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Abstract—Intelligent buildings are equipped with sensing
systems able to measure the contaminant concentration in the
different building zones for safety purposes. The aim of these
systems is to promptly detect the presence of a contaminant
so that appropriate actions can be taken to ensure the safety
of the people. At the same time, these sensing systems, which
operate in real-world conditions, suffer from noise and sensor
degradation faults. Both noise and faults can induce false
alarms (resulting in unnecessary disruptive actions such as
building evacuation) or missed alarms (when the presence of
a contaminant is not detected).

This paper proposes a novel cognitive monitoring system
for performing contaminant detection in intelligent buildings
with real-time point-trigger sensors. The proposed system
reduces the occurrence of false alarms by means of a three-
layered architecture, which employs cognitive mechanisms
to validate possible detections and discriminate between the
presence of a real contaminant source and a degradation fault
affecting the sensors of the sensing system. In addition, the
proposed system is able to isolate the building zone containing
the contaminant source (or the faulty sensor) and estimate
the onset time of the release (or the fault).

I. INTRODUCTION

Nowadays, buildings are becoming increasingly intelli-
gent by incorporating distributed sensing devices and com-
puter technology to adapt and control the indoor environ-
ment in order to save energy and create more comfortable,
healthy and safe living conditions for their occupants [1]–
[3]. The safety of the occupants is directly associated with
the Indoor Air Quality, which can be easily compromised
by an accident (i.e., CO leakage from a faulty furnace)
or a terrorist attack with airborne chemical and biological
agents [4]. Under these safety-critical conditions, real-time
collected data from sensors that monitor the contaminant
concentration can be used to alert the occupants and
determine appropriate solutions like indicating safe spaces,
or isolating and cleaning contaminated areas. Therefore, the
accurate and prompt detection and isolation of contaminant
events is an essential task of the intelligent building design.
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Recently, the development of effective, near real-time
biological and chemical agent sensors (see [4], [5] and ref-
erences therein) allows new and highly effective protective
measures. These measures can be low-disruption actions
in response to the sensors’ readings, like automatically
modifying the operational mode of a building’s Heating
Ventilation and Air Conditioning (HVAC) system, or high-
disruptive actions like the building’s complete evacuation.
Highlights of this new sensor technology include inexpen-
sive, moderately sensitive, remote and point-trigger sensors
and rapid identifiers, which can be exploited for covering
wide areas quickly. At their current state, however, these
trigger sensors can only support low-disruption actions
because they can suffer from high false positive rates [4]
(i.e., false alarms induced by incorrect detection of the
contaminant). Note that frequent false positives can make
the protection system useless because of the reluctance
of the occupants to cooperate with the required protective
actions (cry-wolf effect).

The problem of contaminant event monitoring has re-
ceived considerable attention in the literature over the last
decade. A detailed report on related literature on the inverse
tracking of pollutants in both groundwater and air fields
can be found in [6]. Some highlights of the proposed
methods for contaminant source isolation in indoor build-
ing environments include the Bayesian updating method
[7], the adjoint probability method [8] and the state space
method in [9]. All of these methods, however, require some
form of prior knowledge, either in the form of a model
of the building and the resulting airflows, or through a
constructed scenario database before the event. Differently,
[5] suggests the design of contaminant detection systems
based on the Scalar Trigger Algorithm (STA). In such
systems, a detection threshold is dynamically adapted to
compensate for the effects of noise in order to guarantee a
pre-specified false alarm probability. Of course, this is done
at the expense of increased false negatives (i.e., missed
alarms when the contaminant is present) and large delays
in detection, especially in situations of high noise or low
contaminant concentration.

Apart from the effects of noise, contaminant detection
sensors can also suffer from degradation faults. These
types of faults are quite common in real-world sensing
systems working in harsh environmental conditions, and
can be generally attributed to ageing or thermal drift.
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Note that, unless promptly detected and isolated by the
monitoring system, sensor degradation faults can increase
the occurrence of false positives or negatives, hence making
the detection system ineffective.

