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Abstract— We propose a novel outlier detection approach in
this paper, which learns the most accurate hyperspheres for
the normal data through a top-down procedure. Conventional
one-class support vector machine (SVM) based approaches aim
to find nonlinear global solutions for all the normal data,
with the benefit of kernel trick. However, those methods are
intractable when data are in large-scale and inaccurate when
data are under complex distributions. It’s observed that high
dimensional data, e.g., features of texts or images, are always
sparse, and linear classifier usually performs well. A specific
class of data seldom lie in one single subspace. In this paper, we
propose to learn multiple discriminative hyper-spheres locally
based on the data distributions, and fit them globally to
formulate a more discriminative boundary for the normal data.
By far, neural mechanisms used by human brain-mind for
outlier detection are not known, however, the top-down strategy
proposed in this paper would inspire understanding of the
human neural mechanisms. The benefits of our model are two-
folds. First, the distribution of each local cluster is much simpler
than that in a global view, which makes the fitting processing
for each individual cluster much easier and insensitive to the
choice of kernel. In particular, we adopt low-rank constraints
to find multiple clusters automatically. Secondly, the proposed
approach trains the model linearly which tackles the large-
scale problem, substantially reducing training time and memory
space. Extensive experimental results on three image databases
demonstrate that our approach outperforms several related
methods.

I. INTRODUCTION

OUTLIER detection is an important research topic in

the areas of data mining and pattern recognition. The

aim of outlier detection is to identify abnormal samples

in a given database. Outlier detection is also referred to

as anomaly detection, which has been widely applied to

numerous real-world applications, such as fraud detection

and fault identification.

A successful outlier detection algorithm should be able to

discover the unseen data space. Specifically, if a data point

doesn’t conform the distribution of normal data, it could

be denoted as an outlier. An intuitive idea is to learn a

region that contains (almost) all the normal data. As a result,

any new samples that couldn’t be covered by this region

are outliers. However, this idea is usually infeasible due to

the following reasons. First, a normal region, encompassing

every possible normal behaviors, is hard to define. Second-

ly, the boundary between normal and outlying behaviors

is usually very fuzzy. Therefore, an outlying observation

which is close to this boundary can be normal. Finally, in
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some cases, the representations of normal data may not be

correct for future observations. Therefore, how to correctly

and effectively define positive samples becomes the most

important topic in outlier detection techniques.

Currently, there are two types of outlier detection

approaches: statistical parametric approaches and non-

parametric approaches [1]. Statistical parametric approaches

assume that the underlying distribution of observations is

known [2], [3], [4]. Other statistical techniques are based

on estimating the parameters of distributions [5]. In these

methods, outliers are denoted as observations that deviate

from the assumptions of underlying models. The techniques

are usually not suitable for the high-dimensional data due to

the lack of prior knowledge of data distribution. In contrast,

nonparametric methods are model-free. As distance-based

methods, those methods usually make use of local distance

measurements, and are suitable for dealing with large-scale

databases [6], [7], [8], [9], [1].

Within the non-parametric methods, people break down

complex problems into small ones through clustering, and

the problem turns to be small clusters based outlier detec-

tion [10], [11], [12], [13]. Recently, one-class SVM has been

introduced into outlier detection (anomaly detection) as a

non-parametric method. The motivation of one-class SVM

is to find a nonlinear hyper-sphere in the higher dimensional

space to enclose as many samples as possible by a tight

radius. Theoretically, it is possible to find a hyper-sphere

to include each training samples in the higher dimension-

al space, which is fulfilled by kernel trick. However, in

some cases, the training samples are under complicated

distribution, and the cluster boundaries are fuzzy. In these

cases, kernel plays a critical role to map messy data to a

RKHS (reproducing kernel Hilbert space) where data are

linearly separable. Nonetheless, the choice of kernel and

other parameters are part of model selection and require

a deep understanding of underlying distribution of training

samples. Usually, obtaining this prior knowledge is expensive

or even impossible.

