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Abstract—When time series are generated by chaotic systems,
a reasonable estimation of large prediction horizons is hard
to obtain, but this may be required by some applications.
Over the last years, some researchers have focused on the use
of ensembles and meta-learning as a strategy for improving
prediction accuracy. This paper addresses the problem of se-
lecting and combining models for the design of efficient long-
term predictors of chaotic time series based on meta-learning
and self-organization. We propose and evaluate the use of four
heuristic rules for selecting models using a self-organizing map
(SOM) neural network and meta-features. The meta-features are
extracted from the performances of each involved model when
applied to the training time series. A trained SOM map, which
was generated using these meta-features, allows the selection of
models with diverse behaviors. Two strategies for the combination
of models are compared; one is based on the average and a second
is based on the median of the forecasts of the selected models. The
experiments were executed using four types of series: the time
series dataset provided by the NN5 tournament and time series
generated from the Mackey-Glass equation, from an ARIMA
model and from a sine function. In most cases, the best results
were obtained using a percentage of the models belonging to the
group that contained the best model. Our results also showed that
a combination using a median strategy obtained better results
that using an average strategy.

I. INTRODUCTION

In the last years several researchers have found that the
selection and combination of an appropriate set of models
for time series forecasting achieves better results than other
techniques [1]–[3]. However, to find the right models and
combinations is a very complex problem. In general, there are
two main strategies for solving this problem [4]: (1) analyzing
different approaches and then using expert knowledge to
provide guidelines to select forecasting models and (2) using
the results of previous studies to estimate the relationship
between data features and performance of the models. Such
analysis involves models, parameters and data, and is repeated
from the beginning with each new time series to be forecasted.
An alternative is that an algorithm learns from the results
of previous analysis, which is known as meta-learning; the
knowledge generated from this is called meta-data [5]. This
selection and combination could be done in different ways;
in this work, we evaluated four rules for selecting models
based on a self-organizing map (SOM) neural network [6].

In addition, we evaluated two ways of combining the selected
models: first by averaging and second using the median of the
predictions returned from the selected models.

Chaotic time series are cataloged as unpredictable, due
their high sensibility to initial conditions [7]. Despite that,
many applications deal with chaotic systems and require a
reasonable estimation of future values. Many domains are
looking for improvement in the accuracy obtained by cur-
rent forecasting models such as financial applications, load
forecasting or wind speed [8]. Nevertheless, the problem of
predicting multi-step-ahead based on data captured from the
chaotic system is still an open problem [8].

Recent works show a relation between chaos theory and
the self-organization theory [9]–[11]. According to Helbing,
the right approach to influence complex systems is to support
and strengthen the self-organization and self-control of the
system by a specific design of this mechanism [9]. There
are several ways to induce self-organization using adaptive
networks; some samples in one-step ahead prediction are [12]–
[14]. Another successful model based on self-organization is
the SOM neural network, proposed by Kohonen [6], which
follows two well defined rules: compete and cooperate [15].
Based on these concepts, our goal is to build a system able
to select and combine models using a SOM along with meta-
features extracted from the performance of the different models
with the time series. The SOM divides the models into groups,
based on the representative error obtained by each involved
model. The models to be combined are chosen from these
groups. The group with the model that obtained the best
expected accuracy are selected first. Then, with the aim of
increasing the diversity between models, a second group are
selected from the farthest neuron with respect to the first group.
Once these two groups are defined, a percentage of models
from each group is chosen. Four rules for choosing the models
are used: first, always use the models coming from the two
groups. Second, only use the first group. Third, use the first
group and the second, if the expected accuracy of the best
model in the second group is less than twice the best model in
the first group. Fourth, use the first group and the second, if
the expected accuracy of the best model in the second group
is less than three times the best model in the first group. Once
models are selected, their outputs are combined to calculate
the output of the prediction. In our experiments, outputs are
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combined in two ways: by the average of the output and by
the median.

