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Abstract—This paper proposes a fast discrete-time learning
algorithm for speech enhancement of single-channel noisy speech
signal, based on a noise constrained least squares estimate.
Unlike existing learning algorithms for the noise constrained
estimate, the proposed discrete-time learning algorithm has a
low complexity and fast speed. Simulation results show that the
proposed discrete-time learning algorithm has a faster speed
than the existing learning algorithms for speech enhancement.
Moreover, the proposed discrete-time learning algorithm has a
good performance in having a significant gain in SNR at colored
noise.
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I. INTRODUCTION

Speech enhancement has been studied because of its many
applications, such as voice communication, voiced -control
systems,and the transmitted speech signals, where received
speech signals are corrupted by background noise which is
either white or colored. The objective of speech enhancement
is to restore the original signal based on a single sequence of
noisy observations [1]. There are several types of methods for
speech enhancement. The first type is the spectral subtraction
method which employs nonparametric techniques [2-3]. The
second type is the subspace method, which is based on well-
known singular value decomposition techniques.The noisy
signal space is separated into two orthogonal subspaces: the
noisy subspace and the signal subspace. Signal enhancement
is to remove the noise subspace and to estimate the clean
speech signal from the noisy speech subspace[4-5]. The third
type is the parametric method. The speech signal is modeled
as autoregressive (AR) process. After the AR parameters are
estimated, the speech signal is then recovered from Kalman fil-
tering [6-10]. Speech enhancement algorithms may be divided
into single-channel algorithms and multi-channel algorithms.
Compared with other speech enhancement methods, the para-
metric method does not require stationary of additive noise and
the speech signal. In this paper, we focus on the parametric
method for single-channel speech enhancement.

A difficulty of the parametric method is that the Kalman
filtering algorithm includes the unknown AR model parameters
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and the unknown noise variance. Thus the quality of the speech
signal recovery based on the Kalman filtering algorithm greatly
depend on how these unknown parameters are estimated in
advance. So, it is important to develop a good parameter
estimation method for good speech enhancement performance.
The least squares (LS) method is the most basic and common
estimation method for AR model parameters. The LS method
is appropriate for on line identification and is asymptotically
unbiased when the noise distribution is white. In practice,
however, the measured AR signal is usually corrupted with
colored noise. As a result, the LS method often gives a biased
estimation of the true parameters and will be very poor in the
worst case. To improve the accuracy of the LS estimation,
many significant methods, such as Yule-Walker equations,
the maximum likelihood method, the instrumental variable
method and the improved least-square method have been
developed [11-15]. In order to deal with non-gaussian noise
environments, the high-order statistic method were developed
. A generalized least absolute deviation (GLAD) method for
AR parameter estimation was developed under non-Gaussian
noise environments [16]. It was shown the GLAD method can
obtain a good AR parameter estimate with a smaller mean
square error in the presence of non-Gaussian measurement
noise than the conventional LAD method. As a result, a the
GLAD estimation-based algorithm for speech enhancement
was developed in paper [18]. However, since the cost function
of the GLAD method is non smooth, the resulting algorithm
will have a very slow convergence rate. Recently, a speech
enhancement algorithm [19] for the removal of noise from
speech signal was presented by using a novel noise constrained
least-squares (NCLS) method [17]. The NCLS estimation-
based Kalman filtering algorithm is based on a discrete-time
learning algorithm.

To increase computational efficiency, this paper proposes
a fast discrete-time learning algorithm for speech enhance-
ment of single-channel noisy speech signal, based on a noise
constrained least squares estimate. Unlike existing learning
algorithms for the noise constrained estimate, the proposed
discrete-time learning algorithm has a low complexity and fast
speed. Simulation results show that the proposed discrete-time
learning algorithm has a faster speed than the existing learning
algorithms for speech enhancement. Moreover, the proposed
discrete-time learning algorithm has a good performance in
having a significant gain in SNR at colored noise.
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II. SPEECH MODEL AND ESTIMATION

A. Speech model and Kalman filtering

Consider clean speech signal 𝑠(𝑘), which is modeled as an
autoregressive (AR) signal