Motivated by the above considerations, we propose a

novel outlier detection approach in this paper. Our approach

follows a top-down schedule, which breaks down a complex

data set into several smaller sets, and then finds the proper

boundary with respect to each individual group. In order

to obtain stable and kernel insensitive results, we only

consider the training samples group by group, and low-rank

constraints are employed to identify the cluster membership

automatically. For each individual group, the best radius is

determined merely based on data within this group. Intu-
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Fig. 1. Difference between the boundary found by one-class SVM (red dot
lines) and the proposed method (green dot line). Blue points indicate the
positive training samples, while red points represent the negative samples,
i.e., outliers.

itively speaking, the original one-class SVM computes the

best radius based on the global fitting whereas the proposed

method finds the optimized radius for each local group and

updates them globally.

By far, neural mechanisms used by human brain-mind

for outlier detection are not known, however, the top-down

strategy proposed in this paper would inspire understanding

of the human neural mechanisms. Compared with one-class

SVM, the proposed method benefits in two aspects. First, we

partition the complex set of training sample into several sim-

pler clusters, leading to several tractable problems. In ideal

case, we can easily find the linear solution for the boundary

in the original space. Secondly, the computation for finding

the optimal boundary could be accelerated through parallel

computing. It should be notified that, when the nonlinear

solution is reduced to a set of linear solutions, the kernel

trick becomes unnecessary, and it enables our framework to

potentially scale up to large scale data sets. Recently, multi-

sphere support vector data description (SVDD) methods [14],

[15], [16] have also been introduced to extend the traditional

one-class SVM. Our method differs from the Multi-sphere

SVDD approach in that we employ the low-rank constraint to

group sample set into different clusters automatically, and we

also present two different optimization algorithms to address

this problem.

The rest of the paper is organized as follows. We review

the related works and discuss how they differ from our

proposed method in the next section. In Section III, the

methodology is presented, including the problem statement

and optimization algorithms. The experimental results and

discussions are reported in Section IV. Section V concludes

this paper.

II. PRELIMINARY

One-class SVM was first proposed in [17], which estimates

a small set S that contains most normal data in the input

space. Meanwhile, the abnormal data should lie outside of

the set S. Recently, one-class SVM becomes more and more

popular in outlier detection [18], [19], [20]. When the data

distributions are similar between different clusters, it is easy

to find the optimized radius and center. However, in some

cases, when the distribution of the data set is very complex,

one-class SVM may not converge well and be trapped

by some local minima. This becomes obvious when data

distributions in distinct clusters are significantly different

and clusters are far from each other. As a result, one-class

SVM fails to seek the best hyper-sphere. Usually, one-class

SVM has a strong assumption for the distribution of data.

It performs best on Gaussian or Gaussian-like distributed

data, which makes the center’s location critical. Typically,

when the data are not contaminated by outliers, the mean

and variance of samples could provide good estimations for

the data distribution. When the data set contain outliers,

the performance of outlier detection would be significantly

affected by those parameters.

Moreover, one-class SVM is also very sensitive to the

choice of kernel functions, because one-class SVM needs to

project the original data into a high dimensional feature space

in order to find a perfect hyper-ball by kernel techniques.

However, this is not necessarily useful for the linearly

separable or sparse data, especially when the data already

lie in high dimensional space, e.g., images. The outcome is

a huge cost of memory in the order of O(n2), where n is

the number of samples in the data set. In addition, the choice

of kernels depends on the actual distribution of data, adding

more burden to the model selection process.

In Fig.1, there are two clusters with different distributions.

We can observe that the left cluster is denser than the right

one. Since one-class SVM always tries to find the global

solution for all the training data, the final solution needs to

cover most of the positive data, which enlarges the radius of

the hyper-sphere (the red dot lines in Fig. 1). As a result,

many outliers are contained in the hyper-sphere incorrectly.

Compared with one-class SVM, our proposed method could

divide this problem into two separate problems, and find the

optimal hyper-spheres incrementally (green lines).

