
Explicit Feature Mapping via Multi-Layer Perceptron
and its Application to Mine-Like Objects Detection

Hang Shao and Nathalie Japkowicz

School of Electrical Engineering and Computer Science,
 University of Ottawa,

Ottawa, Canada
hshao068@uottawa.ca, nat@eecs.uottawa.ca

Abstract—In this paper, a novel learning method is
introduced that borrows simultaneously from the principles of
kernel methods and multi-layer perceptron. Specifically, the
method implements the feature mapping idea of kernel methods
into a multi-layer perceptron. Unlike in kernel learning where
the feature space is usually invisible and inaccessible, the multi-
layer perceptron based mapping is explicit. Therefore, the
proposed model can be learned directly in feature space.
Together with the inherent sparse representation, the proposed
approach will thus be much faster and easier to train even in the
event of a large network size. The proposed approach is applied
in the context of an Autonomous Underwater Vehicle Mine-Like
Objects detection task. The results show that the proposed
approach is able to improve upon the generalization performance
of neural network based methods. Its prediction results are also
close to or better than those obtained by kernel machines. Its
learning and classification speed is shown to far surpass those of
kernel machines. These results are confirmed on a number of
experiments involving benchmarking UCI domains.

Keywords— Machine learning; Feature mapping; Neural
networks; Kernel learning; Target detection.

I. INTRODUCTION
Kernel machines represent a large family of machine

learning methods that has been successfully applied to a wide
variety of pattern recognition problems [1]. The non-linear
kernel machines usually proceed via two steps. The first step
projects the data from the input space to another feature space.
The second step learns a model in this new feature space using
certain optimization techniques. In this fashion, the nonlinear
hyper-surface in the original input space, or decision boundary
in classification, can be approximated by a linear hyper-plane
in another feature space, usually with a higher dimensionality.
In most cases, the feature mapping has to be non-linear in order
to perform the non-linear to linear transformation.

Even though the feature space is visible for some kernels,
for instance the linear kernel, the kernel machines can process
without having access to the feature space. In this way, the
curse of dimensionality can be avoided by transferring the
feature space computation back to the original input space,
making it possible to work with a feature space having a
considerable high dimensionality. In kernel machines, the
feature mapping is usually implicit. Therefore, kernel machines
work without knowing the higher dimensional feature space.

The training process of the kernel machine is to solve for
the coefficients associated with the some training points
(known as support points in SVMs), based on which the
decision boundary is truly built [2]. Since the kernel feature
space can be invisible, in the training stage, the higher
dimensional computation has to be realized by pair-wise
evaluation of the kernel function on the N training data points,
where N is the number of training instances. Consequently, an
N square sized kernel matrix, also known as Gram matrix is
built. The training process can be slow or even virtually
impossible if learning is conducted on a large scale dataset
where N becomes very large. Unfortunately in many real life
applications, it is necessary to deal with the cases where the
number of training samples is very large. Therefore, a lot of
work has focused on how to speed up kernel learning,
especially on the large scale datasets.

When making predictions, the testing data is classified in
the same feature space where the decision boundary is learned.
As a result of kernel feature mapping, a part of the training data
points need to be kept to mathematically express the decision
boundary. For non-sparse kernel machines, such as LS-SVMs,
the whole dataset has to be stored. Apart from the training
points, the same amount of coefficients associated with the
support points has to be solved and stored as well. When a new
testing point comes, the classification process will compare it
with such points via the kernel function and then evaluated
with the corresponding coefficients For non-sparse kernel
machines, such operation is conducted between the testing
point and every training point one by one. Altogether, this
makes for a slow classification process.

However, it is important to note that kernel methods are not
the only way to perform feature mapping. In certain cases, we
might benefit from making the feature mapping explicit where
the feature space become visible and accessible. Therefore,
directly solving the classifier in such a feature space becomes
computationally feasible and, sometimes, even more efficient.
Furthermore, since prediction is performed in the same visible
space, no training data has to be kept for the testing stage. This
work will show how to properly perform explicit feature
mapping via building Multi-Layer Perceptron (MLP). Some
inherent property of MLP feature mapping is property
discussed and addressed in this work. A robust maximum
margin classifier is built in the feature space with a high
efficiency and competitive generalization performance.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1055

II. RELATED WORK
 Due to the slow speed of kernel learning on large scale
datasets, previous research resorted to better or more efficient
optimization techniques, such as decomposition methods, to
solve kernel machines [3-5]. Another approach is to use data
dependent low-rank approximation to reduce the size of kernel
matrix [6, 7]. This way, the feature mapping can be regarded as
explicit. When making the feature mapping explicit, no
decomposition techniques are needed. The projection
coefficients can be directly copied from the subset of the
original training data. The subset selection can be either
conducted by certain optimization criteria [8] or simply by
sampling [9].

