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Abstract—This paper illustrates theoretical analysis and sim-
ulative verification on the performance of the linear-variational-
inequality based primal-dual neural network (LVI-PDNN), which
was designed originally for static quadratic programming (QP)
problem solving but is now applied to time-varying QP problem
solving. It is theoretically proved that the LVI-PDNN for solving
the time-varying QP problem subject to equality, inequality
and bound constraints simultaneously could only approximately
approach the time-varying theoretical solution, instead of con-
verging exactly. In other words, the steady-state error of the real-
time solution can not decrease to zero. In order to better evaluate
the time-varying situation, we investigate the upper bound of such
an error and the global exponential convergence rate for the LVI-
PDNN approaching its loose error bound. Computer simulations
further substantiate the performance analysis of the LVI-PDNN
exploited for real-time solution of the time-varying QP problem.

I. TIME-VARYING QP OF INTEREST

Quadratic programming (QP) problems play a significant
role in mathematical optimization, and have been theoretically
analyzed [1][2] and extensively applied to plenty of scientific
fields; e.g., optimal controller design, power-scheduling, digital
signal processing, and robot-arm motion planning [3][4]. In the
past, researchers usually handle optimization problems only
subject to one or two kinds of constraints [5]. In addition, some
QP problems are just investigated based on static coefficients
(or to say, constant coefficient matrices and vectors) [6], which
may not applicative for time-varying cases. Motivated by real-
time engineering applications in robotics [5][7], the general
time-varying QP (TVQP) in this paper is presented as follows.

minimize x
T(t)W (t)x(t)/2 + q

T(t)x(t), (1)

subject to J(t)x(t) = d(t), (2)

A(t)x(t) ≤ b(t), (3)

ξ
−(t) ≤ x(t) ≤ ξ

+(t), (4)

where Hessian matrix W (t) ∈ R
n×n is smoothly time-

varying, positive-definite and symmetric at any time instant
t ∈ [0, +∞). Besides, coefficient matrices J(t) ∈ R

m×n

and A(t) ∈ R
k×n as well as coefficient vectors q(t) ∈ R

n,
ξ
−(t) ∈ R

n, ξ
+(t) ∈ R

n, d(t) ∈ R
m and b(t) ∈ R

k are
all assumed smoothly time-varying. In time-varying QP (1)-
(4), unknown vector x(t) ∈ R

n is to be solved in real time
t ∈ [0, +∞).

II. GENERAL SOLUTIONS TO STATIC QP

To solve the fundamental static QP problem, a lot of
methods/algorithms have been proposed [1][2]. In general,
there are two common solutions to such a QP problem. The
first one is the numerical algorithms performed on digital
computers and it has been widely used to solve small-scale
static QP problems. However, when it comes to large-scale
real-time applications, in view of its serial-processing na-
ture, such numerical algorithms may result in decline of the
performances [8]. Usually, the minimal arithmetic operations
are proportional to the cube of Hessian matrix dimension
n, which is computationally expensive. As for the second
general type of solution, the application of parallel processing
has influenced the algorithmic developments [9][10]. Thus,
various dynamic and analog solvers have been developed and
investigated with the in-depth research of recurrent neural
network (RNN). Owing to its parallel distributed nature and
convenience of hardware implementation, the neural-dynamic
approach is now regarded as one of the powerful alternatives
to real-time computation of QP problems [11][12].

A number of neural-dynamic models have been proposed,
however, according to our previous work [6], the early neural
models [13][14] contain finite penalty parameters and gen-
erate approximate solutions only. Besides, Lagrange neural
network has premature defect when applied to inequality-
constrained QP problems. To always obtain optimal/exact so-
lutions, traditional primal-dual neural networks were proposed
based on the Karush-Kuhn-Tacker condition and projection
operator [6]. However, due to minimizing the duality gap
by gradient descent methods, the dynamic equations of such
primal-dual network are usually complicated, even containing
high-order nonlinear terms [5]. To reduce implementation and
computation complexities, dual neural network was developed
for solving strictly-convex static QP problems with simple
piecewise linearity and global convergence to the optimal
solutions [5][7].