𝑠(𝑘) =

𝑝∑

𝑖=1

𝑎𝑖𝑠(𝑘 − 𝑖) + 𝑢(𝑘) (1)

where {𝑎𝑖} are the speech AR parameters, 𝑠(𝑘) is the kth
sample of speech signal, 𝑢(𝑘) is the kth sample of the drive
white noise with variance 𝜎2𝑢, and 𝑝 is the speech model order.
The clean speech signal 𝑠(𝑘) is observed in the presence of
the additive noise

𝑦(𝑘) = 𝑠(𝑘) + 𝑣(𝑘) (2)

where 𝑦(𝑘) is the kth sample of the observation and 𝑣(𝑘) is
colored noise with covariance matrix 𝑅𝑣 , which is assumed to
be uncorrelated with the drive noise sequence 𝑢(𝑘). In a spe-
cial case that the observation noise is a Gaussian white noise,
𝑅𝑣 is a diagonal matrix and its diagonal elements represent
the noise variances. The purpose of speech enhancement is to
estimate the clean speech 𝑠(𝑘) from noisy speech observation
𝑦(𝑘).

Define a 𝑝-dimensional clean vector, state vector, measured
noise vector, deriving noise vector as x(𝑛) = [𝑠(𝑛 − 𝑝 +
1), ..., 𝑠(𝑛 − 1), 𝑠(𝑛)]𝑇 , y(𝑛) = [𝑦(𝑛 − 𝑝 + 1), ..., 𝑦(𝑛 −
1), 𝑦(𝑛)]𝑇 , v(𝑛) = [𝑣(𝑛 − 𝑝 + 1), ..., 𝑣(𝑛 − 1), 𝑣(𝑛)]𝑇 ,
u(𝑛) = [𝑢(𝑛− 𝑝+1), ..., 𝑢(𝑛− 1), 𝑢(𝑛)]𝑇 , and the transition
matrix as

𝐹𝑎 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
. . .

...
0 0 0 . . . 0 1
𝑎𝑝 𝑎𝑝−1 𝑎𝑝−2 . . . 𝑎2 𝑎1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

respectively. Using a vector Kalman filter, the model of the
measured speech signal is expressed as

{
x(𝑛) = 𝐹𝑎x(𝑛− 1) +𝐺u(𝑛)

y(𝑛) = 𝐻𝑝x(𝑛) + v(𝑛)
(3)

where 𝐻𝑝 is a 𝑝-th order identity matrix and 𝐺 =
[0, ..., 0, 1]𝑇 ∈ 𝑅𝑝. Then the standard Kalman filter estimation
and updating equations for speech enhancement are as follows:
⎧
⎨

⎩

K(𝑛) = 𝑃 (𝑛∣𝑛− 1)(𝑅𝑣 + 𝑃 (𝑛∣𝑛− 1))−1

𝑃 (𝑛∣𝑛− 1) = 𝐹𝑎𝑃 (𝑛− 1∣𝑛− 1)𝐹𝑇
𝑎 + 𝜎2

𝑢𝐺𝐺𝑇

x̂(𝑛) = 𝐹𝑎x̂(𝑛∣𝑛− 1) +K(𝑛)e(𝑛)
𝑃 (𝑛) = (𝐼 −K(𝑛))𝑃 (𝑛∣𝑛− 1)

(4)

where e(𝑛) = x̂(𝑛) − x̂(𝑛∣𝑛 − 1), x̂(𝑛∣𝑛 − 1) = 𝐹𝑎x̂(𝑛),
𝑅𝑣 is the covariance matrix of the measured colored noise 𝑣,
𝐾(𝑛) is the Kalman gain matrix, x̂(𝑛) represents the filtered
estimate of state vector x(𝑛), 𝑃 (𝑛) is the filtered state error
covariance matrix, and 𝑃 (𝑛∣𝑛 − 1) is predicted state error
correlation matrix.

