therefore, makes F-MFA robust to outliers.  

Property 3: LPP aims to produce a subspace that preserves 
the local structure of the data set. However, LPP cannot 
necessarily guarantee to project mutually distant data points 
into distant embeddings. Thus, we introduce objective (16) to 

serve as this purpose, by ensuring that two mutually distant 
sample are projected as apart as possible. This prevents the 
neighborhood relationship from being forcefully distorted 
and the main geometric structure of the data set can be largely 
preserved. Therefore, it endows the F-MFA with the ability of 
topology preserving. 
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(a) (b) 
Fig.2. Weight function showing for Gaussian weight (a) and local variation 

weight (b). 
As a consequence of these properties, the diversity graph 

preserves the intrinsic structure of each neighborhood. Thus, 
local diversity and intrinsic structure can be preserved by 
maximizing the variance of data in the local neighborhoods. 

E. Formulation of F-MFA 
Given above three individual optimization objectives (11), 

(14) and (17), F-MFA combines the aforementioned insight 
into the unified objective function which can be formulated as 
trace difference form: 

{ }(P) ( )arg max ( ) ( )T T T S T

V
tr V XL X V tr V XL X V−            (18) 

where ( )(P) ( ) (LV)1DL L Lα α= + −  and α  ( 0 1α≤ ≤ ) is a 
regularization parameter which controls the tradeoff between 
(14) and (17). The larger the α  is, the more favorable the 
inter-class separability is to win. Maximizing (18) is to find 
projections such that the intra-class data points are attracted 
closer (minimizing the (11)) while inter-class data points and 
mutually distant data points are simultaneously pulled farther 
away (maximizing the (14) and (17)).  

In order to obtain a flexible model, we write 
( )( ) ( )1P SL L Lβ β= + −                          (19) 

The additional regularization parameter β  allows one to 
tune the balance between both terms. With β  close to one, 
local inter-class separability and local variation are 
dominated for dimensionality reduction, but local intra-class 
compactness can possibly be neglected. In contrast, with 
β close to zero, the local intra-class similarity is better 
preserved, often at the price of some errors in local variation 
and local inter-class dissimilarity. The criterion in (18) can be 
maximized by solving 

arg max ( )T T

V
tr V XLX V                             (20) 

We can simply enforce the mapping to be orthogonal, and 
then we obtain the following optimization problem: 

arg max ( )

. .

T T

V
T

tr V XLX V

s t V V I

⎧⎪
⎨

=⎪⎩
                   (21) 

The projection matrix V that maximizes the objective 
function (21) is given by the maximum eigenvalue solution to 
the standard eigenvalue problem: 

TXLX V Vλ=                               (22) 
In this case, the projection matrix V is the set constituted by 
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the eigenvectors associated with the largest eigenvalues of the 
matrix TXLX . Note that the matrix TXLX is symmetric, thus 
the matrix V has the orthogonal columns. Thus, the 
low-dimensional representations are as follows: 

1,2, , .T
i iy V x i n= =                      (23) 

It is worthwhile to highlight some properties of F-MFA 
from a number of perspectives. 

(1) F-MFA reflects the intrinsic geometry of data points. 
By considering the variation of data, which characterizes the 
different geometrical properties, i.e. diversity of data, the 
locality based dimensionality reduction algorithms can be 
enhanced to unfold the manifold structure of data. Based on 
this investigation, it can be seen that the variation among 
nearby data points characterizes the intrinsic geometry of data 
points and helps to improve the generalization capability. 

(2) Similar to MFA, F-MFA is linear and defined on both 
the training and the testing data sets, thus it can avoid 
out-of-sample problem.  However, MFA only considers the 
local inter-class scatter and local intra-class scatter while 
F-MFA takes local variation as an additional regularization 
term which really reflects the intrinsic geometry of the data 
set. 

