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Abstract— Sparse coding approximates the data sample as
a sparse linear combination of some basic codewords and
uses the sparse codes as new presentations. In this paper,
we investigate learning discriminative sparse codes by sparse
coding in a semi-supervised manner, where only a few training
samples are labeled. By using the manifold structure spanned
by the data set of both labeled and unlabeled samples and the
constraints provided by the labels of the labeled samples, we
learn the variable class labels for all the samples. Furthermore,
to improve the discriminative ability of the learned sparse codes,
we assume that the class labels could be predicted from the
sparse codes directly using a linear classifier. By solving the
codebook, sparse codes, class labels and classifier parameters
simultaneously in a unified objective function, we develop
a semi-supervised sparse coding algorithm. Experiments on
two real-world pattern recognition problems demonstrate the
advantage of the proposed methods over supervised sparse
coding methods on partially labeled data sets.

I. INTRODUCTION

SPARSE Coding (SC) [1], [2], [3], [4], [5] has been
a popular and effective data representation method for

many applications, including pattern recognition [6], [7], [8],
bioinformatics [9], [10], [11] and computer vision [12], [13],
[14]. Given a data sample with its feature vector, SC tries
to learn a codebook with some codeworks, and approximate
the data sample as the linear combination of the codewords.
SC assume that only a few codewords in the codebook are
enough to represent the data sample, thus the combination
coefficients should be sparse, i.e. most of the coefficients
are zeros, leaving only a few of them non-zeros. The linear
combination coefficients of the data sample could be its new
representation. Because they are sparse, the coefficient vector
is often referred to as the sparse code. To solve the sparse
code, one usually minimizes the approximation error with
regard to the codebook and the sparse code, and at the same
time seeks the sparsity of the sparse code.

Although SC has been used in many pattern recognition
applications, such as palmprint recognition [15], dynamic
texture recognition [16], human action recognition [17],
speech recognition [7], digit recognition [18], and face recog-
nition [19], in most cases, SC is used as an unsupervised
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learning method. When SC is performed to the training data
set, it is assumed that the class labels of the training samples
are unavailable. Then after the sparse codes are learned, they
will be used to learn a classifier. Thus the class labels are ig-
nored during the sparse coding procedure. However, in most
pattern recognition problems, the class labels of the training
samples are given. It is thus natural to improve the discrimi-
native ability of the learned sparse codes for the classification
purpose. To solve this problem, a few supervised SC methods
were proposed to include the class labels during the coding
of the samples. For example, Mairal et al. [20] proposed
to learn the sparse codes of the samples and a classifier in
the sparse code space simultaneously, by constructing and
optimizing a unified objective function for the SC parameters
and the classification parameters. Wang et al. [21] proposed
the discriminative SC method based on multi-manifolds,
by learning discriminative class-conditioned codebooks and
sparse codes from both data feature spaces and class labels.
Though these methods use the class labels, they require
that all the training samples are labeled. However, in some
real-world applications, there are only very few training
samples labeled, while the remaining training samples are
unlabeled. Learning from such a training set is called semi-
supervised learning [22], [23], [24], [25]. Semi-supervised
learning, compared to the supervised learning, can explore
both the labels of the labeled samples and the distribution
of the overall data set containing labeled and unlabeled
samples. When there are few labeled samples, they are not
sufficient to learn an effective classifier using a supervised
learning algorithm. In this case, it is necessary to include
the unlabeled samples to explore the overall distribution.
Many semi-supervised learning algorithm has been proposed
to learn classifier from both labeled and unlabeled samples
(inductive learning) [26], [27], or to learn the labels of the
unlabeled samples from the labeled samples (transductive
learning) [28], [29], [30]. However, surprisingly, no work has
been done to learn discriminate sparse codes from partially
labeled data set by utilizing both the labels and the feature
vectors of the labeled samples, and the feature vectors of
the unlabeled data samples. It is interesting to note that He
et al. [31] proposed to use the SC method to construct a
sparse graph from the data set for the transductive learning
problem, so that the class labels could be prorogated from the
labeled samples to the unlabeled samples via the sparse code.
However, during the sparse graph learning procedure using
SC, the class labels of the labeled samples were ignored.
Thus in He et al.’s work [31], SC was also performed in an
unsupervised way. Similarly, SC was also used to construct
a sparse graph for the transductive learning problem in [32].