Vedaldi et al. [10] have also discussed the limitation of
non-linear kernel mapping on large scale datasets. Explicit
feature mapping is used in order to approximate a family of
addictive kernels, such as the intersection kernels and χ2
kernels. A closed-form expression of the mapping function is
derived for such kernels. The analysis of the approximation
error is also presented.

Some random mapping methods can be viewed as another
kind of explicit feature mapping. In such methods, the feature
projection is random. Rahimi et al. [11] proposed to use
Fourier and Binning features to transform the data to a low
dimensional random feature space. A regression model is built
after the random feature mapping is completed.

Two neural network based methods, Extreme Learning
Machine (ELM) [12] and Echo State Networks (ESN) [13] are
also examples of random feature mapping learning. The
mapping in such random methods will be independent of the
data. Both methods contain a random reservoir which consists
of many hidden neurons, and the only trainable part is the
weights in the linear output layer. ELM is often used in static
problems. However, as a recurrent neural network, ESN is
often applied to solve dynamic problems. The neurons inside
the ESN reservoir are sparsely connected. If the sparsity of the
internal connection is reduced to 0 and all the feedback weights
are removed, ESN will share the same network architecture as
ELM. It is worth mentioning that ELM is proven to be a
universal approximator with random hidden layer.

It worth mentioning that the combination of MLP and
margin maximization is not new. There are also similar works
using MLP and max margin classifier (like SVMs) in joint. An
example of such work can be found in digit recognition [14].
MLP is first used to classify the digits, then SVMs is trained on
the classification outputs produced by the MLP. In this
approach, both the MLP and SVM are used as classifiers and
SVM is used to distinguish the results of the MLP, which is
much different from the proposed approach. In another MLP-
SVM classifier [15], the model training is also divided into two
stage. Firstly, the MLP is trained to minimized the relative
entropy between the output distribution and the true label
distribution. Secondly, SVMs is trained on the outputs of MLP.
The first stage MLP training is independent of the SVM.
Moreover, either from the objective function or the
optimization method, the proposed approach is different from
such works. More importantly, the norm of MLP weights will
be addressed in the proposed approach.

III. THE PROPOSED APPROACH
As mentioned above, some neural network based methods

can be viewed as a good case of explicit feature mapping.
Therefore, we can perform the mapping via building such
networks. In this work, we will show how to implement
explicit mapping via building one of the most widely applied
neural networks, the MLP. The feature space will be defined
by the parameters and activation function of the MLP hidden
layer(s).

However, the proposed approach does not belong to the
family of random mapping networks such as ELM or ESN.
The proposed approach will not use random and data-
independent feature mapping. A relationship between the
training points and the mapping parameters will be built, as we
will later see the impact of such parameters on the final
learning model.

Furthermore, it is worth mentioning that unlike some of the
related works, from the starting point, we are not using explicit
feature mapping to approximate any kernels, nor is it any kind
of speed-up version of kernel learning, since no kernel will be
used in the proposed approach at all. The proposed method in
this work is neural network based and it will show how to
properly implement the explicit feature mapping via building
MLP. We are not approximating any kernels, so the MLP-
based explicit feature mapping enjoys more flexibility. MLP is
picked in this work because the architecture of MLP is well-
known and straightforward, making the proposed model easy
to understand. However, the explicit feature mapping idea is
not limited to MLP cases.

In this research, we will focus on binary classification
problems, but it can be easily extended to multi-class or one
class classifications. It is worth pointing out that the explicit
feature mapping is also ready and easy to be applied to most of
the learning tasks where kernel learning is valid, such as
regression analysis and Principal Component Analysis (PCA),
etc.

While implementing the explicit feature mapping via
building MLP, we cannot ignore certain properties of MLP.
The generalization ability of MLP is closely related to the
norm of the weights. The main parameters in MLP are its
weights. Thus, it will be beneficial to take into account the
impact of the weights on the final network. Moreover, the
dimensionality of the feature space is expected to be large. As a
result, another property of the MLP used in this work is that it
has a large hidden layer, which differs from the traditional
MLP. The proposed method will seek to produce a maximum
margin classifier, which maximizes the separation space
between the positive class and the negative class. Furthermore,
a sparse and robust solution will be obtained. The decision
boundary will only be built on a part of the training points,
which will speed up the training process. The sigmoid neurons,
the most common neuron in the MLP will be used in the
hidden layer. We will begin by building MLP with single
hidden layer, and the proposed approach will be extended to
deep networks with ease where multiple hidden layers are
included in the architecture.