It is seen that the the Kalman filtering includes three
unknown parameters to be estimated: the AR model

parameters {𝑎𝑖} in the transition matrix 𝐹 , the derive noise
variance 𝜎2𝑤, and the observed noise variance 𝜎2𝑣 . While the
two variance estimates may be computed by the AR model
parameters. So, the quality of the speech signal recovery
based on the Kalman filtering algorithm greatly depend on
how the model parameters are estimated in advance. More
exactly, speech enhancement performance of the parametric
method is basically determined by employing the AR model
parameter estimation.

B. Noise constrained estimation

It is well known that the noise corrupted in noisy speech
is usually non-Gaussian. To deal with non-Gaussian noise,
recently two noise constrained estimation methods [16,17]
were developed. Let observed vector y(𝑡) = [𝑦(1), ..., 𝑦(𝑁)]𝑇

and noise vector n(𝑡) = [𝑛(1), ..., 𝑛(𝑁)]𝑇 , and let

𝐵 =

⎛

⎜
⎜
⎜
⎝

𝑦(0) 𝑦(−1) . . . 𝑦(1− 𝑝)
𝑦(1) 𝑦(0) . . . 𝑦(2− 𝑝)

...
...

. . .
...

𝑦(𝑁 − 1) 𝑦(𝑁 − 2) . . . 𝑦(𝑁 − 𝑝)

⎞

⎟
⎟
⎟
⎠
.

Then the noisy speech model can be written as a linear
equation in a matrix and vector form

𝐵a∗ − y − n = 0. (5)

An 𝑙1 norm-based noise constrained estimation method (called
the GLAD estimation method) was proposed. It is to find
an optimal solution, (a∗𝛾 , z

∗), of the following optimization
problem

min ∥𝐵a− y − z∥1
s.t a ∈ 𝑅𝑝, z ∈ Ω𝛾 , (6)

where ∥ ⋅ ∥1 denotes 𝑙1 norm, Ω𝛾 = {z ∈ 𝑅𝑁 ∣ 𝛾1m ≤
z ≤ 𝛾2m}, m = 𝐸[𝑦(𝑡)]e, and 𝛾1 and 𝛾2 are design pa-
rameters which is determined by a sequential cross-validation
technique [17,18]. To overcome the non-smooth cost function
in the GLAD estimation, an 𝑙2 norm-based noise constrained
estimation method was presented. The noise constrained least-
squares (NCLS) estimate is obtained by solving the following
quadratic convex optimization problem

min ∥𝑌 a− y − z∥22
s.t a ∈ 𝑅𝑝, z ∈ Ω𝛾 , (7)

where ∥ ⋅ ∥2 denotes 𝑙2 norm.

III. LEARNING ALGORITHM FOR SPEECH ENHANCEMENT

A. Existing learning algorithms

A neural network can operate in either continuous time
or discrete time form. A continuous-time neural network
described by a set of ordinary differential equations enables
us to solve optimization problems in real time due to the
massively parallel operations of the computing units and due
to its real-time convergence rate. In comparison, discrete-time
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models can be considered as special cases of discretization of
continuous-time models.

To solve the noise constrained estimation problem (6),
one continuous-time cooperative learning algorithm [16] was
proposed as follows

State equation

𝑑x

𝑑𝑡
= −𝜇𝐵𝑇 𝑔0(w+𝐵x− y− z), (8𝑎)

𝑑w

𝑑𝑡
= −𝜇{w+𝐵𝐵𝑇w−𝑔0(w+𝐵x−y−z)−(z−𝑔1(z+w))},

(8𝑏)
𝑑z

𝑑𝑡
= −𝜇{z−𝑔1(z+w)+e+𝑔0(w+𝐵x−y−z)}.

(8𝑐)
Output equation

a(𝑡) = x(𝑡), (8𝑑)

where x ∈ 𝑅𝑝, w ∈ 𝑅𝑁 , z ∈ 𝑅𝑁 , 𝑔0(w) is the projection on
the set Ω𝛾 and 𝑔1(z) is the projection on the set 𝑋1 = {z ∈
𝑅𝑁 ∣ 𝑚𝑎𝑥𝑗 ∣𝑧𝑗 ∣ ≤ 1}. Based on (8), a speech enhancement
algorithm was developed in paper [18].