In our method, we will first partition the training samples

into different segments, then find the best boundary for each

cluster independently. Compared with one-class SVM, our

method divides the complex problem into several simpler

problems. In some cases, these optimization even can be

solved linearly, which means we do not even need to use

kernel trick to find the hyper-sphere in higher dimensional

space. Without using kernel, our method could have more

stable results and is efficient for large-scale problems.

III. METHODOLOGY

In this section, we describe the proposed approach for

learning the centers and their corresponding radius automat-

ically. Then we describe the optimization algorithms.

A. Problem Statement

Let X denote a set of observations in the D-dimensional

sample space, i.e., X = [x1, x2, · · · , xN ] ∈ R
D×N . N rep-

resents the number of observations. C = [c1, c2, · · · , cM ] ∈
R
D×M is a center matrix for the clusters and M is the

number of clusters. R = [r1, r2, · · · , rM ] ∈ R
M represents
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the radius of the hyper-sphere for the corresponding cluster,

i.e., ri represents the radius for ci. In order to associate

each observation with its center and the center’s radius, we

employ an indicator matrix U = [u1, u2, · · · , uN ] ∈ R
M×N

to determine which cluster each sample xi belongs to.

Our strategy is to put most of the data into the hyper-

spheres. We want to use fewer hyper-balls with the smallest

radius, including most of the training data at the same time.

Intuitively, all the samples in the sample space could be

included by only one hyper-sphere with a large radius. This

is the most simplest way to use the hyper-sphere and its

radius to represent the data. However, the large radius will

also include undesired false positive samples (i.e., outliers) in

the testing phase. Therefore, we need to “tighten” the hyper-

ball. Since it’s expensive to know the distribution of data in

most cases, in order to reduce the radius which include the

most of the data, it is reasonable to introduce more clusters

instead of a single one. In the most extreme case, we could

set all the samples as the clusters’ centers themselves with

radius 0. However, this representation over-fits the training

samples, which causes a lot of false negative in the testing.

Furthermore, when the training samples are corrupted, this

representation will be even worse. Therefore, we need to

balance the number of the clusters and the radius for each

cluster.

In the training stage, we only consider the normal data.

Based on the above observations, we propose an objective

function as follows:

min
C,U,R,ξ

Rank(U) + 1
λ1N
‖UTR‖2 + 1

λ2N

∑

i

ξi

s.t., ∀xi ‖xi − Cui‖2 ≤ ‖uT
i R‖2 + ξi, ξi ≥ 0.

(1)

Our method always starts with over complete clusters,

which means all the clusters will be selected by some sam-

ples around the clusters’ centers via matrix U . This makes

the indicator matrix U in Eq.(1) be a full rank matrix. In our

cost function, we encourage the rank of U be smaller. This

means some of the centers will not be selected by any of the

training samples, which enables our framework to not only

select the centers automatically but also change the number

of clusters based on the distribution of training data. Note

that we use uT
i R and Cui to represent the cluster’s radius

and the center of xi correspondingly. ‖UTR‖2 in Eq.(1) sums

up all the radius of the selected clusters, which decides the

tightness of the hyper-sphere globally. In order to put all the

samples into the corresponding hyper-sphere, we add one

more constraint into the objective function. Basically, what

the constraint does is to assure that the distance between each

sample and the center of the corresponding cluster is smaller

than the cluster’s radius with a small error tolerance ξ. The

trade-off between the number of samples it can hold and the

radius of hyper-sphere is controlled by the parameters λ1 and

λ2 ∈ [0, 1].

B. Optimizing Hyper-Sphere from Convex Problem

The optimization problem in Eq.(1) is difficult to solve

because of the non-convexity of rank function. Usually, the

rank function can be replaced by the nuclear norm (or trace

norm), and we obtain the following optimization problem:

min
C,U,R,ξ

‖U‖∗ + 1
λ1N
‖UTR‖2 + 1

λ2N

∑

i

ξi

s.t., ∀xi ‖xi − Cui‖2 ≤ ‖uT
i R‖2 + ξi, ξi ≥ 0.