The involved models were built changing the main param-
eters of two base models: “Autoregressive Integrated Mov-
ing Average” (ARIMA) [16] and “Non-linear Autoregressive
with eXogenous inputs” (NARX) [17]. The experiments were
executed using four types of time series: the reduced set of
the international forecasting tournament NN5 [18], time series
generated using an ARMA model described in [16], a Mackey-
Glass equation [19] and a sine function. Our experiments found
that the combination of models using the median significantly
improved the accuracy achieved by combining them with
average. In addition, the rule using only the group which had
the model with the best expected accuracy gave the best results.

This paper is organized as follows: section 2 describes
fundamental concepts. Section 3 explains the proposed method
and rules for selecting groups. Section 4 presents experiments
comparing the different rules and different methods for com-
bining. Finally, section 5 presents some conclusions and future
directions for this research.

II. FUNDAMENTAL CONCEPTS

A. Time Series Forecasting

A time series is a set of observations yt, each one being
recorded at a specified time t at fixed intervals [20]. A
sequence of h future values of a time series Y can be estimated
based on a set of observations of Y , where h is known as
the prediction horizon. A general expression of multi-step
prediction may be described as:

{yt+1, yt+2, . . . , yt+h} = F (yt, yt−1, . . . , yt−m+1) (1)

where F predicts h future values using m values of the past.
Mainly, there are two forms to calculate h values of Y : one
is estimating the complete horizon in a single iteration; the
second strategy, known as iterative prediction and used in this
research, consists of estimating one value each time, using the
previous predicted value for calculating the next prediction [2].

B. Chaotic Time Series

The theory of chaos deals with complex non-linear sys-
tems; this theory had its breakthrough in the late 1800s,
when Poincaré [21] addressed the stability of the solar system
and the position of the planets. Abarbanel and Gollub [22]
proposed that: “chaos is the deterministic evolution of a non-
linear system which is between regular behavior and stochastic
behavior or ‘noise.”’ Dhanya and Kumar [23] summarize the
features of a chaotic system as: (i) they are deterministic, i.e.,
there are some determining equations ruling their behavior; (ii)
they are sensitive to initial conditions, that is, a slight change in
the starting point can lead to significantly different outcomes;
(iii) they are neither random nor disorderly. Chaotic systems
have a sense of order and patterns, even though they do not
repeat. In this work, a chaotic time series is the outcome of a
chaotic system.

The best approach to influence complex systems is to
support and strengthen the self-organization and self-control
of the system. This basically means that coordination and
cooperation in a complex system will appear by itself, if the

interactions among the system elements are well chosen. That
is, regulations should not specify what exactly the system
elements should do, but set bounds to actions, that is, to define
“the rules of the game.” This strategy provides the system with
enough degrees of freedom to self-organize good solutions. If
the interaction rules are suitable, this approach will usually
lead to a much more flexible and adaptive system behavior.
However, everything depends on the interactions of the system
elements; for example, unsuitable interactions can cause that
the system behaves dynamically unstable or that it gets trapped
in a suboptimal state [9].

C. Self-Organizing Maps

Self-organizing maps (SOM), originally defined by T.
Kohonen [6], consist of an input layer and one or several
output layers. Input neurons connect to all output neurons;
output neurons have some influences over their neighbors. In
this research, we use a SOM with one output layer organized in
a two-dimensional array. The relations between neurons have
a hexagonal pattern, as shown at Figure 1. SOM is trained
using a non-supervised algorithm that is executed a specific
number of iterations. For each input pattern, a competition
process among all neurons in the output layer takes place, and
then the weights of the winning neuron and their neighbors are
adapted. The winning neuron i (x) is the one whose weights
have the minimum Euclidean distance to the input pattern x,
that is:

i (x) = argmin
i
‖x− wj‖, j = 1, 2, . . . , l (2)

where l is the number of neurons. Weight updating is defined
as:

wj (n+ 1) = wj (n) + η (n)hj,i(x) (n) (x− wj (n)) (3)

where: n represents the current iteration, x is the input pattern,
η (n) is the learning rate parameter, starting with a value η0,
and then decreasing gradually as time n increases [15]. This
requirement can be satisfied by an exponential decay for η (n),
as shown by:

η (n+ 1) = η0 exp

(
− n
τ2

)
, n = 0, 1, 2, . . . (4)

τ2 is a time constant. The function hj,i(x) defines the neighbor-
hood of the winning neuron i (x). For the results presented in
this paper, the neighborhood was defined with a link distance,
which is calculated as the number of links or steps that
must be taken to get to the neuron under consideration. The
neighborhood of a winning neuron with a link distance of 1
is shown in the Figure 1.

SOM networks have been used in the problem of long-term
forecasting of time series in different ways [26], [27].

D. Accuracy Measures of Forecasting Models

Unless the expected prediction ability of a model is known,
such model is hardly put into use in practice [28]. There are
several metrics for measuring the expected ability of prediction
of a model. In this paper, results are evaluated using three
different functions. Let: Y be a time series, yt ∈ Y be the
expected output at time t, Ŷ be the sequence estimated by the
model, ŷt ∈ Ŷ be the model prediction at time t, and h the
prediction horizon. The accuracy functions are:
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Fig. 1. Architecture of a Self-Organizing Map (SOM) based on [24], [25].

1) Root Mean Square Error (RMSE): It is a quadratic
scoring rule, which measures the average magnitude of the
error. RMSE is calculated as [29]:

RMSE
(
Y, Ŷ

)
=

√∑h
t=1 (yt − ŷt)2

h
(5)

Since the errors are squared before they are averaged,
RMSE gives a relatively high weight to large errors. This
means the RMSE is most useful when large errors are partic-
ularly undesirable [29]. The range of possible values obtained
by RMSE depends of the magnitudes of the time series.
To compare RMSEs among different time series requires to
normalize the time series data.

2) Mean Absolute Error (MAE): This function measures
the average magnitude of the errors in a set of forecasts,
without considering their directions. It does not distinguish
between variance and bias and it is appropriate when the cost
function is linear [29]. MAE is defined as:

MAE
(
Y, Ŷ

)
=

∑h
t=1 |yt − ŷt|

h
(6)

3) Symmetric Mean Absolute Percentage Error (SMAPE):
SMAPE allows comparing different models with different time
series. The tournament NN5 and other works [30] use the
SMAPE function, whose results are values from 0 to 200. The
value 0 means that the obtained prediction matches exactly
with the expected output; the worst possible prediction implies
a value of 200. The SMAPE function is given by [29]:

SMAPE
(
Y, Ŷ

)
=

∑h
t=1

|yt−ŷt|
1
2 (yt+ŷt)

h
· 100 (7)

E. Monte Carlo Cross-Validation (MCCV)

Cross-validation (CV) is a method commonly used to
check the accuracy of models. It is more attractive than other
methods, since it gives a statistical estimation of the expected
prediction ability of the model [31]. CV requires splitting the
samples into two parts: a training set and a validation set.
When CV is applied in a model of time series forecasting,
this division must maintain the order of observations. In other
words, training and validating sets must contain consecutive
values. CV follows these steps: first, fitting the model using the

training set; second, obtaining a prediction of h steps ahead;
and third, evaluating the prediction obtained Ŷ comparing it
with the known expected values of Y .

A particular method of CV is Monte Carlo cross-validation,
(MCCV) [32] considered for some authors a simple and
effective procedure [33]. The training process uses a set of
observations r plus a random number of them, where the
maximum number of random observations is v = n − r − h,
being n the total number of observations. After training, the
model predicts h values and this process is repeated k times.
Figure 2 depicts this distribution of training and testing data.
Finally, the SMAPE average of all iterations composes the
MCCV. In a previous work [34], we found that the MCCV
obtained good results in the task of selecting the best NARX
model for time series forecasting.