(3) F-MFA can avoid the singularity problem. When the 
number of the samples is much smaller than the dimension of 
the sample space, there will be singularity problem in trace 
ratio optimization. Although both SOLDE and F-MFA 
considers the local variation of data, F-MFA formulates the 
objectives in trace difference criterion which can effectively 
avoid the inverse matrix operation and the small sample size 
problem and makes the implementation much easier. 

(4) F-MFA produces orthogonal projection matrix. This 
makes it easy to reconstruct the data and preserving the global 
geometry. Although SOLDE also produces orthogonal 
projection matrix, it is computationally complex. 

IV. EFFICIENT ALGORITHM FOR F-MFA 
In real-world applications, such as data classification of 

image, gene expression, and web document, the dimension d 
of the vector samples is usually large, so the 
eigen-decomposition of d×d matrix TXLX  is still 
computational intensive. To reduce the computational 
demand, we present an efficient algorithm for performing 
F-MFA via QR-decomposition [26][27]. 

Let X=QR be the QR-decomposition of X, where 
d tQ R ×∈ has orthonormal columns, i.e. TQ Q I= , t nR R ×∈ is an 

upper triangular matrix, and ( )t rank X= is the rank of X. 
Obviously, t d< . 

Let U be a matrix whose columns are eigenvectors of 
T t tRLR R ×∈ and Λ is the diagonal matrix such that iiΛ is the 

eigenvalue associated to column i of U. Then we will have 
TRLR U U= Λ                                   (24) 

Note that TRLR is a real symmetric matrix, then U is an 
orthogonal matrix, i.e., TU U I= .  

Let X=QR be the QR-decomposition of X, and TQ Q I= . 
Thus, 

( )T TRLR U UQ Q = Λ                            (25) 
Left multiply Q on both sides of the equation (25) 

( )T TQRLR U QUQ Q = Λ                          (26) 
Equation (26) can be rewritten as 

( ) ( ) ( ) ( )TLQR QR QU QU= Λ                      (27) 
Substituting X=QR in (27), then we have 

( ) ( )TXLX QU QU= Λ                           (28) 
Therefore, V = QU is the matrix whose columns are 

eigenvectors of TXLX  and Λ is the diagonal matrix such that 
iiΛ is the eigenvalue associated to column i of V. If U is 

composed of the r eigenvectors corresponding to the largest r 
eigenvalues of TRLR , Then the optimal V can be computed as 
V = QU. Since t d< , the eigen-decomposition of TRLR  is 
more efficient than that of TXLX .  

As could be seen, the implementation of F-MFA does not 
involve an inverse matrix, and thus completely avoid the 
singularity problem. Therefore, it can be applied in small 
sample size problem directly and efficiently. Now, the 
algorithmic procedure of F-MFA is formally summarized in 
Algorithm 1. 

Algorithm 1 F-MFA For Dimensionality Reduction 
Step 1. Compute the matrix W. Given training samples, 

compute W according to (9), (12) and (15). 
Step 2. Compute the matrix L in (19). 
Step 3. QR-decomposition. Decompose the data matrix X 

as X=QR. 
Step 4. Eigenvalue decomposition of TRLR . Let 

1 2, , , ru u u is eigenvectors of TRLR  associated with the 
largest eigenvalue and denote [ ]1 2, , , rU u u u= . 

Step 5. Compute projection matrix. The optimal 
projection matrix is given by V=QU. 

Step 6. Obtain low-dimensional embeddings according to 
(23). 

The computational cost of F-MFA is analyzed as follows. 
The first part of F-MFA consists of constructing the weight 
matrices. This scales as O(n2). Its second part requires the 
OR-decomposition for X whose time complexity is O(t2n). At 
last, time complexity of the eigen-decomposition is O(t3). As 
a result, the total time complexity of the fast algorithm is 
O(t3+t2n+n2). 

V. EXPERIMENTS 
In this section, we will evaluate the performance of the 

proposed F-MFA method on four benchmark face data sets: 
Yale, YaleB, FERET and GeorgiaTech.  