(2)

The solution to the optimization problem in Eq.(2) is not

straightforward, since there are multiple parameters to be

optimized. For efficiency, we adopt the inexact Augmented

Lagrange Multiplier (ALM) [21], [22] to solve the above

problem due to its successful application in low-rank repre-

sentation in [22], [23], [24]. We first rewrite Eq.(2) to the

following equivalent formulation:

min
J,C,U,R,ξ

‖J‖∗ + 1
λ1N
‖UTR‖2 + 1

λ2N

∑

i

ξi

s.t., ∀xi ‖xi − Cui‖2 ≤ ‖uT
i R‖2 + ξi,

U = J, ξi ≥ 0.

(3)

The augmented Lagrange function of (3) is:

L = ‖J‖∗ + 1
λ1N
‖UTR‖2 + 1

λ2N

∑

i

ξi

+
∑

i

αi(‖xi − Cui‖2 − ‖uT
i R‖2 − ξi)

+tr(Y T(U − J)) + μ
2 ‖U − J‖2F −

∑

i

βiξi.

(4)

The problem shown in Eq.(4) is unconstrained. Therefore,

we can separately minimize the variables J , U , R, C, when

fixing the other variables. The Lagrange multipliers αi and

Y could also be updated in this procedure, where μ > 0 is

a penalty parameter.

Here we show how to update Jk+1, Ck+1, Rk+1 and Uk+1

iteratively. After dropping the irrelevant terms w.r.t. J , (4)

can be rewritten as

Jk+1 = min
Jk

1
μk
‖Jk‖∗ + 1

2 ‖Jk − (Uk + (Yk/μk))‖2F .

(5)

Problem (5) could be effectively solved by using the singu-

lar value thresholding (SVT) algorithm [25]. Let UJΣJVJ
denote the SVD of matrix Uk + (Yk/μk), where ΣJ =
diag({σi}1≤i≤r), r is the rank, and σi are the singular val-

ues. Then, the optimal solution Jk+1 = UJΩ(1/μk)(ΣJ)VJ ,

where Ω(1/μk)(ΣJ) = diag({σi− (1/μk)}+), and t+ means

the positive part of t.
By ignoring terms independent of C in (4) and doing some

derivations, we have

∂L
∂C

= 2
∑

i

αi(Cui − xi)u
T
i . (6)

In a similar way, we have

∂L
∂R

= 2(
1

λ1N
UUT −

∑

i

αiuiu
T
i )R. (7)

∂L
∂U = 2

λ1N
RRTU + Y + μ(U − J)

−2∑
i

(CTxi − CTCUvi −RRTUvi)u
T
i .

(8)
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Algorithm 1. Solving Eq.(3) by Inexact ALM
Input: Sample set X , parameters λ1, λ2, η, J = 0,

Y = 0, ξ = 0, μmax = 106, μ = 10−6,

ρ = 1.1, k = 1, ε = 10−8

Output: Ck, Uk, Rk, ξk
1:while not converged do
2: update Jk+1 using (5), given others fixed

3: update Ck+1 using (6), given others fixed

4: update Rk+1 using (7), given others fixed

5: update Uk+1 using (8), given others fixed

6: update ξk+1 by gradient descent using
∂L
∂ξi

= 2
λ2N
− αi − βi.

7: update βk+1 by gradient descent using
∂L
∂βi

= −ξi.
8: update the multipliers Yk+1 and αk+1

Yk+1 = Yk + μk(U − J)
αk+1 = αk + μk(‖xi − Cui‖2 − ‖uT

i R‖2 − ξi)
9: update the parameter μk+1 by

μk+1 = min(ρμk, μmax)
10: check the convergence conditions∑

i

‖xi − Cui‖2 − ‖uiR‖2 − ξi < ε and

‖Uk+1 − Jk+1‖∞ < ε.
11: k = k + 1
12: end while

The detailed algorithm of our optimization is outlined in

Algorithm 1.