In this paper, we propose a novel cognitive monitoring
system for performing contaminant detection in intelligent
buildings with real-time point-trigger sensors. The pro-
posed system reduces the occurrence of false alarms (and of
consequent disruptions) by means of a layered architecture
and employs cognitive mechanisms to discriminate sensor
degradation faults from the presence of a real contaminant
source in the building envelope. In addition, the proposed
system is able to isolate the building zone containing the
contaminant source (or the faulty sensor) and estimate the
onset time. To achieve these goals, the proposed monitoring
system is organized into a three-layer hierarchical architec-
ture. At the first layer, we rely on Change-Detection Tests
(CDTs) based on the Intersection of Confidence Interval
(ICI) rule, aiming at providing the prompt detection of
even small variations in the concentration of a specific
contaminant. The second layer performs a validation of the
changes detected at the first layer to reduce the possible
occurrence of false alarms and identify possible sensor
degradation faults. In the case of a confirmed contaminant
source or fault, the second layer is also able to estimate the
onset time. Finally, the third layer, based on the information
received from the second layer, is able to isolate the zone
within the building which contains the contaminant source
or the faulty sensor. This information, together with the
estimate of when the contaminant release/fault started, can
be then utilized by the system operator in order to take
the appropriate actions to ensure the safety of the people.
A main advantage of the cognitive monitoring system pro-
posed in this paper is that it does not require a model or any
other prior information; this makes it appropriate for real-
world applications, where little information is commonly
available.

The paper is organized as follows. Section II describes
the problem statement. The proposed cognitive monitoring
system for intelligent buildings is detailed in Section III,
while the experimental results are presented in IV. Finally,
conclusions and future directions of the work are drawn in
Section V.

II. THE PROBLEM STATEMENT

Let us consider an intelligent building composed of N
zones. Each zone is equipped with a sensor measuring the
concentration of a specific contaminant. Let mi(t) (with
i = 1, . . . , N ) denote the measurement of the contaminant
provided by the sensor of the i-th zone at time t, which
can be modeled as

mi(t) = ci(t) + ∆i(t) + ηi(t), (1)

where ci(t) is the natural concentration of the contaminant
at time t, ∆i(t) is the amount of contaminant produced by
a source at time t, i.e., the anomalous source that needs to
be detected by the sensing system, and ηi(t) is the zero-
mean independent and identically distributed (i.i.d.) sensor
noise at time t. The natural concentration of a contaminant
in the i-th zone can be zero (i.e., ci(t) = 0), when no
contaminant is naturally present in the i-th zone (e.g., toxic
gases), or constant (i.e., ci(t) = µi, µi > 0), or may follow
a dynamic behavior in the more general case (i.e., ci(t) =
f(ci(t − 1), ci(t − 2), ...). In this paper, we assume that
ci(t) is either constant or zero.

Let i∗ (with 1 ≤ i∗ ≤ N ) denote the zone of the building
where the contaminant source is inserted (i.e., the source
zone) and T ∗ the time of the release. Also, let T ∗

i be the
time instant when the contaminant first appears in the i-th
zone, i.e., {

∆i(t) = 0, t < T ∗
i

∆i(t) > 0, t ≥ T ∗
i

(2)

Due to the propagation delays in reaching the various
building zones, T ∗

i > T ∗ when i 6= i∗. From Eq. (2), it
follows that the amount of contaminant present in a specific
zone (where ∆i(t) > 0) can be attributed to two main
reasons. First, the i-th zone is the source zone, and in this
case T ∗

i∗ = T ∗. Second, the i-th zone is not the source
zone but contaminant has flowed through the building from
the source zone to the i-th zone. The propagation of a
contaminant in various building zones depends on a number
of factors affecting the internal airflows including (i) the
building structure (e.g., the interconnections of the various
zones through doors and openings), (ii) environmental
conditions (e.g. temperature, wind direction and velocity),
(iii) HVAC operational mode (or any other type of fan
causing a forced flow).

We assume that sensor degradation faults occur abruptly
and in the absence of any contaminant sources (i.e.,
∆i(t) = 0, t ≥ 0). Thus, a sensor degradation at time
T 0 is modeled as

mi(t) =

{
ci(t) + δηi(t), t ≥ T 0

ci(t) + ηi(t), t < T 0
, (3)

where δ > 1 is the perturbation magnitude.
The proposed monitoring system aims at detecting as

soon as possible the abnormal presence of a contaminant
and estimating the release zone and onset time, while
distinguishing between the presence of a contaminant and
a degradation fault affecting a sensor.