To fill this gap, we propose a semi-supervised SC method
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in this paper. Given a data set with only few of the samples
labeled, besides conducting SC for all the samples, we
also assume that the class labels for all the samples could
be learned from their sparse codes. To do this, we define
variable class labels for all the samples, and a classifier
to predict the variable class labels. The variable class label
learning is regularized by the manifold of the data set and the
labels of the labeled samples. To learn the codebook, sparse
codes, variable class labels, and the classifier parameters
simultaneously, we propose a unified objective function. In
the objective function, besides the approximation error term
and the sparsity term for SC, we also introduce the class label
approximation error term and the manifold regularization
term for variable class labels. By optimizing this objective
function, we try to predict the variable class label from
the sparse codes, thus the learned sparse code is naturally
discriminative since it has the ability to predict the class
labels. Moreover, the learning of the class labels of the
unlabeled samples is regularized by the known labels of the
labeled samples, the sparse codes and the manifold structure
of the data set. The contributions of this paper are in two
folds:

1) We propose a discriminative SC method which could
learn from semi-supervised data set. It is a discrimina-
tive representation and both labeled and unlabeled data
samples could be used to improve its discriminative
power.

2) Moreover, it is also an inductive learning method since
it learns a codebook and a classifier from the semi-
supervised training set, which could be further used to
code and classify the test samples.

The rest parts of this paper is organized as follows: in
Section II, we introduce the proposed semi-supervised SC
method; in Section III, the experiment results on two data sets
are reported; and finally in Section IV the paper is concluded.

II. PROPOSED METHOD

In this section, we introduce the proposed semi-supervised
learning method. An objective function is firstly constructed,
and then an iterative algorithm is developed to optimize it.

A. Objective Function

We assume that we have a training data set of 𝑛 training
samples, denoted as {x1, ⋅ ⋅ ⋅ , x𝑛} ∈ ℝ

𝑑, where x𝑖 is the 𝑑-
dimensional feature vector for the 𝑖-th sample. The data set
is further denoted as a data matrix as 𝑋 = [x1, ⋅ ⋅ ⋅ , x𝑛] ∈
𝑅𝑑×𝑛, where the 𝑖-th column is the feature vector of the 𝑖-th
sample. We assume that we are dealing with a 𝑐-class semi-
supervised classification problem, and only the first 𝑙 samples
are labeled, while the remaining samples are unlabeled. For
a labeled sample x𝑖, we define a 𝑐-dimensional binary class
label vector ŷ𝑖 ∈ {1, 0}𝑐, with its 𝜄-th element equal to one
if it is labeled as the 𝜄-th class, and the reminding elements
equal to zero. The class label vector set of the labeled
samples are denoted as {ŷ1, ⋅ ⋅ ⋅ , ŷ𝑙} ∈ ℝ

𝑐, and they are
further organized as a matrix 𝑌𝑙 = [ŷ1, ⋅ ⋅ ⋅ , ŷ𝑙] ∈ {1, 0}𝑐×𝑙,

with its 𝑖-th column as the label vector of the 𝑖-th sample. To
construct the objective function, we consider the following
three problems:

∙ Sparse Coding: Given a sample x𝑖, sparse coding
tries to learn a codebook matrix 𝐵 = [b1, ⋅ ⋅ ⋅ , b𝑚] ∈
ℝ
𝑑×𝑚, where its columns are 𝑚 codewords, and an

𝑚-dimensional coding vector s𝑖 ∈ ℝ
𝑚, so that x𝑖

could be approximated as the linear combination of the
codewords,

x𝑖 ≈ 𝐵s𝑖 (1)