In Algorithm 1, both step 2 and step 3 are convex prob-

lems, and we can solve them using closed-form solutions.

Specifically, Step 3 is solved by traditional optimization

method in order to avoid potential non-invertible matrix uiu
T
i

, which contains in its closed-form solution. In addition, we

set ε = 10−8 due to the assumption that all the samples have

been normalized in the range of [0 ∼ 1]. In order to simplify

the solution in step 5 in Algorithm 1, we introduce Uvi to

replace the original ui for matrix derivatives.

C. Dual Form Solution

Even Eq.(4) can be trivially solved through Algorithm 1,

its convergence is hardly guaranteed especially when the

training samples are in large-scale and high dimensional

space. Notably, in Algorithm 1, there are 8 variables need

to be updated: C, U , J , R, ξ and other three Lagrange

multipliers. Inspired by one-class SVM, we find that it is

reasonable to use the dual form to optimize the objective

function instead of the primal form. There are two major

reasons. First, the dual problem of SVM reveals the kernel

structure, which provides more flexibility. Secondly, the dual

form solution has an advantage of representing some param-

eters by Lagrangian multipliers, and therefore removing the

slack variable if linear penalty term is adopted. This also

allows the solution to open to the high-dimensional space.

In the dual form of one-class SVM, the center C is

represented by a weighted combination of observations in

kernel space C =
∑

i

αiΦ(xi), where Φ(·) is the kernel

function. In addition, the original parameter R and ξ are

converted into constraint in the new dual form formulation.

In the dual form, only two parameters need to be optimized,

namely, α1 and α2. And the α1 can be determined once α2

is found. Therefore, they reduced the problem into a simpler

optimization problem.

As we discussed above, our primal objective function has 8

variables, imposing a huge or even intractable solution space.

We will reduce the number of objective variables by virtue

of the similar dual form formulation. By introducing kernel

Φ(·), the original Lagrange function turns to be:

L = ‖J‖∗ + 1
λ1N
‖UTR‖2 + 1

λ2N

∑

i

ξi

+
∑

i

αi(‖Φ(xi)− Cui‖2 − ‖uT
i R‖2 − ξi)

+tr(Y T(U − J))−∑
i

βiξi.

(9)

From the derivatives respect to R, we have:

(
1

λ1N
UUT −

∑

i

αiuiu
T
i )R = 0. (10)

We know that R can only be real positive value, and therefore

we get the constraint:

α̂ =
1

λ1N
, (11)

where α̂ =
∑

i

αiviv
T
i , ui = Uvi. This becomes a constraint

in the later dual form.

For ξi, we also have:

∂L
∂ξi

=
2

λ2N
− αi − βi = 0. (12)

Since βi > 0 always holds, we obtain another more tight

constraint:

0 ≤ αi ≤ 1

λ2N
. (13)

In the case of C, we replace it by

C =
∑

i

αiΦ(xi)v
T
i α̃U

−1. (14)

Therefore we can replace the C in the term Φ(xi)−Cui,
and naturally obtain

Φ(xi)− Cui = Φ(xi)−
∑

i

αiΦ(xi)α̂. (15)

From Eq.(15), it is clear to recognize that the original

selected center C becomes a linear combination of Φ(xi),
which means we can eliminate C from the original problem.

After we replace R, C and ξ with new representations, we

can reformulate the original problem with the dual form by

maximizing:

L̂ = max
U,J,αi

‖J‖∗ + tr(Y T(U − J)) +
∑

i,j

αiαjXi,jα̂
2

s.t. 0 ≤ αi ≤ 1
λ2N

, α̂ = 1
λ1N

,
(16)

where Xi,j is the linear relationship between xi and xj .
Afterwards, we only have four parameters that need to be
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Fig. 2. Instead of finding the nonlinear solution globally, our proposed
framework only finds the linear solution for each individual cluster. Light
color sample points represent positive training samples. The red sample
points represent the negative samples(outliers). The black ”+” sign marks
the center of each cluster.

optimized, namely, U , J , αi, Y , each of which has its

own solution. First, αi can be tackled by following the

routine solution of one-class SVM since we fix all the

other variables. Second, parameter J can be solved through

SVT [25] with the close form solution as shown in (5).