1056

A. Explicit feature mapping via Multi-Layer Perceptron
For simplicity, we can begin with the case of MLP with

single hidden layer. Given N training instances (xi, ti), xi∈RM,
ti∈{-1, 1}, (i=1,2,…, N), where xi are the attributes, M is the
number of attributes and ti is the class label, using a linear
output layer, the output yj of a MLP with L hidden nodes is

1

(,), 1, 2, ..., (1)
L

j i i j
i

y w g j N
=

= =∑ a x

The input weights connected to the ith hidden neuron are ai
(the hidden bias can be included in the input weights), wi is the
output weights and g(a, x) is the hidden layer activation
function, which is set to be the sigmoid function in this study.
The definition of sigmoid is

T

1
(,) (2)

1 exp()
g =

+ −
a x

a x

Similarly to SVMs, the objective function is defined to
penalize the wrongly classified points and those lying inside
the separating margin. Weight decay is applied as a form of
regularization.

2 2

1 2
1 1 1 1

1
min (,) [()] .

2

() 1 , 1, 2, ..., (3)

N L L M

i i ij
i i i j

i i i

L E w a const

subject to t y i N

ξ λ λ

ξ
= = = =

= + + +

= − =

∑ ∑ ∑∑w a

x

where λ1 and λ2 are the regularization parameters, M is the
number of input neurons w=[w1,w2,…,wL]T. As we can see, the
proposed approach has included both the training error and the
norm of weights in the objective function. Minimizing the
weights w is equivalent to maximizing the separating margin
between the positive and negative class in the hidden layer
feature space, and the proposed approach will result in a
maximum margin classifier.

 The input weights aij will directly impact on the
nonlinearity of the hidden layer feature mapping, which will be
discussed later. Considering the large noise of the data in our
application domain, the error function is chosen to be a robust
one-side Huber function [16] defined as

20.5 ,

2() 0.5 , 0

0 , 0

(4)

u u u

E u

ξ ξ

ξ ξ ξ

ξ

− >

= ≤ ≤

<

⎧
⎪
⎪
⎨
⎪
⎪⎩

It can be learned from Fig. 1 that the one-side Huber will only
penalized part of the training points. Furthermore, we define
the matrix H,

-0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ξ

E

One-side Huber Function

Fig. 1. one-side Huber. One benefit of one-side huber is that it is continous
and differentiable everywhere.

T

1 1 1 1

1 1

T
1

(,) (,) (,)

(, ..., , , ...,)

(,) (,)(,)

L

L N

N L N N LN

g g

g g
×

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H

a x a x a x

a a x x

a x a xa x

φ

φ
 (5)

where (,)a xφ is the hidden layer feature mapping, the weights
a are the mapping parameters. Let y=[y1,…, yN]T, therefore,
equation (1) can be compactly written as

= Hy w (6)

With proper reformulation, equation (3) can be rewritten
as

2 2 2

1 2

1
(,) [|| () || || ||] (7)

2
L λ λ= − + +W H Tw a w || w || a

where, resulting from the one-side Huber loss, W is a
diagonal weighting matrix whose diagonal elements Wi can
be defined as

/ ,

W 1 , 0 (8)

0 , 0

i i

i i

i

u u

u

ξ ξ

ξ

ξ

>

= ≤ ≤

<

⎧
⎪
⎨
⎪⎩

Since the feature space is accessible, no dual transformation is
necessary when solving for the weights w. The weights w can
be directly learned in the hidden layer feature space. The input
weights a and output weights w can be trained alternatively,
which means we first fix either a (or w), and train the other,
then fix w (or a)and train the other, and repeat the cycle.

 For simplicity, considering ||a||2 to be fixed and setting the
derivative of L(w, a) to zero with respect to w, the output
weights w can be solved by Iterative Reweighted Least Square
(IRLS).

1 T 1 T

1() (9)t t tλ+ −= +H W H I H W Tw

1057

As previously stated, we do not want to use random feature
mapping, so the mapping parameters aij need to be trained.
There are many valid methods to train such parameters. In this
work, we pick one of the most well-known methods, error
backpropagation (BP) [17]. The only difference is that since
the error function is not quadratic anymore and aij is included
in the objective function, the delta term of the output layer has
to be weighted according to (8) before backpropagated. Also
the aij have to be decayed according to their regularization
parameter λ2. The rest deriving process and learning formulas
will remain the same to traditional error backpropagation.

B. Insight into the impact of the norm of weights
The property of the MLP-based explicit feature mapping is

directly related to the norm of MLP weights. It has been
pointed out that when reaching small training errors, MLP with
a smaller norm of weights is more likely to generalize well
[18]. In this case, if the norm of input weights is large, the
sigmoid function in the hidden layer will be saturated, and it
will produce an output either too close to 0 or 1. Any variation
in the input data will be magnified by the weights and cause
the output hidden neurons to alternate between 0 and 1, leading
to a great variation in the output. Such network is very likely to
memorize and overfit, as any source of noise and error will be
heavily magnified.

 In this work, a large MLP is built to implement the explicit
feature mapping. As a result of the learning ability of such
large network, it is easy to reach small training error after a
very few cycles of weights training. At this point, keep tuning
the input weights to minimize the training error is not
necessary because of the danger of overfitting. We keep the
input weights small at the moment and directly compute w via
(9), so the learning speed of the proposed approach can be very
fast.