A. Data Set Descriptions 
We summarize the five data sets that we will use in our 

experiments in Table I. Some sample images of one 
individual after preprocessing of the four databases are shown 
in Fig. 3, Fig. 4, Fig. 5 and Fig. 6. The detail is briefly 
summarized as follows. 
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Yale 1  data set is constructed at the Yale Center for 

Computational Vision and Control. It contains 165 images of 
15 individuals (each person providing 11 different images) 
under variation in facial expressions, lighting conditions, and 
with/without glasses. In our experiments, each image is 
manually cropped and resized to 32×32 pixels.  

YaleB2 face data set has 38 individuals and around 64 near 
frontal images under different illuminations per individual. 
The images of the cropped version contain illumination 
variations and facial expression variations. The size of each 
cropped image in all the experiments is 32×32 pixels, with 
256 gray levels per pixel. 

FERET3 face data set consists of 14051 gray scale images 
of human heads with views ranging from frontal to left and 
right profiles. It contains more than 1000 subjects. We select 
a subset of FERET database, which includes 1400 images of 
200 distinct subjects; each subject has seven images. The 
subset involves variations in facial expression, illumination, 
and pose. In our experiment, the facial portion of each 
original image is cropped automatically based on the location 
of the eyes and resized to 40×40 pixels. 

Georgia Tech 4  face data set contains images of 50 
individuals taken in two or three sessions at different times. 
Each individual in the database is represented by 15 color 
JPEG images. The pictures show frontal and/or tilted faces 
with different facial expressions, lighting conditions and 
scale. Each image was manually grayed, cropped and resized 
to 50×36 pixels. 
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Fig.3. Sample face images from the Yale database. 
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Fig.4. Sample face images from the YaleB database. 
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Fig.5. Sample face images from the FERET database. 

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

Fig.6. Sample face images from the Georgia Tech database. 

B. Experimental Setup 
We will compare the classification performance of our 

method (F-MFA) with other state-of-the-art methods, 

 
1 http://see.xidian.edu.cn/vipsl/database_Face.html 
2 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html 
3 http://www.itl.nist.gov/iad/humanid/feret/ 
4 http://www.anefian.com/research/face_reco.htm 

including Principle Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Locality Preserving Projection 
(LPP), Unsupervised Discriminant Projection (UDP), 
Marginal Fisher Analysis (MFA) and Stable Orthogonal 
Local Discriminant Embedding (SOLDE). Note that, all of 
these approaches involve PCA as a preprocessing step when 
tackle with singularity problem. In the following experiments, 
we keep 95% energy of data samples.  

Before we do any classification, for each data set, we 
normalize their features first, making all the values in the 
range [-1,1]. For each dataset, l (l =3, 4, 5) images of each 
person are randomly selected as training samples, while the 
corresponding remain ones of each class are used for testing. 
For a given l, twenty random partitions were obtained for 
each data set, and average classification accuracy rate and 
standard deviation were reported. 

Usually, the parameters can be empirically selected in all 
experiments. To be specific, we sampled several values of 
parameters and chose the values with the best performance 
for all approaches. In our experiments, we set the 
neighborhood parameter k=l-1, k1=2, k2=10 and 
regularization parameters ,α β  in Table II. 

 
With respect to pattern discrimination, it is quite 

reasonable to suppose that the different samples have 
different contributions to classification. The greater the 
contributions of the samples are, the more significance for 
classification they have. We take into account the local 
scaling regulator of a data to dynamically adjust adjacent 
weights between pairs of neighbors, so as to well represent 
the classification contribution of each sample. In our 
experiments, the parameter t sets as follows [28] 

2

2
1

1 k

i j
j

t x x
k =

= −∑  

In short, the recognition process has three steps. First, the 
linear projection matrix V is calculated from the training set; 
then the new testing face image vectors and all training 
vectors are projected into r-dimensional subspace; finally, the 
labels of testing image vectors are identified by nearest 
neighbor classifier.  