And at the same time, s𝑖 should be as sparse as possible.
Thus we also call s𝑖 sparse code. The sparse code s𝑖
is a new representation of x𝑖. The sparse codes of the
training samples are organized in a sparse code matrix
𝑆 = [s1, ⋅ ⋅ ⋅ , s𝑛] ∈ 𝑅𝑚×𝑛, with its 𝑖-th column as the
sparse code of the 𝑖-th sample. To learn the codebook
and the sparse codes from the training set, the following
optimization problem is proposed,

min
𝐵,𝑆

𝑛∑

𝑖=1

{∥x𝑖 −𝐵s𝑖∥22 + 𝛼∥s𝑖∥1
}
,

𝑠.𝑡 ∥b𝑘∥22 ≤ 𝑐,

(2)

where the first term ∥x𝑖 − 𝐵s𝑖∥22 is the approximation
error term, the second term ∥s𝑖∥1 is introduced to
encourage the sparsity of each x𝑖, and 𝛼 is a trade-
off parameter. Moreover, ∥b𝑘∥22 ≤ 𝑐 is imposed to to
reduce the complexity of each codeword.

∙ Class Label Learning: We also propose to learn the
class label vectors from the sparse code space for all
the training samples by a linear function. To do this,
we introduce a variable label vector for each sample
x𝑖 as y𝑖 ∈ ℝ

𝑐. Please note that we relax it as a real
value vector instead of a binary vector, and each element
presents its membership of each class. The variable
class label vector set for all the training samples are
denoted as {y1, ⋅ ⋅ ⋅ , y𝑛} ∈ ℝ

𝑐, and further organized
as a variable class label matrix, 𝑌 = [y1, ⋅ ⋅ ⋅ , y𝑛] ∈
ℝ
𝑐×𝑛. We assume that its class label vector could be

approximated from its sparse code by a linear classifier,

y𝑖 ≈𝑊 s𝑖, (3)

where 𝑊 ∈ ℝ
𝑐×𝑚 is the classifier parameter matrix. To

learn the class labels and the classifier parameter matrix,
we propose the following optimization problem,

min
𝑆,𝑊,𝑌

𝑛∑

𝑖=1

∥y𝑖 −𝑊 s𝑖∥22

𝑠.𝑡 ∥w𝑘∥22 ≤ 𝑒, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚
y𝑖 = ŷ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙.

(4)

As we can see from the above objective function, we
use the squared 𝐿2 norm distance ∥y𝑖 − 𝑊 s𝑖∥22 as
the approximation error for the 𝑖-th sample. Moreover,
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∥w𝑘∥22 ≤ 𝑒 constrain is introduced to reduce the
complexity of the classifier, and y𝑖 = ŷ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙
constrains are introduced so that the learned labels could
respect the known labels of the labeled samples.

∙ Manifold Label Regularization: We also hope the
learned class labels could respect the manifold structure
of the data set. We assume that for each sample x𝑖, its
class label vector y𝑖 could be reconstructed by the class
labels of its nearest neighbors 𝒩𝑖,

y𝑖 ≈
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗y𝑗 , (5)

where 𝐴𝑖𝑗 is the reconstruction coefficient, which could
be solved in the same way as Locally Linear Embedding
(LLE) [33] by minimizing the reconstruction error in the
original feature space,

min
𝐴𝑖𝑗 ∣𝑛𝑗=1

∥
∥
∥
∥
∥
∥

x𝑖 −
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗x𝑗

∥
∥
∥
∥
∥
∥

2

2

𝑠.𝑡 𝐴𝑖𝑗 ≥ 0, 𝑗 ∈ 𝒩𝑖,
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗 = 1

𝐴𝑖𝑗 = 0, 𝑗 /∈ 𝒩𝑖

(6)

With the solved reconstruction coefficient matrix 𝐴 =
[𝐴𝑖𝑗 ] ∈ ℝ

𝑛×𝑛
+ , we regularize the class label learning

with the following optimization problem,

min
𝑌

𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥

y𝑖 −
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗y𝑗

∥
∥
∥
∥
∥
∥

2

2

𝑠.𝑡 y𝑖 = ŷ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙.
(7)

By doing this, we assume that label space and the
data space share the same local linear reconstruction
coefficients.