III. THE PROPOSED COGNITIVE MONITORING SYSTEM
FOR INTELLIGENT BUILDINGS

The proposed cognitive monitoring system, which is
summarized in Fig. 1, is characterized by a hierarchical
architecture composed of the following three layers:
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INPUT at Unit i: {mi(t), t = 1, . . . , L};
Train the ICI-based CDT from {mi(t), t = 1, . . . , L};
while (1) do

Acquire mi(t);
[di(t)] =ICI-based CDT(mi(t));
if (di(t) = 1) then

[Hi, τ ] = CPM
(
{mi(j), j = 1, . . . , t}

)
;

if (Hi = 1) then
î = i;
T̂ = t;
Aτ = {mi(j), j = 1, . . . , τ};
Bτ = {mi(j), j = τ + 1, . . . , T̂};
pMW =Mann-Whitney(Aτ , Bτ );
pMO =Mood(Aτ , Bτ );
if (pMW ≤ pMO) then

Detection of contaminant in zone î
and the time of detection is τ ;

else
Fault affecting sensor of zone î;
the fault started at time τ ;

end
end

end
end

Algorithm 1: The first two layers of the proposed cogni-
tive monitoring system for intelligent buildings executed
at the i-th Unit.

Fig. 1. The three-layer hierarchical architecture of the proposed cognitive
monitoring system.

1) the change-detection layer, which is composed of a
set of CDTs running at the N sensors of the intel-
ligent building, is responsible for monitoring in an
online manner the concentration of the contaminant.
The goal of this layer is to guarantee the prompt
detection of any anomalous concentration. This layer
relies on measurements coming from a single sensor,
hence, it can be executed locally directly at the

sensor level (when enough computational power is
available);

2) the validation layer aims at reducing the false pos-
itives raised by the change-detection layer by val-
idating (or not) any detected change. In addition,
this layer is able to distinguish between the real
presence of the contaminant and a sensor degradation
fault. This layer also relies on measurements coming
from a single sensor, hence, it can be executed
locally directly at the sensor level (when enough
computational power is available);

3) the isolation layer is responsible for identifying the
building zone containing the contaminant source or
the faulty sensor. This layer analyses the detection
reports of all the sensors within the building coming
from the second layer; therefore, it is executed in a
centralized manner.

The three layers are detailed in the next three sub-
sections, while the algorithm of the proposed cognitive
monitoring system for the first two layers is detailed in
Alg. 1.

A. The change-detection layer

Among the wide range of sequential CDTs [10]–[14]
available in the literature, we focused on the ICI-based
CDT [15]1. The peculiarity of this CDT is the use of the
ICI rule, that is a technique to define adaptive supports
for regularizing data through polynomial regression. The
ICI-based CDT is nonparameteric in the sense that it does
not assume to know the probability density function of
the data-generating process either in stationary conditions
or after the change. Furthermore, it is characterised by
a reduced computational complexity and this is very im-
portant when analysing online streaming data. Basically,
the ICI-based CDT running at the i-th sensor operates
by assessing the stationarity of i.i.d. and Gaussian dis-
tributed features (in the stationary case) extracted from the
datastream mi. These features, which represent condensed
information about mi, are then processed according to the
ICI-rule [16] to detect changes in their expectation. The
features considered by the ICI-based CDT presented in [15]
are the sample mean and variance computed on disjoint
subsequences of ν observations.

In particular, at the i-th sensor, the first feature, i.e.,
the sample mean Mi, that is here computed on the s-th
subsequence

Mi(s) =
1

ν

νs∑
t=(s−1)ν+1

mi(t), (4)

approaches the Gaussian distribution thanks to the central
limit theorem, while the second feature is a power-law

1Codes of the ICI-based CDT are available for download at
http://home.deib.polimi.it/boracchi/Projects/projects.html
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transformation of the sample variance, i.e.,

Vi(s) =

(
Si(s)

ν − 1

)h0

, being

Si(s) =
νs∑

t=(s−1)ν+1

(
mi(t)−Mi(s)

)2
.

This power-law transform yields values of V approxi-
mately Gaussian distributed; its exponent h0 is computed
as h0 = 1− (κ1κ3)/3κ22, where κi is the i-th cumulant of
the distribution of the sample variance.