III. GENERALIZED LVI-PDNN SOLUTION TO TVQP

To overcome the less favorable properties/phenomena of
the aforementioned neural models for solving the quadratic
programming problems, a primal-dual neural network model
designed based on linear variational inequality (LVI) has
been developed with simple pricewise linear dynamics [9][15].
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Since the LVI-based primal-dual neural network (LVI-PDNN)
does not entail any matrix inversion, matrix-matrix multiplica-
tion or high-order nonlinear computation which are embodied
in other researches with expensive O(n3) operations, it might
reduce the implementation and computation complexities as
compared with other recurrent neural models [5].

Based on the conversion of such a QP problem to an
LVI and then to a system of piecewise linear equations, the
LVI-PDNN solving the time-varying QP problem depicted
in (1)-(4) can be generalized with its dynamics as follows
[8][11][15]:

ẏ(t) =
γ(I + H

T(t)) (PΩ(y(t) − (H(t)y(t) + p(t))) − y(t)) ,
(5)

where design parameter γ > 0, being the reciprocal of a
capacitance parameter, should be set as large as the hardware
would permit, or selected appropriately for experimental and/or
simulative purposes [6][11][16]. The coefficients are defined as

H(t) =


W (t) −J

T(t) A
T(t)

J(t) 0 0
−A(t) 0 0


 , p(t) =

[
q(t)
−d(t)
b(t)

]
. (6)

Besides, the primal-dual decision vector y(t) as well as its
lower and upper bounds are defined respectively as

y(t) =

[
x(t)
u(t)
v(t)

]
, ς

−(t) =

[
ξ
−(t)

−̟1v

0

]
, ς

+(t) =

[
ξ
+(t)

+̟1v

+̟1v

]
,

where

• constant ̟ ≫ 0 is sufficiently large to represent and
replace +∞ numerically for implementation purposes, and 1v

denotes an appropriately-dimensioned vector of ones;

• x(t) ∈ [ξ−(t), ξ
+(t)] is evidently the original decision

variable vector used in primal QP (1)-(4);

• u(t) ∈ R
m denotes the dual decision variable vector

defined for equality constraint (2);

• v(t) ∈ R
k denotes the dual decision variable vector

defined for inequality constraint (3).

The vector-input vector-valued projection operator [11]
PΩ(z(t)) = [PΩ(z1(t)),PΩ(z2(t)), . . . ,PΩ(zn+m+k(t))]T
projects from z(t) ∈ R

n+m+k onto set Ω = {z(t)|ς−(t) ≤
z(t) ≤ ς

+(t)}, with its scalar-input scalar-valued processing
element PΩ(yi(t)) being defined as

PΩ(zi(t)) =




ς
−(t), zi(t) < ς

−(t)
zi(t), ς

−(t) ≤ zi(t) ≤ ς
+(t),

ς
+(t), zi(t) > ς

+(t)

where i = 1, 2, . . . , (n + m + k).

It is worth pointing out that such an LVI-PDNN was
designed originally for the static QP problem solving, but
is now applied to the time-varying problem (1)-(4) solving.
The LVI-PDNN (5) may thus generate a considerably large
solution error, as reflected in Fig. 1. Facing this less favorable
phenomenon, the authors have been interested in the problems
inside and investigated the performance of the LVI-PDNN
solver applied to time-varying QP (1)-(4).

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

x
1
(t

)
x

2
(t

)
x

3
(t

)

t (s)

Fig. 1. Solution of time-varying QP problem (1)-(4) by LVI-PDNN (5) with
γ = 100, where theoretical solution x∗(t) is denoted by dotted curves

The main contributions of this paper thus lie as follows.

• In this paper, the less favorable phenomenon of LVI-
PDNN solving the time-varying QP problem subject to equal-
ity, inequality and bound constraints simultaneously is pointed
out formally and systematically. This research expands the
QP formulation to the most general case. The results show
that the conventional LVI-PDNN as a system can not solve
the time-varying QP problem exactly. In other words, there
always exists a steady-state solution error between the LVI-
PDNN solution and the time-varying theoretical solution.

• This paper investigates and analyzes the performance
of the LVI-PDNN applied to the time-varying QP problem
solving. Theoretical analysis is provided rigorously for estimat-
ing the steady-state solution error bound and the exponential
convergence rate when the LVI-PDNN approaching the loose
outer value of the error bound (i.e., loose bound).

• Illustrative simulation examples substantiate well the
theoretical analysis and results. In addition, we discuss the
significance of design parameter γ and solution-variation rate
ζ in the LVI-PDNN solving the time-varying QP problem.