To solve the noise constrained estimation problem (7),
another discrete-time learning algorithm [17] to solve (6) as
follows:

State equation

x(𝑘 + 1) = (𝐼 − 𝛽�̂�𝑇 �̂�)x(𝑘) + 𝛽�̂�𝑇 z(𝑘) + 𝑞, (9𝑎)

and

z(𝑘 + 1) = (1− 𝛽)z(𝑘) + 𝛽𝑔(�̂�x(𝑘)− ŷ), (9𝑏)

Output equation

a(𝑘 + 1) = x(𝑘 + 1) (9𝑐)

where 𝐼 ∈ 𝑅𝑝×𝑝 is an unit matrix, �̂� = 𝐵/𝛼,ŷ = y/𝛼,
𝛼 = ∥𝐵∥22, 𝑞 = 𝛽�̂�𝑇y, 𝛽 > 0 is a given step length,
and 𝑔(z) is the projection on the set Ω𝛾/𝛼. Based on (9),
another speech enhancement algorithm was developed in paper
[19]. Although the 𝑙2 norm noise constrained estimation-based
speech enhancement algorithm can speed up the 𝑙1 norm noise
constrained estimation-based speech enhancement algorithm,
its computation rate does not satisfy the requirement of real-
time computation.

It is seen that the 𝑙1 norm-based learning algorithm has the
total number of neurons is equal to 𝑝+ 2𝑁 and the 𝑙2 norm-
based learning algorithm has the total number of neurons is
equal to 𝑝 + 𝑁 . Therefore, the two learning algorithms have
a model complexity being 𝑂(𝑁).

B. Proposed learning algorithm

To reduce model complexity and increase computation rate,
in this paper we propose the following discrete-time learning
algorithm for solving (7):

State equation

x(𝑘 + 1) = (𝐼 − 𝛽�̂�𝑇 �̂�)x(𝑘) + 𝛽�̂�𝑇 𝑔(�̂�x(𝑘)− ŷ) + 𝑞 (10)

TABLE I
COMPLEXITY COMPARISON OF THREE LEARNING ALGORITHMS

Algorithm Computational complexity Asymptotic complexity
New algorithm 2𝑁𝑝+ 𝑝2 𝑂(2𝑁𝑝))
Algorithm (8) 2𝑁2 +𝑁(3𝑝+ 11) + 𝑝2 𝑂(2𝑁2 + 3𝑁𝑝)
Algorithm (9) 2𝑁𝑝+𝑁 + 𝑝2 𝑂(2𝑁(𝑝+ 1))

Output equation

a(𝑘 + 1) = x(𝑘 + 1)

where 𝛽 > 0 is a given step length and �̂�, 𝑞, and 𝑔(z) are
defined in (8), respectively.

It can be seen that the proposed learning algorithm has the
total number of neurons is equal to 𝑝 and thus has a model
complexity being 𝑂(1) since 𝑁 >> 𝑝. Furthermore, Table I
also show that the proposed learning algorithm has a lower
computational complexity and asymptotic complexity [21].

Based on (10), we now propose a fast learning-based speech
enhancement algorithm as follows:

Step 1: From the input noisy speech signal {𝑦(𝑛)}, compute
matrix 𝑌 defined in (6). Compute the autocorrelation matrix
𝑅𝑦 and vector 𝑟𝑦 using the input noisy speech signal {𝑦(𝑛)}.

Step 2: Based on the proposed learning algorithm, compute
the optimal solution, (a∗, z∗) to the constrained optimization
problem in (7), and let the AR model estimate be â = a∗.

Step 3: Compute both the observation noise variance the de-
riving noise variance 𝜎2𝑤 by using â based on the formulation
given in paper [19].

Step 4: Compute the state matrix 𝐹 using the obtained
NCLS estimate and perform the Kalman filtering algorithm
defined in (4) to obtain x(𝑛).

Step 5. Output speech signal estimate: 𝑧(𝑛) = 𝐶𝑇x(𝑛).