The overall optimization problem is formulated by com-
bining the three problems in (2), (4) and (7), and the
following optimization problem is obtained,

min
𝐵,𝑆,𝑌,𝑊

𝑛∑

𝑖=1

⎧
⎨

⎩
∥x𝑖 −𝐵s𝑖∥22 + 𝛼∥s𝑖∥1 + 𝛽∥y𝑖 −𝑊 s𝑖∥22

+𝛾

∥
∥
∥
∥
∥
∥

y𝑖 −
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗y𝑗

∥
∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

𝑠.𝑡. ∥b𝑘∥22 ≤ 𝑐, ∥w𝑘∥22 ≤ 𝑒, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚,

y𝑖 = ŷ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙.
(8)

where 𝛽 and 𝛾 are the tradeoff parameters, which are selected
by cross-validation. Please note that in this formulation, we
do not use the class labels to regularize the sparse codes
directly. Instead, a classifier is learned to assign the class
label from the sparse codes, so that the class labels, the

classifiers, and the sparse codes could be learned together
and regularize each other.

B. Optimization

It is difficult to find a closed-form solution for the problem
in (8). Thus we use the alternate optimization strategy to
optimize it in an iterative algorithm. In each iteration, the
variables are optimized by turn. When one of the variables
is optimized, the others are fixed.

1) Optimizing 𝐵 and 𝑊 : We first discuss the optimization
of 𝐵 and 𝑊 . As we show later, they could be solved together
as different parts of an generalized codebook. By removing
the terms irrelevant to 𝐵 and 𝑊 , and fixing 𝑆 and 𝑌 , we
obtain the following optimization problem,

min
𝐵,𝑊

𝑛∑

𝑖=1

{∥x𝑖 −𝐵s𝑖∥22 + 𝛽∥y𝑖 −𝑊 s𝑖∥22
}

= ∥𝑋 −𝐵𝑆∥22 +
∥
∥
∥
√
𝛽𝑌 −

√
𝛽𝑊𝑆

∥
∥
∥
2

2

𝑠.𝑡. ∥b𝑘∥22 ≤ 𝑐, ∥w𝑘∥22 ≤ 𝑒, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚.

(9)

We define an extended data matrix by catenating 𝑋 and

𝑌 as 𝑋̃ =

[
𝑋√
𝛽𝑌

]
, and an extended codebook matrix

by catenating 𝐵 and 𝑊 as 𝐵 =

[
𝐵√
𝛽𝑊

]
. Moreover, we

combine the two constrains ∥b𝑘∥22 ≤ 𝑐 and ∥w𝑘∥22 ≤ 𝑒 to one
single constraint ∥b𝑘∥22 + 𝛽∥w𝑘∥22 ≤ 𝑐+ 𝛽𝑒. This constrain

could be rewritten as

∥
∥
∥
∥

[
b𝑘√
𝛽w𝑘

]∥∥
∥
∥

2

2

= ∥b̃𝑘∥22 ≤ (𝑐 + 𝛽𝑒),

where b̃𝑘 is the 𝑘-th column of the 𝐵 matrix. In this way,
the optimization is rewritten as

min
𝐵

∥
∥
∥𝑋̃ −𝐵𝑆

∥
∥
∥
2

2

𝑠.𝑡
∥
∥
∥b̃𝑘

∥
∥
∥
2

2
≤ (𝑐+ 𝛽𝑒), 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚.

(10)

This problem could be solved using the Lagrange dual
method proposed in [34]. After 𝐵 is solved, 𝐵 and 𝑊 could
be recovered from it as

𝐵 = 𝐵1,⋅⋅⋅ ,𝑑,

𝑊 =
1√
𝛽
𝐵𝑑+1,⋅⋅⋅ ,𝑑+𝑐,

(11)

where 𝐵1,⋅⋅⋅ ,𝑑 is the frist 𝑑 rows of the matrix 𝐵, and
𝐵𝑑+1,⋅⋅⋅ ,𝑑+𝑐 is the 𝑑+ 1 to 𝑑+ 𝑐 rows of matrix 𝐵.