And U can also be solved with the close-form formulation:

U = ( 2
λ1N

RRT + uI + CCT + 2RRT)−1

(uJ − Y + 2
∑

i

CTxiv
T
i ).

(17)

Finally, Y can be updated through the same method in

Algorithm 1, Y = Y + μ(U − J).

Note that when the training data set is in large-scale, it

is highly expensive to find the nonlinear solution to the

objective function. In some cases, it is impossible to get

nonlinear solution due to the kernel in the objective function.

Since the complex data set is divided into several clusters in

our method, it is not necessary to find the nonlinear solution

for clusters anymore. In this case, we can just simply employ

the linear kernel to replace original nonlinear kernel to find

linear solutions. Fig. 2 illustrates our idea of dividing sample

set into multiple clusters and seeking optimal hyper-spheres

for each of them.

For instance, let’s consider the optimization over α1 and

α2 with all other variables fixed. Since the first two terms

are independent with α, we discard them in the optimization

of α. Then, the Eq.(16) reduces to

min
α1,α2

1

2

2∑

i,j

α1α2Xi,jα̂
2 +

∑

i

αiGi +G, (18)

where

Gi =
N∑

j=3

αjXi,jα̂
2,

G =
N∑

i,j=3

αiαjXi,jα̂
2,

s.t. 0 ≤ α1, α2 ≤ 1
λ2N

,
2∑

i=1

αi = Δ,

(19)

where Δ = 1−
2∑

i=1

αi. We discard G, which is independent

of α1 and α2, and eliminate α1 to obtain

min
α2

1
2 (Δ− α2)α2X1,1 + (Δ− α2)α2X1,2

+ 1
2α

2
2X2,2 + (Δ− α2)G1 + α2G2,

(20)

with the derivative respect to α2

∂L̂
∂α2

= −(Δ− α2)X1,1 + (Δ− α2)X1,2

+α2X2,2 −G1 +G2.
(21)

Setting this to zero and solving for α2, we get

α2 =
Δ(X1,1 −X1,2) +G1 −G2

X1,1 +X2,2 − 2X1,2
. (22)

Once α2 is found, α1 can be revered from α1 = Δ− α2.

Algorithm 2 shows the details of our dual form solution. In

the algorithm, we keep the SVT solution for J . U will be

updated for each iteration after the α is changed.

Algorithm 2. Dual form algorithm
Input: data matrix X , parameter λ1, λ2, Y = 0, J = 0,

μ = 10−6, μmax = 106, ρ = 1.1, ε = 10−8

Output: U, α1, α2

1:while not converged do
2: update J using (5), given others fixed

3: update α1, α2 using (18)-(22), given others fixed

4: update U using (17), given others fixed

5: update the multipliers Y
Y = Y + μ(U − J)

6: update the parameter μ by

μ = min(ρμ, μmax)
7: check the convergence conditions

‖U − J‖∞ < ε.
8: end while

D. Outlier Detection

For training purpose, the input samples only include

normal data. After optimizing the objective functions, our

method returns an indicator matrix, a center matrix, and

the corresponding radius. With all these information, our

detection strategy is very straightforward. For a given test

sample, our method first finds the cluster with the closest

center. After the closest center is selected, the distance

between the sample and the center will be calculated. The

sample is considered to be a member of that cluster only if

it is within its radius. If it is outside the cluster boundary,

then the the next closest cluster is considered. This process
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Fig. 3. Example images in ORL database.

continues until either all clusters are considered or the cluster

containing the sample is determined. If the sample is not

within any cluster, then it is labelled as an outlier.