 From another perspective, the impact of a is more obvious
in regression problems. Given a testing point x*, with the same
feature mapping defined by (5), the predicted output can be
written as

* T *(,)y = w a xφ (10)

Solving w with ridge regression, equation (10) can be
rewritten as

* * T T 1 *

1
1 1

(,) () (,) (,) (11)
N N

i i i i
i i

y t k tλ −

= =

+ =∑ ∑H H I= a x a x x xφ φ

where * T T 1

1(,) () (,)i itλ −+H H Ia x a xφ φ is known as the
equivalent kernel [19]. It is interesting to find from (11) that
the predictive output y* is in fact a linear combination of ti, the
labels of the training instances. The shape of k(x*, xi) will be
largely affected by the norm of the input weights a, which will
further support the previous discussion and cast light on why
networks with large weights are more likely to overfit. The
behaviour of the network is very similar to k-Nearest
Neighbour (k-NN).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sigmoid

Fig. 2. The working region of the sigmoid is shown by the red dashed lines.
The sigmoid will be close to a linear function that could be approximated by
the blue line if its input is close to 0. More non-linearity and complexity is
gained if the sigmoid works in a wider region.

 As shown in the left plot in Fig. 3, when the norm of the
input weights is small, the smooth k(x*, x*-x) will result in a
flexible network that could take into account more distant data
points. The predicted output is a weighted average of a lot of
nearby training points, which is similar to a large k in k-NN.
When the norm of the input weights increases, the k(x*, x*-x)
becomes more peaked and localized, as illustrated by the right
plot. In such cases, the predicted output will largely weigh only
a few data points that are closest to the testing sample x*,
which is more likely to lead to overfitting. The network will
converge to 1-Nearest-Neighbour if ||a|| is sufficiently large.
The role of a here is similar to that of the smoothing parameter
used in Parzen’s probability density function estimation, which
serve as a trade-off between the bias and variance of the
estimator.

 It is worth mentioning that the above discussion as well as
such a property is only limited to sigmoidal hidden layers.
When using other hidden neurons, this property may not hold
anymore.

C. Extension to deep architecture

As mentioned before, we can also easily extend the
proposed approach to a deep architecture with multiple layers.
In deep learning methods [20, 21], the Restricted Boltzmann
Machine or auto-encoders can be trained at each layer on
unlabelled dataset, and the final layer is tuned in a supervised
way, such as logistic regression or softmax regression, on
labeled dataset.

Similarly, we can also stack additional feedforward layers
one at a time onto the previously trained architecture to form a
deep network. However, currently we work on labeled datasets,
the hidden layer of the proposed approach is trained in a
supervised way. Similarly to other deep learning methods, the
output of the previously trained layer is regarded as new input
data for the next additional layer, so the learning consists, in
fact, of repeating the training procedure of the single hidden
layer case as described in section A. At this point, the proposed
approach is the same as that of the other deep learning
methods.

1058

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.01

0

0.01

0.02

0.03

0.04

0.05

x

K
(0

,x
)

N (0, 0.25)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.05

0

0.05

0.1

0.15

0.2

x

K
(0

,x
)

N (0, 1)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

K
(0

,x
)

N (0, 4)

Fig. 3. The shape of k(x*, x*-x) with different norm of input weights. It shows the shape of k(x*, x*-x) under different norms of input weights. The first plot on
the left correspond to a hidden layer with the smallest input weights, while the plot on the right corresponds to the case with the largest input weights.

 We do not want to get into the tediously time-consuming
tuning of the mapping parameters, so the weights in the hidden
layer can be updated and decayed a desired number of times.
Compared with traditional BP method, time will be saved since
no error, also known as the delta term, will be backpropagated
among the hidden layers. Similarly to single hidden layer case,
the sparsity of W in (9) will speed up the learning of the output
weights w.

IV. EXPERIMENTS
In this section, the proposed approach will be tested and

compared to several other related learning methods.
Experiments are conducted on a real military application task,
Mine-Like Objects (MLOs) detection as well as the
benchmarking UCI domains.

Considering the class imbalance, the AUC, Area Under
ROC Curve, is used to quantify the learning results. Also, in
the training stage of every method, the positive and negative
instances are balanced by weighting each class differently
according to their ratio in the training set. For a fair
comparison, all models are implemented in Matlab, including
the quadratic programming optimizer for SVMs [22]. The
experiment is carried out on the same computer with a
2.00GHz CPU.

A. MLOs detection task

The military application, Mine Countermeasure Mission
task could be conducted by Autonomous Underwater Vehicles
(AUVs) which are capable of performing underwater tasks
without an operator. In this way, the operators will be kept
away from exposure to potential dangers. Usually the AUVs
are equipped with side-looking sonar systems such as the Side
Scan Sonar which is able to scan and image the seabed. The
under-water conditions can be studied by analyzing the images
produced by the sonar system.