Fig. 2. Monte Carlo cross-validation takes a window of random size for
training. The process iterates k times [34].

F. Base Models

The base models trained with different parameters generate
several new models. For the experiments reported here, we
used an ARIMA model [16] and the NARX neural networks
[17] as base models, which are described next.

1) ARIMA Model: An autoregressive moving average
model (ARMA) expresses the conditional mean of yt as a
function of p past observations yt−1, . . . , yt−p and q past errors
εt−1, . . . , εt−q . The general form of the ARMA (p, q) is [16]:

yt = φ1yt−1 + . . .+ φpyt−p+

εt + θ1εt−1 + . . .+ θqεt−q
(8)

where εt is an uncorrelated innovation process with zero mean;
φi and θi are determined from the data.

An autoregressive integrated moving average (ARIMA)
model is generated adding or integrating an ARMA model
d times. ARIMA models have shown an ability to obtain
good results in the forecasting area. A detailed description of
ARIMA model can be found in [16].

2) NARX Networks: An important class of discrete-time
non-linear systems is the Non-linear Auto-Regressive with
eXogenous Inputs (NARX) model: [17], [35]:

yt = f
(
ut, ut−1, . . . , ut−nu , yt−1, yt−2, . . . , yt−ny

)
(9)

where ut and yt represent the input and output of a non-linear
function f at time t. In this work, exogenous variables are not
involved. When f is approximated by a feed-forward neural
network (FFNN) [15], the system is called a NARX network;
Figure 3 shows its structure [25]. The first component is a
tapped delay line (TDL); the input time series enters from the
left and passes through m delays. The output of the TDL is
an m-dimensional vector, made up of the input time series at
the current time, and m previous observations [25]. The next
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block is the hidden layer with several neurons. The right block
is the output layer with only one neuron. As usual in FNNN,
weights associated are adjusted during the training phase. After
the NARX network is trained, its output is fed back to the
input of the FFNN. The model iterates until it reaches h
predictions. NARX had been evaluated in a theoretical and
empirical way with good results that guarantee its effectiveness
in time series forecasting [2], [36]. However, key components
for this success are the selection of the learning algorithm and
the determination of the right NARXs architectural elements,
which is a difficult selection problem [36].

Fig. 3. NARX network structure with a tapped delay line (TDL) of m neurons
and one neuron in the output layer. Image based on [25].

III. PROPOSED METHOD

Our goal is to select and combine models with diverse be-
havior in the prediction horizon. Diversity has been recognized
as a very important characteristic in combination of models
[37], [38], therefore, it is a key component in our method.
Figure 4 shows the proposed method. It contains two parts:
extraction of meta-features and selection of models. Two types
of meta-features are computed: performance and representative
error. The performance of each model is estimated using a
Monte Carlo cross-validation (MCCV) and the training time
series.

For the second meta-feature, models are trained using n−h
values of the training time series, where n is the size of this
series. Representative error is calculated as: E = Y −Ŷ , where
Y contains the last h values of the training set and Ŷ the last
h predictions. When the involved model is a NARX network,
the calculation of representative error is repeated k times, each
time with a new training of the network. In these cases, the
error is calculated as the average of these k errors. This is
done to eliminate the randomness induced in the behavior of
the performance of the model, originated by the fact that final
values of the weights of a network depend upon the initial
random values assigned to them during the training.

Fig. 4. General process for selecting prediction models. First to extract meta-
features and then, using the meta-features, to select a list of models to use.