IV. LEMMAS ABOUT LVI-PDNN SOLVING STATIC QP

Summarizing the analysis results of [3][9][11], the fol-
lowing lemmas are presented about the global exponential
convergence of the LVI-PDNN applied to solving static QP.

Lemma 1 (LVI-PDNN Convergence): Starting from any
initial state y(0) ∈ R

m+n+k, the LVI-PDNN state vector
y(t) is convergent to an equilibrium point y

∗, of which the
first n elements constitute the optimal solution x

∗ to the QP
problem. Besides, the exponential convergence is achieved, as
there exists a constant ̺ > 0 such that

‖y − PΩ(y − (Hy + p))‖2
2 ≥ ̺‖y − y

∗‖2
2, (7)

where ‖ · ‖2 denotes the two norm of a vector.

Proof: It can be generalized from [6][7] as well as ref-
erences therein and thereafter by using Lyapunov function
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candidate ‖y(t) − y
∗(t)‖2

2 and projection-related inequalities.
Note that parameter ̺ above is presented only for analysis
purposes, and there is no need to know its exact value.

Lemma 2 (Important Inequality): The following inequality
holds true for the LVI-PDNN solving the static QP [6]:

(y − y
∗)T(I + H

T)(y − PΩ(y − (Hy + p))) ≥
‖y − PΩ(y − (Hy + p))‖2

2 + ‖y − y
∗‖2

H
.

(8)

Proof: Please see Eq. (25) of [6].

Lemma 3 (Cauchy Inequality): Given ak, bk ∈ R, with
k = 1, 2, . . . , n, the following inequality holds true:

(
n∑

k=1

akbk

)2

≤

(
n∑

k=1

a
2
k

)(
n∑

k=1

b
2
k

)
.

V. TIME-VARYING PERFORMANCE ANALYSIS

In Section III, we have found that the less favorable
phenomenon occurs in the LVI-PDNN solver for time-varying
QP solving. In this section, we explore the performance of
LVI-PDNN (5) and present a theoretical analysis on the error
bound and the exponential convergence rate.

A. Tight Error Bound

When we apply LVI-PDNN model (5) to handling the time-
varying QP problem, the following theorem about its steady-
state solution-error bound can be derived.

Theorem 1: Assume that the solution-variation rate is
uniformly bounded as ‖d(y∗(t))/dt‖2 ≤ ζ, ∀t ∈ [0,∞), ∃0 ≤
ζ < ∞. Starting with any initial state y(0) ∈ R

n+m+k, the
steady-state solution error of LVI-PDNN (5) is upper bounded
tightly as

lim
t→∞

sup ‖y(t) − y
∗(t)‖2 ≤

ζ

γ̺
. (9)

Proof: For LVI-PDNN (5), let us define solution error e(t) =
y(t)−y

∗(t) ∈ R
n+m+k; in other words, e(t) denotes the differ-

ence between the LVI-PDNN solution y(t) and the theoretical
optimal solution y

∗(t). Then we have y(t) = e(t)+ y
∗(t) and

its time-derivative equation ẏ(t) = ė(t) + ẏ
∗(t).

Consequently, the LVI-PDNN (5) is transformed into the
following dynamic equation in terms of e(t) and y(t):

ė(t) = γ(I + H
T(t))·

(PΩ(y(t) − (H(t)y(t) + p(t))) − y(t)) − ẏ
∗(t),

(10)

where initial state e(0) = y(0) − y
∗(0). To analyze (10) as

well as LVI-PDNN (5), we first define a Lyapunov function
[17] candidate ε(t) = ‖e(t)‖2

2/2, and evidently ε(t) is positive-
definite in view of ε(t) = (eT(t)e(t))/2 > 0 for e(t) 6= 0 and
ε(t) = 0 for e(t) = 0 only.

With the lemmas presented in Section IV, we derive
the time-derivative of ε(t) along the trajectories of (5) and

(10) as follows (with argument t omitted for presentation
convenience).

ε̇ =
dε

dt
=

d‖e(t)‖2
2/2

dt
= e

T de

dt
= e

T
ė

= e
T(γ(I + H

T)(PΩ(y − (Hy + p)) − y) − ẏ
∗)

= e
T
γ(I + H

T)(PΩ(y − (Hy + p)) − y) − e
T
ẏ
∗

= −γe
T(I + H

T)(y − PΩ(y − (Hy + p))) − e
T
ẏ
∗

≤ −γ‖y − PΩ(y − (Hy + p))‖2
2 − γ‖e‖2

H
− e

T
ẏ
∗

≤ −γ̺‖e‖2
2 − γ‖e‖2

H
− e

T
ẏ
∗

≤ −γ̺‖e‖2
2 − e

T
ẏ
∗ ≤ −γ̺‖e‖2

2 + ζ‖e‖2

= −‖e‖2(γ̺‖e‖2 − ζ).