The Mine Countermeasure Mission can be divided into two
stages: MLOs detection and MLOs classification. This work
only focuses on MLOs detection where detected targets are not
necessary real mines. The detected MLOs will be further
classified in the second stage. It is worth pointing out that as a
military task, there will usually be a time limit. The AUVs
should be able to support fast target detection with a single
pass. Therefore, the classification speed is important in this
application. The side scan sonar images used in this experiment
were collected by an AUV from a trail on Loch Earn, Scotland
on November 10th and November 11th, 2010. The sonar
images gathered on November 10th are used as the training set
and the data gathered on November 11th are used as the testing
set. In the data pre-processing stage, local range and standard
deviation filters are used to extract the foreground object areas
from the seabed. The image feature is the greyscale histogram.

TABLE I. SIDE SCAN SONAR DATASET INFORMATION

 Training Set Testing Set
Positive Instances 18 17
Negative Instances 2202 1130
Pos./ # Neg. 0.0082 0.0150
Total Instances 2220 1147
Features 16 16

The dataset information is summarized in Table I where the
MLOs are labeled as the positive examples. It is found that the
data is highly imbalanced. For the proposed method, the
number of hidden neurons L is fixed at 200 and λ2 is fixed at
0.5. For ELM and BP, the number of hidden neurons is
optimized to obtain the best result and all the other parameters
in BP are default parameters. A single sigmoidal hidden layer
is used for all three networks. For the kernel methods, we used
the Gaussian kernel. The regularization parameter C and
scaling parameter γ are both optimized by grid search from {2-

10,2-9,…,210}. For the proposed approach, the combination of
parameters (λ1, η) is optimized from {2-10,2-9,…,210} and {2-

1059

10,2-9,…,20}, where η is the learning rate used to update the
mapping parameters aij.

Table II shows the comparison of the results on the testing
data. The True Positive Rate (TPR) and False Positive Rate
(FPR) are also given for reference. Table III shows the model
parameters as well as the training and classification times (LR
in the tables is short for Logistic Regression). From the result
tables we can see that LR it has the lowest AUC. It is the only
classifier that directly solves the problem in the original input
space. The proposed approach is able to beat all other neural
network based models in prediction performance. The
proposed approach can produce a prediction result close to or
even better than the results obtained by kernel methods. It is
found that the LS-SVMs has the highest AUC, but
unfortunately as a non-sparse kernel machine, all the training
points will become support vectors, which will limit its
detection speed when trained with large scale dataset as
previously discussed.

TABLE II. COMPARISON OF PERFORMANCE ON SIDE SCAN SONAR DATA

Method Function TPR FPR AUC
SVMs Gaussian 0.8824 0.0442 0.9865
LS-SVMs Gaussian 0.9412 0.0540 0.9885
Kernel LR Gaussian 0.9412 0.0416 0.9858
BP Sigmoid 0.9353 0.3145 0.9231
ELM Sigmoid 0.9059 0.0686 0.9747
LR \ 0.4117 0.1876 0.7989
Proposed Approach Sigmoid 0.9177 0.0443 0.9871

TABLE III. MODEL PARAMETERS AND COMPARISON OF TIME ON SIDE
SCAN SONAR DATA

Method pameters sparsity
(%)

training
time(s)

classification
time(s)

SVMs C=2-5,γ=24 27.8 94.17 0.9063
LS-SVMs C=22, γ=22 100 13.07 2.1719
Kernel LR C=2-6,γ=20 100 33.37 2.2031
BP L=20 \ 9.173 0.0313
ELM L=40 \ 0.090 <0.01
LR C=2-2 \ 2.093 <0.01
Proposed
Approach

λ1=2-8,
η=2-7

48.6 1.123 0.0391

In terms of training and classification times, the proposed
method largely outperformed all kernel methods. Moreover, for
the proposed approach, the classification speed is directly
related to the number of hidden neurons L in the network,
which is independent of the size of training set. Therefore, the
proposed approach enjoys more flexibility. Its classification
speed can be manually adjusted by properly setting the value of
L.

B. UCI domains

The proposed approach is a general method, so it can also
be applied to many other domains. In this section, the
performance of the proposed approach is tested on UCI
domains [23]. As no real time classification is required on the
UCI domains, we do not record the classification time in this
section. The details of the UCI datasets are listed in Table IV.
As mentioned before, only binary classification is considered

in this work. Some of the listed datasets were originally used
for multiple classifications, so for such datasets multiple
classes are merged into two classes.

Before training, all attributes are normalized into the
interval [-1, 1]. The proposed approach is compared to two
classic neural network and kernel methods, BP and SVMs. The
result of another neural network based on random feature
mapping methods, ELM is also given. A grid search is
conducted to optimize the parameters of SVMs (C and γ, both
within{2-10,2-9,…,210}) and the proposed approach (λ1 and η).
For single hidden layer case, λ1 and η are optimized within {2-

10,2-9,…,210} and {2-10,2-9,…,20}. For multi-layer case, they are
optimized within {2-10,2-9,…,210} and {2-20,2-15,…,20}. The
number of hidden nodes L used for the proposed approach is
set to a large number, without much careful optimization.
Other experiment settings remain the same to the previous
section for the side scan sonar data.