Let {mi(t), t = 1, . . . , L} be the training sequence
for configuring the CDT at the i-th sensor, where the L
samples have been acquired in absence of contaminant
sources or faults. The CDT configuration consists of com-
puting the parameter h0 and the sample mean and standard
deviation of the features (4) and (5). Further details on the
configuration of ICI-based CDTs can be found in [11].

As a result, the ICI-based CDT(mi(t)) in Alg. 1 moni-
tors both Mi(s) and Vi(s) and, hence, it is able to detect
any change affecting the first two moments of the unknown
distribution characterizing mi(t).

Let î be the zone where the first ICI-based CDT detects
a change in the sensor measurements and let T̂ be the time
instant in which this change has been detected.

B. The Validation Layer

Every time a detection has been raised by the change-
detection layer, the validation layer is activated to reduce
the occurrence of false positive detections and to pre-
vent the activation of unnecessary emergency procedures.
To achieve this goal, we consider change-point methods
(CPMs) [17] that are statistical tests able to assess whether
a given data-sequence contains (or not) a change point.
Interestingly, CPMs do not require any training sequence
since they can be directly applied to the sequence.

In more detail, a CPM is applied to a sequence of mea-
surements coming from the zone where the contaminant
has been detected, i.e., Ĉi = {mî(t), 1 ≤ t ≤ T̂}. To
simplify the notation in what follows we omit the index
î. The CPM operates as follows: for each time instant
1 ≤ x ≤ T̂ , Ĉi is split into two parts,

Ax = {mî(t), t = 1, . . . , x},
Bx = {mî(t), t = x+ 1, . . . , T̂}.

A specific test statistic T is then computed at x as

Tx = T (Ax, Bx),

to assess the difference between Ax and Bx.
The values of Tx are computed for all the samples

1 ≤ x ≤ T̂ , yielding {Tx, x = 1, . . . , T̂}. Let TM be the
maximum value of the statistic T over all the samples, i.e.,

TM = max
x=1,...,T̂

(Tx) (5)

and let τ be the sample for which T is maximum, i.e.,

τ = argmax
x=1,...,T̂

(Tx) .

The value of TM is then compared with a predefined
threshold hT̂ ,α, which is function of the statistic T , the
cardinality T̂ of Cî and a given confidence level α that
sets the percentage of type I errors (i.e., false positives)
of the CPM. If TM is larger than hT̂ ,α, there is enough
statistical evidence for the CPM to confirm the presence of
a change in Ĉi. On the other hand, when the test statistic
does not exceed the threshold, the CPM is not able to detect
the change point. Hence, the outcome of the CPM can be
defined by the following binary variable:

Hî =

{
1 if TM,i ≥ hT̂ ,α
0, if TM,i < hT̂ ,α

. (6)

In the case that Hî = 1, the detection is validated and τ is
identified as the time instant when the contaminant (or the
fault) first appeared in the î-th building zone. Otherwise,
when Hî = 0, the detection is not validated and the CDT
at the detection layer is newly configured from the training
sequence {mî(t), t = 1, . . . , L}.

Among the wide range of test statistics in the literature,
we consider the following three nonparametric statistics:
the Mann-Whitney [18], the Mood [19] and the Lepage
[20]. These statistics can be used to detect, without any
a priori assumption on the data distribution, changes in
the location, in the scale and in both location and scale,
respectively. We expect an anomalous contaminant source,
which changes the expectation mi, to be detected as a
change in location, while sensor degradation, which affects
the variance of mi, to be detected as a change in the scale.
One of the most critical aspects when dealing with CPMs
is the definition of thresholds hT̂ ,α. Since the analytical
derivation of the threshold is in general difficult to obtain,
in practice, it is often numerically computed by means of
Montecarlo simulations as in [13], [17].

Every time a change has been validated by the CPM
on the Lepage statistic, a cognitive analysis is activated to
determine if it is due to a contaminant source or a sensor
degradation fault. In practice, we determine whether the
detected variation is associated to a change either in the
location or in the scale of mi. This is a valuable information
because, according to (1) and (3), ∆i(t) induces only
changes in the expected value of mi(t), while sensor
degradation faults affect only the variance of mi(t).