(11)

To understand the aforementioned proof procedure (11) better,
the two important inequalities are emphasized.

• Generalizing from Lemmas 1 and 2, we have

e
T
γ(I + H

T)(PΩ(y − (Hy + p)) − y)
= −γe

T(I + H
T)(y − PΩ(y − (Hy + p)))

≤ −γ‖y − PΩ(y − (Hy + p))‖2
2 − γ‖e‖2

H

≤ −γ̺‖e‖2
2 − γ‖e‖2

H

≤ −γ̺‖e‖2
2.

(12)

• Generalizing from Lemma 3, we have

−e
T

ẏ
∗ ≤ ζ‖e‖2. (13)

During the time evolution of e(t) depicted in (11), it falls
into one of the following three situations: (i) γ̺‖e‖2 − ζ > 0;
(ii) γ̺‖e‖2 − ζ = 0; and (iii) γ̺‖e‖2 − ζ < 0.

• If in the time interval [t0, t1) the trajectory of error system
(10) is in the first situation [i.e., ‖e‖2 > ζ/(γ̺)], then ε̇(t) < 0
which implies that e(t) approaches 0 ∈ R

n+m+k [i.e., y(t)
approaches y

∗(t)] as time evolves.

• If at any time t the trajectory of error system (10) is
in the second situation [i.e., ‖e‖2 = ζ/(γ̺), a so-called ball
surface], then ε̇(t) ≤ 0 which implies that e(t) approaches
0 ∈ R

n+m+k [i.e., y(t) approaches y
∗(t)] or stays on the ball

surface with ‖e‖2 = ζ/(γ̺) [i.e., ‖y(t) − y
∗(t)‖2 = ζ/(γ̺)],

in view of ε̇(t) ≤ 0 containing sub-situations ε̇(t) < 0 and
ε̇(t) = 0, respectively. Simply put, for this situation, e(t) will
not go outside the ball of ζ/(γ̺).

• For any time t at which the system trajectory falls into the
third situation [i.e., ‖e‖2 < ζ/(γ̺), inside the ball], it follows
from (10) that ε̇(t) is less than a positive scalar (containing
sub-situations ε̇(t) ≤ 0 and ε̇(t) > 0), and thus the distance
‖e(t)‖2 between y(t) and y

∗(t) may not decrease again. Now
let us analyze the worst case, i.e., ε̇(t) > 0: it is readily
known that ε(t) and ‖e(t)‖2 would increase, which increases
γ̺‖e‖2 − ζ as well, as time evolves. So, there must exist
a certain time instant t2 such that γ̺‖e‖2 − ζ = 0, which
returns to the second situation, i.e., ε̇(t) ≤ 0, and the worst is
‖e‖2 = ζ/(γ̺).

For a better understanding about the above analysis, Fig.
2 is presented. Summarizing the above three situations, the
steady-state solution error of LVI-PDNN (5) is upper bounded
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ζ/(γ̺)

ζ/(αγ̺)

Fig. 2. Solution error e(t) of LVI-PDNN (5) globally converges to the ball
of ζ/(γ̺)

by ζ/(γ̺)); in mathematics,

lim
t→∞

sup ‖e(t)‖2 = lim
t→∞

sup ‖y(t) − y
∗(t)‖2 ≤ ζ/(γ̺).

The proof is thus completed.

B. Exponential Convergence Rate

Theorem 1 in the preceding subsection presents a tight
steady-state solution-error bound ζ/(γ̺) of LVI-PDNN (5).
Evidently, it follows from (11), its analysis and Fig. 2 that
the solution error e(t) of LVI-PDNN (5) globally converges
to the ball of ζ/(γ̺), which is asymptotic in nature [i.e.,
lim

t→∞

sup ‖y(t)− y
∗(t)‖2 ≤ ζ/(γ̺)]. However, the asymptotic

convergence (AC) may not be good enough in practice, as
it takes infinitely long time to reach the ball. So, in this
section, we investigate (via the following theorem) the global
exponential convergence rate and finite convergence time of
LVI-PDNN (5) to a relatively loose error bound of ζ/(αγ̺)
with 0 < α < 1 chosen by LVI-PDNN users.