IV. COMPUTATIONAL EXAMPLES

In this section, we give illustrative examples to demonstrate
the effectiveness of the proposed algorithm. We evaluate the
algorithm performance by using the signal to noise radio(SNR)
and the quality of enhanced speech components. The quality of
enhanced speech components are evaluated in the time domain
by means of the spectrogram. The SNR is defined by

𝑆𝑁𝑅 = 10𝑙𝑜𝑔

∑𝑁
𝑛=1 𝑥(𝑛)

2

∑𝑁
𝑛=1[𝑥(𝑛)− �̂�(𝑛)]2

where �̂�(𝑛) is the estimated speech signal and 𝑁 is the total
sample length. It is easy to know that the higher SNR is,
the better the performance is. The simulation is conducted in
MATLAB.

All testing speech data were chosen from the NOIZEUS
speech corpus. The clean speech data, a male signal called
”sp01” and a female signal called ”sp30,” are collected. In
our experiments,the frame size was 256 samples with 50%
overlap.

Consider the male speech corrupted by colored observation
noise modeled as

𝑣(𝑘) = 1.1𝑣(𝑘−1)−0.9559𝑣(𝑘−2)+0.5727𝑣(𝑘−3)+𝑢(𝑘)
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Fig. 1. Spectrogram and waveform results of the clean, noisy speech, and
enhanced speech by the proposed algorithm in noisy speech sp01 (0dB)

where 𝑢(𝑘) is white Gaussian noise with variance 0.018. It
results in input SNR being 0dB. The noisy speech signal has
the sampling frequency of 8000 Hz. 256 samples are used for
each frame. We perform the proposed algorithm with a 8th
order speech AR filter. The waveform and spectrogram results
of the clean speech (sp01), its noisy speech, and restored
speech by the proposed algorithm are depicted in Fig. 1.
It is seen that the proposed algorithm can suppresses high-
frequency noise. The enhanced speech has SNR being 6.634.
The waveform and spectrogram results of the clean speech
(sp30), its noisy speech, and restored speech by the proposed
algorithm are depicted in Fig. 3. It is seen that the proposed
algorithm can suppresses high-frequency noise. The enhanced
speech has SNR being 5.064. Furthermore, let 𝑢(𝑘) is white
Gaussian noise with variance 0.012. It results in input SNR
being 5dB. The waveform and spectrogram results of the clean
speech (sp01), its noisy speech, and restored speech by the
proposed algorithm are depicted in Fig. 2. It is seen that
the proposed algorithm can suppresses high-frequency noise.
The enhanced speech has SNR being 8.32. The waveform
and spectrogram results of the clean speech (sp30), its noisy
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Fig. 2. Spectrogram and waveform results of the clean, noisy speech, and
enhanced speech by the proposed algorithm in noisy speech sp01 (5dB)

TABLE II
RESULTS OF COMPUTATION TIME BY THREE ALGORITHMS

Algorithm algorithm (9) algorithm (8) proposed algorithm
CPU(s) 0.047× 256 6.31× 256 0.031× 256

speech, and restored speech by the proposed algorithm are
depicted in Fig. 4. It is seen that the proposed algorithm can
suppresses high-frequency noise. The enhanced speech has
SNR being 7.43.

Finally, for a comparison of computation time, we perform
the proposed algorithm and the existing speech enhancement
based the learning algorithms defined in (8) and (9), respec-
tively. Table I displays computed results of the computation
time by the three algorithms. Obliviously, the proposed learn-
ing algorithm has a very faster speed than the other two
learning algorithms.

V. CONCLUSION

This paper proposes a novel discrete-time learning algo-
rithm for speech enhancement of single-channel noisy speech
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Fig. 3. Spectrogram and waveform results of the clean, noisy speech, and
enhanced speech by the proposed algorithm in noisy speech sp30 (0dB)

signal, based on a novel noise constrained parameter esti-
mation. Unlike existing learning algorithms for novel noise
constrained parameter estimation, the proposed discrete-time
learning algorithm has a low computation complexity and fast
speed. Simulation results show that the proposed discrete-
time learning algorithm has a faster speed than the existing
learning algorithms for AR parameter estimation and speech
enhancement. Moreover, the proposed discrete-time learning
algorithm has a better performance in having a significant gain
in SNR than related methods at different noise.
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