TABLE IV. UCI DATASETS INFORMATION

Dataset

Attributes # pos.
Instance

neg.
Instance

pos./ #
neg. real integer

WDBC 0 9 239 444 0.5283
CMC 0 9 629 844 0.7453
CTG 0 20 1655 471 3.514
Diabetes 2 6 268 500 0.538
Glass 9 0 68 146 0.4658
Haber 0 3 225 81 2.778
Image 6 3 1320 990 1.333
Iono 2 2 225 126 1.786
Irish 0 5 175 325 0.5385
Liver 1 5 145 200 0.725
Sat 0 36 918 1082 0.8484
Spam 55 2 1813 2788 0.6503
Wine 11 2 107 71 1.507

TABLE V. COMPARISON OF TRAINING TIME(S) ON UCI DOMAINS

Dataset BP ELM SVMs Proposed Approach
Single Multiple

WDBC
(Dev.)

1.077
(0.2027)

0.0031
(0.0066)

3.895
(0.6330)

0.2437
(0.0322)

0.2978
(0.0241)

CMC
(Dev.)

1.411
(0.3213)

0.1078
(0.0172)

61.24
 (2.361)

1.3843
(0.0670)

4.010
(0.1973)

CTG
(Dev.)

23.01
(6.127)

0.7437
(0.0692)

85.30
(5.427)

4.0125
(0.5266)

5.572
(0.4654)

Diabetes
(Dev.)

0.9078
(0.1830)

0.0047
(0.0075)

8.0922
(1.3124)

0.8409
(0.0656)

2.216
(0.1624)

Glass
(Dev.)

0.7813
(0.0979)

0.0019
(0.0060)

0.9687
(0.1462)

0.1562
(0.0165)

0.1828
(0.0232)

Haber
(Dev.)

0.675
(0.1296)

0.0016
(0.0007)

2.300
(0.3075)

0.0688
(0.0489)

0.0703
(0.0168)

Image
(Dev.)

14.948
(3.558)

0.900
(0.0391)

32.20
(3.096)

1.9860
(0.2907)

2.8381
(0.1959)

Iono.
(Dev.)

2.255
(1.190)

0.0172
(0.0049)

3.155
(0.4969)

0.1640
(0.0184)

0.2322
(0.0204)

Irish
(Dev.)

0.9989
(0.5665)

0.0031
(0.0066)

9.414
(0.8928)

0.2750
(0.0296)

0.3038
(0.0308)

Liver
(Dev.)

0.9934
(0.1409)

0.0051
(0.0080)

2.6406
(0.3212)

0.0913
(0.0179)

0.2456
(0.0251)

Sat
(Dev.)

56.68
(4.765)

0.5549
(0.0482)

32.91
(3.247)

0.8037
(0.0515)

3.621
(0.1896)

Spam
(Dev.)

111.5
(48.82)

1.973
(0.0347)

461.2
(6.073)

11.05
(1.711)

11.58
(1.179)

Wine
(Dev.)

1.313
(0.5420)

0.0034
(0.0065)

0.8953
(0.1409)

0.0336
(0.0186)

0.0625
(0.0071)

1060

TABLE VI. COMPARISON OF MODEL PARAMETERS ON UCI DOMAINS

Dataset BP EL
M

SVMs Proposed Approach
single multiple

 L L C, γ, SVs L, λ1 ,η L1,L2,L3, λ1 ,η
WDBC 15 15 2-2,2-8,289 200,24,2-8 20, 200,\,2-1,2-5
CMC 5 60 26,2-4,912 300,20,2-7 40, 500,\,2-2,2-10
CTG 30 150 29,2-2,625 400,2-8,2-9 150, 500,\,2-10,2-20
Diabetes 5 15 23,2-5,415 300,20,2-4 20,100,500,2-1,2-15
Glass 15 10 2-1,24,159 100,24,2-3 10,50,200,2-8,2-10
Haber 5 15 26,2-1,187 100,2-4,2-6 10,100,\,2-10,2-10
Image 20 160 26, 20,257 300,2-10,2-10 150,200,300,2-12,2-20
Iono 10 60 26, 21,248 200,21,2-5 60,100,200,2-2,2-10
Irish 10 15 2-1,26,412 200,2-7,2-1 15,50,200,2-8,2-10
Liver 30 20 210,2-4,204 100,2-6,2-9 20,200,\,2-10,2-10
Sat 35 120 23,2-4,307 200,2-2,2-5 100,500,\,2-1,2-10
Spam 15 150 26,2-1,766 500,2-10,2-10 200,500,\.2-5,2-20
Wine 30 20 2-10,2-4,160 100,2-2,2-10 50,150,\,2-3,2-10

TABLE VII. COMPARISON OF PERFORMANCE (AUC) ON UCI DOMAINS

Dataset BP

ELM

SVMs Proposed Approach
single multiple

WDBC
(Dev.)