Our method provides two important parameters which can

be used for some interesting applications, such as active

learning. The first parameter is the error ξ. This parameter

indicates the extra distance of the sample from the closest

cluster besides its radius. In some areas (e.g., astronomy) the

ability to identify rare phenomena is of great importance.

These rare observations can be identified by thresholding

ξ. Secondly, the composition of each cluster can also pro-

vide valuable information. Depending on the situation some

clusters can be removed from consideration. For example,

different types of vehicles (e.g. SUVs, trucks, sedans) should

belong to distinct clusters. If a user is only interested in

SUVs and trucks, then when classifying new samples, the

sedan cluster can safely be removed, making our system very

flexible to adjust to different circumstances.

IV. EXPERIMENTS

In this section, we evaluate the performance of our method

by three groups of experiments on the ORL, Hong Kong

PolyU NIR and CMU PIE databases. Our method is com-

pared with three representative algorithms: the original one-

class SVM [17], replicator neural networks (RNNs) [7], and

manifold clustering [26]. Each model is trained on the normal

data and tested on the data set with outliers. The following

experiments will demonstrate that the proposed method is

capable to to capture the properties of normal data. Since

the three databases we used in this paper are face images

with simple backgrounds, we only use the raw pixel values

as the input features. Only histogram equalization is used for

preprocessing.

We use two metrics to evaluate the performance of all

compared methods:

• True positive rate (TPR) is defined as follows:

TPR =
TP

TP + FN
, (23)

where TP represents the true positives, and FN repre-

sents the false negatives.

• False positive rate (FPR) is defined as follows:

FPR =
FP

FP + TN
, (24)
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Fig. 4. Results of the experiments on ORL database displayed as ROC
curves.

where TN represents the true negatives, and FP repre-

sents the false positives.

A. ORL Database

The ORL database is used in our first group of ex-

periments. This database contains a total of 40 different

subjects. For each subject, there are 10 different images,

which were taken at different times, varying the lighting and

facial expressions. Some example images in this database

are shown in Fig. 3. By preprocessing, we identify and

locate all the faces. The images were normalized in scale and

orientation to make sure two eyes were aligned at the same

position across different images. Then, we crop the facial

areas from the original image as raw feature for matching.

The size of each image in the experiments is 32 by 32

pixels, resulting in a 1024 dimensional feature vector. We

randomly select 6 images from each subject to construct the

training set. The remaining 4 images and other 4 images

which are randomly selected from other subjects are used as

the testing set. In this case, the images from other subjects

are considered as outliers.

Fig.4 compares the performance of our method with the

other three algorithms. Our method provides the flexibility

while performing slightly better than all the other algorithms.

The limited increase in performance is most likely due to the

small number of training samples is very sparse in the high-

dimensional space. When the number of training sample is

small, the difference between nonlinear and linear solution

will be very closed to each other.

B. Hong Kong PolyU NIR Database

Hong Kong PolyU Near-infrared (NIR) database [27]

contains 335 subjects and 100 images for each subject.

PolyU NIR database is collected by a real time NIR face

capture device. The related version of Hong Kong PolyU NIR

database we used in our paper contains 55 subjects, each of

which comprises six expressions, e.g., anger, disgust, fear,

happiness, sadness and surprise, and different poses. Fig. 5
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Fig. 5. Demo images in HK PolyU NIR database.
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Fig. 6. Results of the experiments on Hong Kong PolyU NIR database
displayed as ROC curves.

shows some example images in the HK PolyU NIR database.

The size of each image is 32 × 32 pixels. Our training set

contains 55 subjects with 80 images for each subject. For

the testing purpose, we randomly select 40 images from the

rest 54×20 (exclude the image from itself) as our positive

samples (outliers). The 20 negative samples (normal data) are

selected from the rest of the images from the corresponding

subject. Then we take average among all the different 55

subjects to get the final recognition accuracy.