For this analysis we pursue the approach described in
[13], which separately runs the Mann-Whitney and the
Mood hypothesis test on the partitioning of Ĉi maximizing
the Lepage test statistic, i.e., Aτ and Bτ , and compares the
p-values of the two hypothesis tests. When the p-value of
the Mann-Whitney test is lower than that of Mood statistics,
then there is a stronger statistical evidence for a change in
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the mean of the observations. In this case we can safely
exclude the sensor degradation fault, since the p-values
indicate a variation in the expected value of mi. On the
other hand, when the p-value of the Mood test is lower
than that of the Mann-Whitney, we associate the detection
to a change in the variance of mi and, in turn, this can be
safely associated to a sensor degradation fault.

Note that, in principle, the feature detecting the change in
the ICI-based CDT (either Mi or Vi) could also be used to
discriminate sensor degradation faults from the presence of
a contaminant source. However, the analysis on the p-value
is straightforward, since the values of Mann-Whitney and
Moods statistics are computed when running the Lepage
CPM. Furthermore, the p-values of these hypothesis tests
represent confidence indicators which are not available
when decisions are made by looking at the features of the
ICI-based CDT.

C. The Isolation Layer

The aim of this layer is to identify the zone in which
either the contaminant has been released or a degradation
fault has affected the sensor. Here, the logic is rather
simple: (i) When a contaminant event is detected and
validated by the second layer, the first zone where the
change has been detected and validated is considered to be
the estimated source zone. (ii) When a sensor degradation
fault is detected and validated by the second layer, then a
sensor degradation fault is isolated in the respective zone
which reported the detection. In other words, once a change
has been validated with (6), î becomes the zone where
the contaminant source (or the fault) is isolated. At this
stage, we should point out that more sophisticated solutions
could be considered, e.g., by exploiting the topology of
the building or the detection time instants in the different
zones. We plan to investigate these issues in our future
research.

IV. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
solution we performed a wide experimental campaign on
scenarios including both the real presence of a contaminant
and sensor degradation faults. These scenarios have been
generated with the Matlab-CONTAM toolbox for contam-
inant event monitoring in intelligent buildings described in
[21]. The Holmes House [22] depicted in Figure 2 has been
considered as the reference intelligent building to generate
such scenarios.

A. Description of the Considered Scenarios

In particular, the following four scenarios have been
considered:

• S1: Single contaminant source at a constant rate of
100 g/h;

Fig. 2. The Holmes House.

• S2: Single contaminant source with a variable genera-
tion rate, alternating every 2 hours between the values
of 50 and 100 g/h;

• S3: A sensor degradation fault modelled as in Eq. (3)
with magnitude perturbation δ = 1.33;

• S4: Similar to scenario S3 but the perturbation mag-
nitude δ is set to 1.5.

In all the considered scenarios, all the sensors acquire 1
measurement per minute. The simulation time is 48 hours,
yielding 2880 samples for each sequence. Both the release
of contaminant and faults starts after 25 hours, i.e., T ∗ =
T 0 = 1500 samples. Both the contaminant source and the
sensor faults have been placed in zone 3 (i.e., i∗ = 3), while
the wind direction is 0◦ as shown in Figure 2. Noise ηi(t)
is assumed to be i.i.d. following a Gaussian Distibution
N (0, σ2). In our experiments we considered five different
values of σ, i.e., σ = {1, 1.5, 2, 2.5, 3}. An example dataset
of Scenario S1 with σ = 2 is shown in Figure 3.

The proposed solutions has been configured on the
first L = 400 samples. Similarly to [15], the parameter
Γ of the ICI-based CDT has been fixed to 2 (see [11]
for details about this parameter). For the comparison, we
also implemented the STA algorithm presented in [5],
with parameters 400, 20 and 100, corresponding to the
Background window, the Guard window and the Present
window, respectively. In addition, to ease the comparison,
the parameter γSTA of STA has been fixed to 4.5 to
guarantee false positive rates similar to those provided by
the proposed solution.

Simulation results are averaged over 500 runs.

B. Figures of Merit

To evaluate the proposed approach we considered the
following six figures of merit:

• False Positive Rate (FPR), the percentage of exper-
iments in which the change has been detected before

73



Fig. 3. An example of Scenario S1 with σ = 2. The dotted green line refers to the time instant the contaminant is released in the source zone (i.e.,
t = 1500). The red line identifies the detection time-instant provided by the proposed solution.