Theorem 2: Consider that the solution-variation rate is
uniformly bounded as ‖d(y∗(t))/dt‖2 ≤ ζ, ∀t ∈ [0,∞), ∃0 ≤
ζ < ∞. Starting with any initial state y(0) ∈ R

n+m+k, the
solution error ‖y(t) − y

∗(t)‖2 of LVI-PDNN (5) is globally
exponentially convergent to or stays within the error bound
ζ/(αγ̺), where α ∈ (0, 1). Besides, the exponential conver-
gence rate is (1 − α)γ̺, and the convergence time tc of LVI-
PDNN (5) to a relatively loose error bound of ζ/(αγ̺) is

tc =

{
ln(αγ̺‖e(0)‖2/ζ)

(1−α)γ̺
, e(0) ≥ ζ/(αγ̺)

0. e(0) ≤ ζ/(αγ̺)

Proof: Following the proof of Theorem 1, we now show
the global exponential convergence to a relatively loose error
bound ζ/(αγ̺) with α ∈ (0, 1). That is, (11) is rewritten as

ε̇(t) ≤ −γ̺‖e‖2
2 + ζ‖e‖2

= −(1 − α)γ̺‖e‖2
2 + (−αγ̺‖e‖2

2 + ζ‖e‖2),
(14)

where parameter α ∈ (0, 1) is termed as “a loosing ratio”.
Evidently, on the right-hand side of (14), the first term −(1−

α)γ̺‖e‖2
2 ≤ 0. In addition, for solution error e(t) satisfying

−αγ̺‖e‖2
2 + ζ‖e‖2 ≤ 0 [i.e., ‖e(t)‖2 ≥ ζ/(αγ̺), outside or

on the surface of new ball ζ/(αγ̺) depicted in Fig. 2 by a
dash-dotted circle], the second term on the right-hand side of
(14) is dropped. Thus,

ε̇(t) ≤ −(1 − α)γ̺‖e(t)‖2
2 = −2(1 − α)γ̺ε(t),

ε(t) ≤ exp(−2(1 − α)γ̺t)ε(0),
‖e(t)‖2 ≤ exp(−(1 − α)γ̺t)‖e(0)‖2, ∀t ∈ [0, tc]

where the exponential convergence rate is (1 − α)γ̺, and the
convergence time tc = ln(αγ̺‖e(0)‖2/ζ)/((1 − α)γ̺) as

exp(−(1 − α)γ̺t)‖e(0)‖2 = ζ/(αγ̺),
(1 − α)γ̺tc = ln(αγ̺‖e(0)‖2/ζ).

Note that, for error e(t) entering into the new ball of ζ/(αγ̺)
[i.e., ‖e(t)‖2 < ζ/(αγ̺)], such an e(t) can never leave the
ball. This is in view of the first situation analysis of (11) in
the proof of Theorem 1: ε̇ < 0 for any e(t) outside the small
ball of ζ/(γ̺). So is the situation with ‖e(0)‖2 < ζ/(αγ̺),
of which the resultant e(t) trajectory can never leave the ball
of ζ/(αγ̺).

Thus, from (14) and the above analysis, defining the
loosing ratio α ∈ (0, 1) and convergence time tc =
ln(αγ̺‖e(0)‖2/ζ)/((1 − α)γ̺), we have

‖e(t)‖2 ≤

{
exp (−(1 − α)γ̺t) ‖e(0)‖2, ∀t ∈ [0, tc]
ζ/(αγ̺), ∀t ∈ [tc,∞)

for e(0) ≥ ζ/(αγ̺); and ‖e(t)‖2 ≤ ζ/(αγ̺), t ∈ [0,∞)
for e(0) ≤ ζ/(αγ̺). Note that, even in the worst case, the
exponential convergence rate is (1 − α)γ̺. The proof is thus
completed.