Fig.6 shows the performance of all compared methods on

PolyU NIR database. From our observation, we conclude that

our proposed method not only outperforms the original one-

class SVM but also performs better than RNNs. From the

perspective of manifold, these face images should lie in the

image space with several clusters, since there are different

expressions related with these images. The proposed method

will first partition these clusters and learn the center and ra-

dius linearly. In this database, since there are no illumination

changes included, the centers of different clusters are not very

far away from each other. In this case, the improvement of

our method is not very significant. In some cases our method

is just slightly better than others.

C. PIE Database

The CMU Pose, Illumination, and Expression (PIE)

database [28] is used for further evaluating the performance

of all compared methods. PIE database contains 68 subjects,

Fig. 7. Example images in PIE database.
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Fig. 8. Results of the experiments on PIE database displayed as ROC
curves.

with 41,368 face images. The face images were captured by

13 synchronized cameras and 21 ashes, under varying pose,

illumination, and expression. In our experiments, 11,560

different faces from 68 different people are used. Fig. 7

shows some example images in the PIE database. Compared

with Hong Kong PolyU NIR data set, significant changes of

the pose, illumination and expression conditions are incorpo-

rated in these experiments. Another reason makes CMU PIE

distinct is that it provides sparse image sequence rather than

a dense one sampled from a video. The continuity of data set

has been ruined by distinct illumination, pose, or expression,

which is not a common assumption in previous work. Rather

it could be a scenario in real world applications. Therefore,

we test all the algorithms in this database and compare their

performance in a more general case.

Similar to the previous experiments setup, we randomly s-

elect 80 images from each individual as our training samples.

Then we build the test sample set by random selecting 40

images from the rest images of each subjects, as our positive

samples (outliers). And we also select 20 negative samples

from the rest of images, and add them into the test set. Then

the final results are computed from the average of these 68

classes. The image size is fixed at 32×32.

Fig.8 shows the different results of different methods for

PIE database. Compared with the previous databases, PIE

database not only has different expressions, but also has

illumination changes within each subject. The face images
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TABLE I

AUC OF ALL COMPARED METHODS ON THREE DATABASES.

Databases RNNs [7] One-class SVM [17] Manifold Clustering [26] Ours

ORL 0.8761 0.8462 0.8700 0.9128
HK PolyU NIR 0.7530 0.6893 0.7066 0.7898
PIE 0.8140 0.7880 0.7290 0.8420

for each training sample should be divided into more clusters

than the previous databases, i.e., similar face expression

with different poses. It is harder to obtain a global solution

for the training samples with one-class SVM. However, in

our method, we partition these samples into several clusters

and find the optimal for each cluster. In this case, our

method simplifies the distribution which makes the solution

easier to obtain. From Fig.8, we conclude that the difference

between two methods are larger than the previous case.

Recall the experimental results in two previous databases,

we notice that our proposed method performs better when

the training sample distribution is more complex and denser.

Therefore, we can conclude that the linear solution for each

cluster is better than the nonlinear global solutions when the

distribution of training samples is more complex.

Table 1 reports the AUC (area under ROC curve) scores

of all compared methods on three databases. It shows that

our method consistently outperforms related methods.

V. CONCLUSIONS

In this paper, we introduce a novel outlier detection frame-

work by extending the one-class SVM approach. The original

one-class SVM tries to find a nonlinear global solution to

include most of the training samples with a tight hyper-sphere

through the use of kernel trick. Since the computation for

nonlinear kernel are really expensive when the data set is

large, we design a novel framework to tackle this problem

linearly. Compared with one-class SVM, we first partition

the data set into several simpler clusters, then try to find

the linear solution for each individual cluster separately.

We build up our global solution by combining these local

solutions together. When a test sample is input to a trained

model and it is determined that it does not belong to any sub

clusters, then it can be labeled as an outlier. The experimental

results on three databases demonstrate the effectiveness of

our approach.
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