C. Classification Results Comparisons 
In general, the recognition rate varies with the 

dimensionality of the face subspace. The best average 
performance (best rate in the average curve) obtained by the 
seven dimensionality reduction algorithms as well as the 
corresponding standard variation and optimal dimensionality 
(at which the maximum average recognition rate has been 
reported) on the Yale, YaleB, FERET and Georgia Tech face 

TABLE II 
REGULARIZATION PARAMETERS SETTING 

Dataset α  β  

Yale 0.001 0.003 
YaleB 0.001 0.005 

FERET 0.5 0.009 

Geogia Tech 0.9 0.007 

TABLE I 
STATISTICS OF DATA SETS 

Dataset d n c 

Yale 32×32 165 15 
YaleB 32×32 2414 38 

FERET 32×32 1400 200 

Geogia Tech 32×32 750 50 
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data sets is summarized in Table III – VI respectively.  
From both tables and figures, we can see that our proposed 

methods consistently beat the other six methods on all the 
data sets. These experiments reveal a number of interesting 
points. 

(1) The top recognition accuracy of F-MFA approach 
outperforms SOLDE. This is probably because that SOLDE 
applies PCA preprocessing to tackle with singularity problem. 
However, some discriminant information will be eliminated 
in such preprocessing stage. F-MFA formulates the 
objectives in trace difference criterion which can effectively 
avoid singularity problem. 

(2) As can be seen, F-MFA outperforms PCA, LDA, LPP, 
UDP and MFA. This is probably because that these 
algorithms capture only the similarity and ignore the diversity 
of faces in local neighborhoods, which will lead to unstable 
intra-class compact representation and degrade the 
generalization abilities of these algorithms. Differently, 
F-MFA preserves both the similarity and diversity among 
nearby faces.  

(3) F-MFA and SOLDE performs better than other 
algorithms. Results on a variety of data sets have shown that 
F-MFA and SOLDE more stable than others. It indicates that 
orthogonality of projection and the local geometry is very 
important in characterizing the intrinsic geometry of faces 
and improving the discriminant and generalization power of 
the algorithm. 

 

 

 

 
 (4) It would be interesting to note that, The LPP and UDP 

method performs the worst in almost every case. This because 
that both of them are unsupervised methods which does not 
well encode the discriminating information of data and when 
there are only little training samples for each subject, the 
manifold structure cannot be characterized by local 
neighborhoods correctly. 

VI. CONCLUSION 
In this paper, we have exploited the local variation of data 

to characterize intrinsic geometric structure of data. In order 
to obtain an orthogonal projection matrix, we formulated the 
linear dimensionality reduction problem as a regularized 
difference criterion which can be solved by standard 
eigenvalue decomposition, and it effectively circumvents the 
singularity problem. For high-dimensional data set, the 
computational costs can be further alleviated by QR 
decomposition of data matrix X. In fact, F-MFA gives a 
flexible and efficient method to enhance the performance of 
MFA. Extensive experiments results of face recognition 
demonstrate the effectiveness of our method. 
One possible extension of our work is to perform F-MFA in 
the reproducing kernel Hilbert space induced by a nonlinear 
function. The performance of kernel-based F-MFA needs to 
be further investigated. Another question is how to choose the 
regularization parameter theoretically. These works will be 
discussed in further research. 

TABLE VI 
BEST AVERAGE RECOGNITION ACCURACY CORRESPONDING STANDARD 
DEVIATION (IN PERCENT) COMPARISON ON GEORGIA TECH FACE SET. 
THE NUMBER APPEARING IN PARENTHESIS CORRESPONDING TO THE 

OPTIMAL DIMENSIONALITY OF THE PROJECTED SUBSPACE. 