2) Optimizing 𝑆: To solve the sparse codes in 𝑆, we fix 𝐵,
remove the terms irrelevant to 𝑆, and the following problem
is obtained,

min
𝐵

∥
∥
∥𝑋̃ −𝐵𝑆

∥
∥
∥
2

2
+ 𝛼

𝑛∑

𝑖=1

∥s𝑖∥1 (12)

Similarly, this problem could be solved efficiently by the
feature-sign search algorithm proposed in [34].
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3) Optimizing 𝑌 : To solve the class label vectors in 𝑌 ,
we fix 𝐵, 𝑆 and 𝑊 , remove the terms irrelevant to 𝑌 , and
get the following optimization problem,

min
𝑌

𝛽
𝑛∑

𝑖=1

∥y𝑖 −𝑊 s𝑖∥22 + 𝛾
𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥

y𝑖 −
∑

𝑗∈𝒩𝑖
𝐴𝑖𝑗y𝑗

∥
∥
∥
∥
∥
∥

2

2

= 𝛽 ∥𝑌 −𝑊𝑆∥22 + 𝛾
∥
∥𝑌 (𝐼 −𝐴)⊤

∥
∥2
2

𝑠.𝑡 y𝑖 = ŷ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙.

(13)

We separate the class label matrix to to sub-matrices as 𝑌 =
[𝑌𝑙 𝑌𝑢], where 𝑌𝑙 contains the first 𝑙 columns of 𝑌 , which are
the variable class label vectors of the labeled samples, while
𝑌𝑢 contains the remaining columns which are the variable
class label vectors of the unlabeled samples. Similarly, we
also separate 𝑆 to two sub-matrices as 𝑆 = [𝑆𝑙 𝑆𝑢], where 𝑆𝑙
contains the sparse codes of the labeled samples, while 𝑆𝑢
contains the sparse codes of the labeled samples. Moreover,
we define matrix 𝑄 = (𝐼 − 𝐴)⊤ for convenience, and

also separate it to two sub-matrices as 𝑄 =

[
𝑄𝑙
𝑄𝑢

]
where

𝑄𝑙 contains its first 𝑙 rows and 𝑄𝑢 contains its remaining
rows. With these definitions, we could rewrite the objective
function in (13) as

𝛽 ∥𝑌 −𝑊𝑆∥22 + 𝛾
∥
∥𝑌 (𝐼 −𝐴)⊤

∥
∥2
2

= 𝛽 ∥𝑌𝑙 −𝑊𝑆𝑙∥22 + 𝛽 ∥𝑌𝑢 −𝑊𝑆𝑢∥22 + 𝛾

∥
∥
∥
∥[𝑌𝑙 𝑌𝑢]

[
𝑄𝑙
𝑄𝑢

]∥∥
∥
∥

2

2

= 𝛽 ∥𝑌𝑙 −𝑊𝑆𝑙∥22 + 𝛽 ∥𝑌𝑢 −𝑊𝑆𝑢∥22 + 𝛾 ∥𝑌𝑙𝑄𝑙 + 𝑌𝑢𝑄𝑢∥22
(14)

Since it is constrained that y𝑖 = ŷ𝑖 for any 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙,
𝑌𝑙 = 𝑌𝑙 and it is actually not a variable. Thus we substitute
𝑌𝑙 = 𝑌𝑙 to (14) by only treating 𝑌𝑢 as variable to solve, and
obtain the following optimization problem with regard to 𝑌𝑢,

min
𝑌𝑢

{
𝑓(𝑌𝑢) = 𝛽

∥
∥
∥𝑌𝑙 −𝑊𝑆𝑙

∥
∥
∥
2

2
+ 𝛽 ∥𝑌𝑢 −𝑊𝑆𝑢∥22

+𝛾
∥
∥
∥𝑌𝑙𝑄𝑙 + 𝑌𝑢𝑄𝑢

∥
∥
∥
2

2

} (15)

To solve this problem, we simply set the derivative of the
objective function 𝑓(𝑌𝑢) with regard to 𝑌𝑢 to zero, and
obtain the solution for 𝑌𝑢,

∂𝑓(𝑌𝑢)