0.9880
(0.0129)

0.9937
(0.0049)

0.9953
(0.0048)

0.9956
(0.0047)

0.9956
(0.0053)

CMC
(Dev.)

0.7331
(0.0379)

0.7177
(0.0403)

0.7474
(0.0365)

0.7394
(0.0423)

0.7409
(0.0377)

CTG
(Dev.)

0.9109
(0.0295)

0.8898
(0.0241)

0.9351
(0.0192)

0.9295
(0.0185)

0.9407
(0.0213)

Diabetes
(Dev.)

0.8106
(0.0650)

0.8308
(0.0427)

0.8359
(0.0406)

0.8367
(0.0496)

0.8366
(0.0562)

Glass
(Dev.)

0.8062
(0.1275)

0.8321
(0.1097)

0.8907
(0.0821)

0.8426
(0.1098)

0.8567
(0.1033)

Haber
(Dev.)

0.6352
(0.1223)

0.6986
(0.1097)

0.7020
(0.0984)

0.7171
(0.1117)

0.7072
(0.1146)

Image
(Dev.)

0.9941
(0.0038)

0.9903
(0.0070)

0.9944
(0.0042)

0.9955
(0.0046)

0.9942
(0.0042)

Iono
(Dev.)

0.9307
(0.0514)

0.9381
(0.0418)

0.9799
(0.0221)

0.9670
(0.0329)

0.9683
(0.0382)

Irish
(Dev.)

0.9256
(0.0401)

0.9206
(0.0265)

0.9620
(0.0171)

0.9246
(0.0444)

0.9261
(0.0319)

Liver
(Dev.)

0.7316
(0.0926)

0.7480
(0.0713)

0.7667
(0.0899)

0.7751
(0.0731)

0.7621
(0.0779)

Sat
(Dev.)

0.9838
(0.0122)

0.9803
(0.0090)

0.9864
(0.0069)

0.9842
(0.0070)

0.9885
(0.0061)

Spam
(Dev.)

0.9682
(0.0089)

0.9566
(0.0093)

0.9762
(0.0065)

0.9702
(0.0086)

0.9738
(0.0071)

Wine
(Dev.)

0.9833
(0.0526)

0.9954
(0.0089)

0.9969
(0.0045)

0.9977
(0.0036)

0.9974
(0.0061)

The results shown are from an experiment of 5×10-fold

cross-validation. Both the average results and the standard
deviation (shown in italics in brackets) are recorded. The
parameters of each model are given in Table VI. For the
proposed approach, both cases with single hidden layer
(penultimate column in Table V, Table VI, and Table VII) and
multiple hidden layers (last column in Table V, Table VI, and
Table VII) are listed. In Table VI, parameters L1, L2, L3
(roughly optimized) indicate the number of neurons in the first,
second, third hidden layer counted from the input side. In order
to evaluate the results listed in Table VII, statistical tests are
performed. To compare multiple algorithms on multiple
domains, we chose Friedman’s test and post-hoc (Nemenyi’s)
test [24].

First, the Friedman’s test returns a χF
2 value of 37.46 and p-

value of 1.45×10-7<0.01. Therefore, the H0 hypothesis that all

the classifiers have similar performance to each other on the
datasets is rejected at significance level 0.01.

Furthermore, Nemenyi’s test is conducted. The critical
value of qα is 2.83 for α=0.05 and df=48. The result shows that
the q statistics between the proposed approach with single
hidden layer, and BP and ELM, are both 3.7210 and it is
0.3721 when compared to SVMs. With multiple hidden layers,
the q statistics between the proposed approach and BP and
ELM are both 3.9691 and it is 0.1240 with SVMs. Therefore,
from the result of Friedman’s test and Nemenyi’s test, we can
conclude that on the UCI benchmarking datasets, at the
significant level of 0.05, the proposed approach, with either
single hidden layer or multiple hidden layers outperformed
both BP and ELM and tied with SVMs.

We also see that the proposed approach is easy to train. In
terms of training times, from the results listed in Table V, we
can see that ELM is able to dominate on all datasets. This is
because ELM uses random feature mapping and the whole
learning process is only a one step calculation of the output
layer. The proposed approach will be much faster than that of
kernel based methods. Furthermore, even using a much larger
network, the proposed approach is able to learn faster than BP
on all the datasets with one hidden layer. With multiple layers,
it is still faster than BP on most of the datasets.