VI. SIMULATION AND VERIFICATION

As Section V proves, the steady-state solution error does
not decrease to zero when the LVI-PDNN model is exploited
for solving time-varying QP problem (1)-(4); instead, the
solution error exponentially converges to a loose bound. In this
section, for illustration and comparison, we present a general
and illustrative example to substantiate the aforementioned
theoretical analysis as well as the influence of parameter
γ and solution-variation rate ζ on the LVI-PDNN exploited
for solving the time-varying QP problem with the following
coefficients (n = 3, m = 2 and k = 1):

W (t) =

[2 cosωt + 22 cosωt − 2 3 sinωt + 6
cosωt − 2 cos 2ωt + 12 sinωt

3 sinωt + 6 sin ωt cos 3ωt + 8

]
,

q(t) = [sin 3ωt, cos 3ωt, − cos 2ωt]T ,

J(t) =
[
2 sin 4ωt cosωt sin ωt + 4
cosωt 0.5 sinωt sin 2ωt

]
,

d(t) = [sin 2ωt, − cos 4ωt]T ,

A(t) = [0.5 cosωt + 2 sin ωt + 1 sin 4ωt + 1] ,
b(t) = 1.5 cosωt + 8,

ξ
−(t) = [cos 4ωt− 6, sin ωt − 6, sin(ωt + 2) − 6]T ,

ξ
+(t) = [cos 4ωt + 6, sin ωt + 6, sin(ωt + 2) + 6]T ,
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(c) With γ = 5000

Fig. 3. γ effects on real-time solution of time-varying QP problem (1)-(4) subject to equality, inequality and bound constraints simultaneously via LVI-PDNN
(5) with ω = 1
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Fig. 4. γ effects on actual error bound of LVI-PDNN solution to time-varying QP problem (1)-(4) with ω = 1

where variation rate ω in the coefficient matrices and vectors
is related to the solution-variation rate ζ (which is in the
theoretical analysis and results of Section V).

To provide the intuitive understanding of the time-varying
QP problem (1)-(4) solving synthesized by LVI-PDNN (5) ,
Fig. 3 shows the real-time convergence of the above problem
solving with parameter ω = 1 used and with parameter γ

varying from 1 to 500 and to 5000, in addition to Fig. 1
with γ = 100. When the value of γ is small relatively,
starting with eight randomly generated initial states x(0) =
[x1(0), x2(0), x3(0)]T, in which every entry is initialized
within (−5, 5), the LVI-PDNN (corresponding to blue solid
curves) does not match well with the time-varying theoretical
solution (denoted by red dotted curves) in the figures. Besides,
LVI-PDNN works better as the value of γ increases.

Moreover, let us consider the actual error bounds denoted
by ex(t) = ‖x(t) − x

∗(t)‖2 of time-varying QP solving via
LVI-PDNN (5) with ω = 1, where x

∗(t) is generated by using
MATLAB function “QUADPROG” via the hypothesis of short-
time invariance in a point-wise manner [3][5][6]. As shown in

each subfigure of Fig. 4, starting with eight randomly generated
initial states x(0), the solution errors ex(t) of the LVI-PDNN
always converge to some error bound. By increasing design
parameter γ from 1 to 5000, the two norm of such a steady-
state solution-error bound decreases from roughly 2.284 to
0.323. If γ continues to increase to 50000, such a steady-
state solution-error bound decreases to roughly 0. In addition,
we increase variation rate ω from 1 to 5 to simulate the
convergence performance of LVI-PDNN again. Observed from
each subfigure of Fig. 5, the solution errors ex(t) converge to
some error bound as well. Besides, the upper bound of the
steady-state solution errors in the case of ω = 5 is with larger
oscillation (compared to the case of ω = 1). Furthermore, in
the case of ω = 5, by increasing γ from 1 to 5000, the two
norm of the maximum steady-state solution error decreases
from 2.437 to 0.964. The above results are reasonable and
consistent with the presented theoretical analysis and results,
because the theoretical solution of time-varying QP problem
(1)-(4) changes faster when ω becomes larger, making the
time-varying QP problem more difficult to be solved through
the LVI-PDNN.
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Fig. 5. γ effects on actual error bound of LVI-PDNN solution to time-varying QP problem (1)-(4) with ω = 5

VII. CONCLUSIONS

This paper has illustrated the performance analysis of
LVI-based primal-dual neural network (LVI-PDNN) exploited
to real-time solution of time-varying quadratic programming
(QP) subject to equality, inequality and bound constraints
simultaneously. Theoretical analysis presented in this paper
has led to the fact that the LVI-PDNN model solving the time-
varying QP can not converge to its theoretical solution exactly.
The factors that influence the performance of LVI-PDNN have
been verified by means of comparing the results of illustrative
simulations (which have substantiated the performance of
such an LVI-PDNN model when solving the time-varying QP
problem).
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