∂𝑌𝑢
= 2𝛽 (𝑌𝑢 −𝑊𝑆𝑢) + 2𝛾

(
𝑌𝑙𝑄𝑙 + 𝑌𝑢𝑄𝑢

)
𝑄⊤𝑢 = 0

⇒ 𝑌𝑢 =
(
𝛽𝑊𝑆𝑢 − 𝛾𝑌𝑙𝑄𝑙𝑄

⊤
𝑢

) (
𝛽𝐼 + 𝛾𝑄𝑢𝑄

⊤
𝑢

)−1

(16)

C. Algorithm

We summarize the iterative learning algorithm for Semi-
Supervised Sparse Coding (SSSC) in Algorithm 1. As we can
see from the algorithm, we employ the original sparse coding
algorithm to initialize the sparse code matrix, and employ the

Linear Neighborhood Propagation (LNP) algorithm [35] to
initialize the class label matrix. The iterations are repeated
for 𝑇 times and the updated solutions for 𝐵, 𝑆, 𝑊 and 𝑌𝑢
are outputted.

Algorithm 1 Learning Algorithm of SSSC.
Input: Training data matrix 𝑋;
Input: Training data label matrix for labeled samples 𝑌𝑙;
Input: Tradeoff parameters 𝛼, 𝛽 and 𝛾.;
Input: Iteration number 𝑇 .
Initialize the sparse code matrix 𝑆0 by performing original
sparse coding to 𝑋;
Initialize the class label matrix 𝑌 0;
for 𝑡 = 1, ⋅ ⋅ ⋅ , 𝑇 do

Update codebook matrix 𝐵𝑡 and the classifier parameter
matrix 𝑊 𝑡 as in (10) by fixing 𝑆𝑡−1 and 𝑌 𝑡−1;
Update sparse code matrix 𝑆𝑡 as in (12) by fixing 𝐵𝑡

and 𝑌 𝑡−1;
Update the variable class label matrix 𝑌 𝑡 as in (16) by
fixing 𝐵𝑡 and 𝑆𝑡;

end for
Output: The codebook matrix 𝐵𝑇 , the sparse code matrix
𝑆𝑇 , the classifier parameter matrix 𝑊𝑇 , and the class label
matrix for the unlabeled samples 𝑌 𝑇𝑢 .

D. Coding and Classifying New Samples

When a new test sample x comes, we first find its nearest
neighbors 𝒩 from the training set, and we assume that
it could be reconstructed by these nearest neighbors. The
reconstruction coefficients 𝑎𝑖∣𝑖∈𝒩 are computed by solving a
problem in (6). To solve its sparse code vector s, and its class
label vector y, we use the codebook 𝐵, classifier parameter
matrix 𝑊 , and the class label matrix 𝑌 learned from the
training set. The optimization problem is formulated as

min
s,y

⎧
⎨

⎩
∥x−𝐵s∥22 + 𝛼∥s𝑖∥1 + 𝛽∥y−𝑊 s∥22

+𝛾

∥
∥
∥
∥
∥

y−
∑

𝑖∈𝒩
𝑎𝑖y𝑖

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭
,

(17)

where y𝑖 is the class label vector of the 𝑖-th training sample.
To solve this problem, we also adopt the alternate optimiza-
tion strategy. In an iterative algorithm, we optimize s and y
in turn.
∙ Solving s: When s is optimized, y is fixed, and the

following problem is solved,

min
s

{∥x−𝐵s∥22 + 𝛼∥s𝑖∥1 + 𝛽∥y−𝑊 s∥22
= ∥x̃−𝐵s∥22 + 𝛼∥s𝑖∥1

}
,

(18)

where x̃ =

[
x√
𝛽y

]
. This problem could be solved using

the feature-sign search algorithm proposed in [34].
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∙ Solving y: When s is fixed and y is optimized, we have
the following problem,

min
y

⎧
⎨

⎩
𝛽∥y−𝑊 s∥22 + 𝛾

∥
∥
∥
∥
∥

y−
∑

𝑖∈𝒩
𝑎𝑖y𝑖

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭
. (19)

It could be solved easily by setting the derivative with
regard to y to zero, and the solution is obtained as

y =
1

𝛽 + 𝛾

(

𝛽𝑊 s + 𝛾
∑

𝑖∈𝒩
𝑎𝑖y𝑖

)

(20)

By repeating the above two procedures for 𝑇 times, we could
obtain the optimal sparse code s and the class label vector y
for the test sample x. It will be further classifier to the 𝜄∗-th
class with the largest value in the class label vector y,

𝜄∗ = argmax𝜄∈{1,⋅⋅⋅ ,𝑐}y(𝜄), (21)

where y(𝜄) is the 𝜄-th element of y.

III. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed semi-supervised sparse coding algorithm on two real-
world data sets.

A. Cytochromes P450 Inhibition Prediction

The cytochromes P450 is a family of enzymes which
are involved in the metabolism of most modern drugs [36],
[37], [38]. There are five major isoforms of cytochromes
P450, which are 1A2, 2C9, 2C19, 2D6, and 3A4 [39]. It is
very important to model the interactions of the cytochromes
P450 with the drug-like compounds in drug-drug interaction
studies. In this case, predicting if a given compound can
inhibit these isoforms plays an important role in the drug
design [40]. Here, we evaluated the proposed algorithm in
the problem of cytochromes P450 inhibition prediction.

1) Data Set and Protocol: We collected a data set of
compounds for each isoform, and each compound is an
inhibitor or a non-inhibitor of the isoform. The numbers of
inhibitors and non-inhibitors of each isoform are given in
Figure 1. As we can see from the figure, the data sets are not
balanced. For each isoform, non-inhibitors are usually more
than inhibitors. To represent each compound, we extracted
the molecular signatures as features, which were computed
from the atomic signatures of circular atomic fragments [41],
[42], [43]. The problem of cytochromes P450 inhibition
prediction is to learn a predictor from the given data set
to predict whether a candidate compound is an inhibitor or
a non-inhibitor. Thus it is a binary classification problem.

To conduct the experiment, for each isoform, we per-
formed the 10-fold cross-validation [44] to the data set. Each
data set of an isoform was split into ten folds, and each fold
was used as the test set in turn, while the remaining nine folds
were used as the training set. For each taining set, we only
randomly labeled a small part (about 20%)of the compounds
with the class labels (inhibitors or non-inhibitors), while

1A2 2C9 2C19 2D6 3A4
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Fig. 1. The numbers of inhibitors and non-inhibitors of each isoform in
the cytochromes P450 inhibition prediction data set.

leaving the remaining part as unlabeled compounds. The
proposed learning algorithm was performed to the molecular
signatures of the training compounds to learn the codebook,
the classifier and the labels of the unlabeled compounds.
Then the compounds in the test set were used as test sample
one by one. The learned codebook and the classifier were
used to code and classify the test compound.

To evaluate the prediction performance, we used the
following performance measures as prediction performance
metrics: Sensitivity (Sen), Specificity (Spc), Accuracy (Acc),
and F1 score (F1). To calculate these metrics, we first
calculate the following values for each test set: True Positive
(TP) which is the number of inhibitor compounds that were
correctly predicted, True Negative (TN) which is the number
of non-inhibitor compounds that were correctly predicted,
False Positive (FP) which is the number of non-inhibitor
compounds wrongly predicted as inhibitor compounds, and
False Negative (FN) which is the number of inhibitor com-
pounds wrongly predicted as non-inhibitor compounds. With
these values computed from the test set, the performance
measures are defined as,

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,𝑆𝑝𝑐 =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
,

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,

𝐹1 =
2× 𝑇𝑃

2× 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.

(22)

Please note that the ranges of Sen, Spc, Acc and F1 values
are all from 0 to 1, and a larger value indicates a better
prediction performance.