V. CONCLUSION AND FUTURE WORK

This work proposed a learning model that implements
explicit feature mapping via building MLP. It is able to
improve the prediction performance of neural network based
methods. From our previous discussion in section 3.2, we
found that the norm of the mapping parameters, which affects
the working region of the sigmoid function, will control the
non-linearity of the feature mapping, so it cannot be a random
number independent of the training data. It is reasonable and
beneficial to look at such parameters when building the
network. The proposed approach is able to produce a satisfying
generalization result as long as such parameters are properly
addressed. Benefiting from no tedious hidden layer training,
the learning speed of the proposed approach is very fast.

Moreover, compared to kernel machines, the proposed
approach will produce a generalization performance close to
that of kernel machines, with much improvement in the
learning speed even using a very large network. On the Side
Scan Sonar dataset, where it is of great practical importance,
the classification speed will also be largely improved. The
improvement in training and classification speed is the result of
explicit feature mapping which enables the direct feature space
computation.

Currently the network architecture of MLP is manually
decided. One possible future research avenue could be how to
learn the architecture, such as the number of layers and neurons
in each layer, directly from the input pattern. Moreover, it is
possible to implement the explicit feature mapping via
constructing other non-sigmoidal layer(s) or other non-
feedforward network architectures. It would be interesting to
see how the network parameters would affect the final model.
It would also be worth discussing how to properly learn the

1061

mapping parameters in such cases. Another possible future
direction could be to apply the explicit MLP feature mapping
to other tasks such as one class learning and PCA, etc..

ACKNOWLEDGMENT
We would like to thank Dr. Alex Bourque and Dr. Bao

Nguyen, research scientists at Defence Research and
Development Canada, who work with us on a research project
and provide us the MLOs data.

REFERENCE
[1] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.
[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

Vol. 20, 1995, pp. 273-297.
[3] E. Osuna, R. Freund and F. Girosi, “Training support vector machines:

an application to face detection”, Computer Vision and Pattern
Recognition, Proceedings, IEEE Computer Society Conference on, 1997,
pp. 130-136.

[4] T Joachims, “Making large scale support vector machine learning
practical,” Advances in kernel methods, MIT press, 1999, pp.169-184.

[5] J.C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Advances in kernel methods, MIT press, 1999,
pp.185-208.

[6] Y-J Lee and O. L. Mangasarian, “RSVM: Reduced support vector
machines,” SIAM International Conference on Data Mining, 2001.

[7] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank
kernel representations,” Journal of Machine Learning Research, Vol. 2,
2001, pp.243-264.

[8] A.J. Smola and B. Scholkopf, “Sparse greedy matrix approximation for
machine learning,“ Proceedings of the 17th International Conference on
Machine Learning. (ICML) , 2000.

[9] D. Achlioptas, F. McSherry and B. Scholkopf, “Sampling Techniques
for Kernel Methods,” In: Advances in Neural Information Processing
Systems. MIT Press, 2002.

[10] A. Vedaldi and A. Zisserman, “Efficient Additive Kernels via Explicit
Feature Maps,” IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 2012, pp.
480-492.

[11] A. Rahimi and B. Recht, “Random Features for Large-Scale Kernel
Machines,“ In: Neural Information Processing Systems (NIPS), 2007, pp.
1177-1184.

[12] G.B. Huang and Q.Y Zhu, C.K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, Vol. 70, 2006, pp. 489-501

[13] H. Jaeger, “The" echo state" approach to analysing and training
recurrent neural networks-with an erratum note,” Technical Report
GMD Report 148, German National Research Center for Information
Technology, 2001.

[14] A. Bellili, M. Gilloux and P. Gallinari, “An Hybrid MLP-SVM
Handwritten Digit Recognizer,” In Proceedings of the Sixth
International Conference on Document Analysis and Recognition
(IDCAR 01), Washington, DC, USA, 2001, pp. 28-32.

[15] X. Li, J. Bilmes and J. Malkin, “Maximum Margin Learning and
Adaptation of MLP Classifers,” In European Conf. on Speech
Communication and Technology (Eurospeech), Lisbon, Portugal,
September 2005.

[16] P.J. Huber, Robust Statistics,John Wiley & Sons, Inc., NJ. ,1981.
[17] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning

representations by back-propagating errors”. Nature, Vol. 323,1986, pp.
533-536.

[18] P.L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the size
of the network,” Information Theory, IEEE Transactions on. Vol. 44,
1998, pp. 525-536.

[19] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[20] G. Hinton, S. Osindero, and Y-W. The, “A fast learning algorithm for
deep belief nets,” Neural Computation, 18(7), 2006, pp. 1527-1554.

[21] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks, “ Science, 313(5786), 2006, pp. 504 – 507.

[22] S. Canu, Y. Grandvalet, V. Guigue and A. Rakotomamonjy, SVM and
Kernel Methods Matlab Toolbox Perception Systèmes et Information,
INSA de Rouen, Rouen, France, 2005.

[23] A. Frank, A. Asuncion, UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml, 2010.

[24] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A
Classification Perspective. Cambridge University Press, 2011.

1062