T ∗;
• False Negative Rate (FNR), the percentage of exper-

iments in which the change has not been detected;
• Detection Delay DD (in samples), that is the average

value of T̂ − T ∗;
• Refinement Delay RD (in samples), that is the average

value of τ̂i − T
∗;

• εiso, the percentage of experiments in which the zone
containing the contaminant source (S1, S2) or the
sensor fault (S3, S4) has not been correctly isolated;

• ρC , the percentage of experiments in which the change
has been correctly recognized; i.e. as a contaminant
source for S1, S2 and as a sensor degradation fault
for S3, S4.

C. Analysis of the results

Table I shows the comparison between the detection
ability of the proposed solution and that of STA. Several
comments arise.

First, the proposed solution is characterized by very
low values of FPR and FNR. This is of paramount
importance in real-life working conditions to reduce un-
necessary emergency reactions as well as provide prompt
detection to variations in mi. On the contrary, to guarantee
FPR similar to that achieved by the proposed solution,
STA requires a high value of γSTA (as described above
γSTA has been fixed to 4.5) that induces high FNR.
This behavior is quite common in threshold-based solutions

Proposed Solution STA
Scen. σ FPR FNR DD FPR FNR DD

1.0 0.00 0.00 103.33 0.00 0.43 83.78
1.5 0.00 0.00 132.26 0.00 0.90 114.58

S1 2.0 0.00 0.00 165.80 0.01 0.95 181.35
2.5 0.00 0.00 196.23 0.00 0.96 308.25
3.0 0.00 0.00 227.80 0.00 0.98 117.33
1.0 0.00 0.00 153.25 0.01 0.78 175.34
1.5 0.00 0.00 191.90 0.00 0.92 213.21

S2 2.0 0.00 0.00 227.68 0.00 0.97 451.21
2.5 0.00 0.00 276.10 0.01 0.97 444.18
3.0 0.01 0.00 319.24 0.00 0.98 172.40
1.0 0.00 0.00 400.78 0.01 0.92 138.35
1.5 0.00 0.01 405.25 0.00 0.93 139.54

S3 2.0 0.01 0.00 398.93 0.00 0.92 146.45
2.5 0.00 0.01 391.62 0.00 0.93 118.32
3.0 0.00 0.00 415.19 0.00 0.93 108.74
1.0 0.00 0.00 245.81 0.00 0.78 108.36
1.5 0.00 0.00 241.88 0.00 0.81 119.55

S4 2.0 0.00 0.00 239.64 0.00 0.78 107.13
2.5 0.00 0.00 243.85 0.01 0.80 85.39
3.0 0.00 0.00 247.37 0.01 0.79 98.21

TABLE I
COMPARISON BETWEEN THE PROPOSED SOLUTION AND STA ON THE

CONSIDERED SCENARIOS.

(such as STA): high values of the threshold guarantee low
FPRs but at the expense of increased FNR.

Second, as expected, the DD of the ICI-based CDT
increases with σ. This is due to the fact that the ratio
between the magnitude of the change and the standard
deviation of the noise reduces with σ, hence requiring more
samples before detecting the change. As expected, even the
performance of STA decreases with σ. Even in this case,
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Proposed Solution
Scen. σ RD (Median of τ ) εiso ρC

1.0 0.239 (1521.00) 0.062 0.979
1.5 5.213 (1522.00) 0.064 0.994
2.0 19.392 (1526.00) 0.108 0.993

S1 2.5 15.620 (1526.00) 0.138 0.995
3.0 9.915 (1526.00) 0.146 0.995
1.0 28.166 (1531.00) 0.070 0.970
1.5 43.146 (1545.00) 0.092 0.987

S2 2.0 52.389 (1562.00) 0.132 0.984
2.5 53.234 (1567.00) 0.234 0.974
3.0 48.344 (1562.00) 0.272 0.995
1.0 -4.615 (1512.00) 0.080 0.993
1.5 6.232 (1514.50) 0.076 0.996

S3 2.0 13.522 (1516.00) 0.066 0.994
2.5 3.647 (1519.00) 0.068 0.998
3.0 16.979 (1514.00) 0.074 0.985
1.0 -15.544 (1500.00) 0.044 0.994
1.5 -13.626 (1500.00) 0.048 0.989

S4 2.0 -11.408 (1501.00) 0.048 0.996
2.5 -11.211 (1500.00) 0.064 0.998
3.0 -9.697 (1500.00) 0.060 0.994

TABLE II
SIMULATION RESULTS ABOUT THE FAULT ISOLATION AND

IDENTIFICATION OF THE PROPOSED SOLUTION. AMONG THE
PARENTHESES WE DETAIL THE MEDIAN VALUE OF τ̂i .

the threshold-based solutions suffer from increases of the
measurement noise.