2) Results: Since the proposed algorithm is the first semi-
supervised sparse coding algorithm, we compared it to some
unsupervised and supervised sparse coding algorithms. For
the unsupervised sparse coding algorithms, we compared the
proposed SSSC against the original sparse coding (SC) algo-
rithm proposed in [2], and the popular manifold regularized
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Fig. 2. Experimental results on the 1A2 inhibitor data set.
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Fig. 3. Experimental results on the 2C9 inhibitor data set.
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Fig. 4. Experimental results on the 2C19 inhibitor data set.
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Fig. 5. Experimental results on the 2D6 inhibitor data set.
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Fig. 6. Experimental results on the 3A4 inhibitor data set.

sparse coding (MRSC) algorithm proposed in [45]. For the
supervised sparse coding algorithm, we compared it against
the unified classifier learning and sparse coding (UCLSC)
algorithm proposed in [20], and the discriminative sparse
coding on multi-manifold (DSCMM) algorithm proposed
in [21]. Please note that for the supervised sparse coding

algorithms, it is required that all the training samples are
labeled. In this case, we only used the labeled samples in the
training set, while the unlabeled samples were ignored. The
experiment results of four different performance measures on
the five data sets are given in Fig. 2 - 6. It is clear that our
SSSC algorithm consistently outperforms all other supervised
and unsupervised sparse coding algorithms, namely DSCM-
M, UCLSC, MRSC and SC, in terms of the Sen, Spc, Acc
and F1 measures. This implies that SSSC is able to learn
more discriminative sparse codes to distinguish inhibitors
from non-inhibitors by learning discriminative codebooks
and classifiers. The performance of supervised methods,
DSCMM and UCLSC, is comparable to that of unsupervised
methods, MRSC and SC. We should note that only labels
are used by the supervised sparse coding methods, while
unsupervised methods can explore all samples. However,
supervised methods include class labels to improve the
discriminative ability of the sparse codes during learning,
but unsupervised methods simply ignore them. Only the
proposed semi-supervised method, SSSC, can use both the
labels and all samples. Thus it is not surprising that it
archives the best performance.

B. Wireless Sensor Fault Diagnosis

In this experiment, we evaluate the proposed algorithm on
the problem of wireless sensor fault diagnosis for wireless
networks [46], [47], [48], [49], [50], [51], [52], [53], [54].

1) Data Set and Setup: We collected a data set of 300
samples of wireless sensors. The samples were classified to
four fault types, including shock, biasing, short circuit, and
shifting. We also included the normal type, making it five
types in total. For each type, there are 60 samples. For each
sample, we used the output signal of wireless sensors as the
feature to predict its state type.

To conduct the experiment, we also employed the 10-fold
cross validation. The entire data set was split to 10 folds
randomly. Each fold was used as the test set in turn, and
the remaining nine folds were combined and used as the
training set to train the diagnosis model. Most of the training
samples were unlabeled while only a small portion of the
training samples was labeled. We performed the proposed
algorithm to learn the codebook, classifier, sparse codes and
class labels of the unlabeled training samples. The learned
codebook and classifier are used to represent and classify
the test samples. The classification performance is measured
by the classification accuracy (Acc) for multi-class problem,
which is defined as follows,

𝐴𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(23)

The value of Acc also varies from 0 to 1, and a larger Acc
indicates better classification performance.

2) Results: The boxplots of the accuracy of 10-fold cross
validations are given in Fig. 7. From this figure, we can
see that the proposed semi-supervised sparse coding and
classification method SSSC significantly outperforms the
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Fig. 7. Experimental results on the wireless sensor fault diagnosis data set.

other sparse coding methods on the wireless sensor fault
diagnosis task. This is because our method utilizes both the
labeled and unlabeled samples in learning the sparse code,
while others do not effectively use such information. Again,
the supervised methods DSCMM and UCLSC do not show
much better improvement over the unsupervised methods
MRSC and SC. It is clear that the proposed SSSC combines
the advantages of both supervised and unsupervised methods.
The codebook and the class labels of unlabeled samples
are directly learned from training samples. Thus it is better
adaptive to the data and higher classification accuracy can
be achieved.

IV. CONCLUSION

We have proposed a sparse coding method for the semi-
supervised data representation and classification task. To
the best of our knowledge, this paper is the first attempt
to learn sparse code on partially labeled data sets. Ex-
perimental results have shown that our proposed method
SSSC are not only significantly better than state-of-the-art
unsupervised sparse coding methods, but also outperforms
supervised sparse coding methods. How to explore more
discriminative information from both labeled and unlabeled,
and combine them with our proposed semi-supervised sparse
coding algorithm to further improve the learning performance
appears to be an interesting direction in machine learning and
pattern recognition communities.
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