Method 3 Train 4 Train 5 Train 

PCA 63.14±1.70(33) 67.98±1.72(38) 71.56±1.94(50) 
LDA 48.63±2.44(47) 53.76±2.74(49) 54.90±1.68(49) 

LPP 45.16±8.93(15) 58.31±4.86(15) 63.02±4.49(17) 

UDP 25.26±3.12(45) 28.63±2.30(50) 30.84±1.92(45) 

MFA 59.17±2.70(50) 60.71±2.06(50) 58.77±1.91(50) 

SOLDE 66.96±2.87(19) 71.25±2.21(22) 73.22±2.07(22) 

F-MFA 72.18±2.53(49) 78.96±1.45(37) 83.48±1.60(36) 

TABLE V 
BEST AVERAGE RECOGNITION ACCURACY CORRESPONDING STANDARD 

DEVIATION (IN PERCENT) COMPARISON ON FERET FACE SET. THE 
NUMBER APPEARING IN PARENTHESIS CORRESPONDING TO THE OPTIMAL 

DIMENSIONALITY OF THE PROJECTED SUBSPACE. 

Method 3 Train 4 Train 5 Train 

PCA 31.87±1.20(50) 36.27±1.59(50) 40.86±2.14(50) 
LDA 37.35±1.78(50) 34.91±1.59(14) 31.51±1.44(50) 

LPP 26.36±1.67(50) 30.03±2.01(50) 33.18±2.57(50) 

UDP 7.09±0.98(50) 8.34±1.08(50) 8.98±1.42(50) 

MFA 43.64±1.33(49) 48.16±2.00(50) 61.10±1.78(44) 

SOLDE 67.44±1.77(22) 73.97±1.67(23) 78.21±1.52(32) 

F-MFA 86.75±1.24(28) 89.46±0.73(40) 90.09±0.75(41) 

TABLE IV 
BEST AVERAGE RECOGNITION ACCURACY CORRESPONDING STANDARD 

DEVIATION (IN PERCENT) COMPARISON ON YALEB FACE SET. THE 
NUMBER APPEARING IN PARENTHESIS CORRESPONDING TO THE OPTIMAL 

DIMENSIONALITY OF THE PROJECTED SUBSPACE. 

Method 3 Train 4 Train 5 Train 

PCA 22.67±1.50(50) 26.21±1.32(50) 29.28±1.38(50) 
LDA 53.37±2.04(37) 59.93±2.43(37) 65.46±1.62(37) 

LPP 33.44±2.63(32) 42.87±1.92(42) 49.94±1.57(50) 

UDP 45.67±1.94(50) 49.79±2.49(50) 50.88±1.36(50) 

MFA 54.81±2.27(46) 60.40±2.20(49) 66.35±1.96(46) 

SOLDE 45.24±3.11(50) 55.66±2.02(50) 62.65±1.21(50) 

F-MFA 58.26±2.09(49) 64.65±2.65(50) 70.23±1.67(42) 

TABLE III 
BEST AVERAGE RECOGNITION ACCURACY CORRESPONDING STANDARD 

DEVIATION (IN PERCENT) COMPARISON ON YALE FACE SET. THE 
NUMBER APPEARING IN PARENTHESIS CORRESPONDING TO THE OPTIMAL 

DIMENSIONALITY OF THE PROJECTED SUBSPACE 

Method 3 Train 4 Train 5 Train 

PCA 55.33±4.21(44) 55.76±3.11(28) 59.50±2.46(30) 
LDA 62.17±5.00(14) 71.76±5.17(14) 76.50±3.89(14) 

LPP 40.33±5.40(10) 48.62±5.14(13) 51.11±5.60(17) 

UDP 49.63±4.27(39) 47.52±4.90(50) 41.44±8.16(49) 

MFA 66.04±4.00(16) 74.24±3.77(17) 77.06±3.25(17) 

SOLDE 59.00±4.80(15) 67.00±3.94(14) 70.83±3.08(15) 

F-MFA 69.21±4.08(20) 76.52±3.06(23) 80.72±3.52(18) 
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