Third, the proposed solution is able to guarantee very
good results on the scenarios both with real contaminant
(i.e., S1 and S2) and with faults (i.e., S3 and S4). Interest-
ingly, the DDs of S3 are larger than those of S4 and this
is reasonable since the magnitude of the fault is larger in
S4 than S3.

The fault isolation and identification results of the pro-
posed solution are detailed in Table II. Several interesting
comments can be made.

First, the value of RD is low in all the considered scenar-
ios meaning that the estimate of the time instant the change
started (either release of contaminant or fault) provided
by the validation layer is good. Interestingly, Scenarios
S1 and S2 are generally characterized by overestimated
values of τ and this is evident by looking at the value
within the parenthesis that measures the median of τ over
all the different runs. The reason of this behavior can be
associated to the fact that the CPM identifies the point that
maximizes the difference between two partitions (see Eq.
(5)): in case of incipient changes of mi(t) (as in the case
of real presence of contaminant), the point that maximizes
the change is not at the beginning of the change but after
(hence τ̂i typically overestimates T ∗). Interestingly, this
effect is not present in scenarios S3 and S4 where the
variance changes abruptly (and this is evident by looking
at the median values of τ ). It is also worth noting that
changes in Scenario S4 are easier to be detected, and this
explains why Scenario S4 is generally characterized by
median values of τ that are very close to the time instant
the fault occurred (i.e., t = 1500).

Second, the validation layer is particularly effective in
distinguishing between the real presence of contaminant
and a sensor degradation fault affecting a sensor and this
is particularly evident by looking at the values of ρC for
all the considered scenarios. This proves the effectiveness
of using the Mann-Whitney and Mood hypothesis tests to
discriminate between changes in the expected value or in
the variance of mi.

Third, the simple isolation phase suggested in Section
III-C is effective in isolating the zone within the building
in which either the contaminant is released or the fault
occurred. Interestingly, errors in the isolation phase can be
either associated to false positives (i.e., a false detection
can occur in any zone of the intelligent building) or, in
the case of a real contaminant, to the fact that the change
is detected earlier in other zones of the building than the
source zone. These are the reasons why εiso is generally
larger in S1 and S2 than in S3 and S4 and why it increases
with σ.

In addition, Figure 4 shows the histogram of the detec-
tion time-instant in all the zones of the building provided
by the proposed solution for the case of Scenario S1 and
σ = 2. As expected, the earliest detection occurs in the
source zone (i.e., zone 3). This corroborates the idea of the
isolation phase in which the zone where the first detection
occurs is considered to be the source zone. Interestingly,
the zones that received flow from zone 3 (i.e., zones 5, 4, 8,
etc..) are characterized by detection slightly delayed with
respect to zone 3. It is worth noting that zones 1 and 2 do
not receive flow from 3 according to the wind direction:
this is the reason why there is no detection in these zones
(i.e., within the histogram all the detection times are set to
0). Differently, zones 6, 7, 10 and 11 are characterized by
longer propagation delays of the contaminant (because of
the topology of the building and the wind direction) and
this is the reason why no detection has occurred in the
considered time horizon.

V. CONCLUSIONS

This paper describes a novel cognitive monitoring sys-
tem for contaminant detection in intelligent buildings. The
proposed system reduces false positives and false negatives,
while guaranteeing the prompt detection of a contaminant
and the ability to discriminate it from sensor degradation
faults. In addition, information about the zone and the time
instant where the contaminant/fault has started are provided
to support emergency response and guarantee people safety.

The next step of this work is to exploit the topology of
the building and the detection reports raised by the sensors
to improve the cognitive capabilities of the isolation and
identification phases. This will allow us to deal with faults
affecting the expected value of mi, as well as more com-
plex situations involving multiple sources of contaminant
or multiple sensor faults.
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Fig. 4. Histograms of the detections of all the sensors. The source zone is 3, the wind direction is 0o and σ = 2. The green dotted line represents
the time-instant in which the contaminant is inserted in the source zone.
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