In the selection processes, a self-organizing map (SOM)
clusters the models, using the vector of representative error of
each model as an input pattern. The SOM creates a map where
each neuron corresponds to a group of models. Two groups
(neurons) are selected from this map: the one that contains the
model with the best expected accuracy and the farthest neuron
from that one. This distance is calculated using the positions
of neurons in the map, as follows: let the neuron A be in
position (Ar, Ac) and neuron B be in position (Br, Bc). The
Euclidean distance between neurons is given by:

∆ (A,B) =

√
(Ar −Br)

2
+ (Ac −Bc)

2 (10)

Once the two groups are selected, a list of models to use
is built, which will contain a percentage p of models with
the best expected SMAPE from each group. In this work, we
define four kinds of rules for building the list of models to
use:

1) The list always contains p% models from each group.
2) The list only contains p% models from the first group,

which has the best model.
3) The list contains p% models from the first group and

p% models from the second group, if the expected
SMAPE of the second group is not larger than twice
the expected SMAPE of the first group (Max. 2).

4) The list contains p% models from the first group and
p% models from the second group, if the expected
SMAPE of the second group is not larger than three
times the expected SMAPE of the first group (Max.
3).

The model with the smallest expected SMAPE in the group
defines the expected SMAPE of that group.
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IV. EXPERIMENTAL ANALYSIS

In this section, we compared the four different rules
for selecting models, which were previously described. The
percentage of selected models from each group varied from
10% to 100%. The predictions of the selected models were
combined in two ways: one with average and other with
median. A combination was evaluated from its predictions with
three functions: SMAPE, RMSE and MAE.

A. Data Description

Four types of time series were used to test our strategy;
all the time series were normalized between 0 and 1. The
first subset of time series was the reduced set provided by the
NN5 prediction tournament [18], which consisted of 11 time
series. Each training sequence contained 735 observations; the
prediction horizon was composed of 56 future values for all
series, which was referenced as test set. In a previous work
[39], we found that this time series had a chaotic behavior.

The second time series resulted from integrating the
Mackey-Glass differential equation [19]:

dx(t)

dt
=

ax (t− τ)

1 + x (t− τ)
10 − bx(t) (11)

This function has a chaotic behavior with: a = 0.2, b = 0.1,
τ = 17, x0 = 1.2 ; the time step was set to 0.1. The first 750
samples were used for training and the last 250 for testing. The
third time series was generated using an ARMA(2, 1) model
defined as:

yt = 0.5yt−1 − 0.3yt−2 + εt + 0.2εt−1 (12)

where εt follows a Gaussian distribution with mean 0 and
variance 0.1. The first 500 values formed the training set and
the last 50 the test set. A fourth series was generated using
a sine function with a time step size of 2π/64, the first 750
observations were used for training and the next 250 values
for testing.

B. Prediction Models

Different models with the same NARX base were trained
using different parameters. Notice that when a NARX is
trained using different algorithms, its weight values would
change as does its performance. For that reason, the experi-
ments considered the training algorithm as a parameter. Three
functions, available in the Matlab Neural network toolbox [25],
were used for training the networks:

• Bayesian regulation back propagation (BP),
“trainbr”

• Conjugate gradient BP with Fletcher-Reeves updates,
“traincgf”

• Leveberg-Marquardt BP, “trainlm”

Two other parameters were used to generate the NARX
models: the number of delay neurons m = {25, 30, 35} and
the number of neurons in the hidden layer {20, 25, 30}. In
total, we generated 27 models with NARX form. The ARIMA
models were generated changing four parameters: the number

of autoregressive terms p = {0, 1, 2}, the number of non-
seasonal difference d = {1, 2}, the number of lagged forecast
errors q = {0, 1, 2} and the seasonality {0, 7, 12}. In total, we
generated 54 ARIMA models from a total of 81 models used
in these experiments.

C. Results

The experiments were executed using a SOM with 5 rows
and 5 columns, trained with 12, 500 iterations. This number
was chosen following the recommendation given by Haykin
[15], who suggests that the number of iterations would be 500
times the number of neurons.

Figure 5, 6 and 7, show the SOM maps generated using
the time series No. 1 of the NN5 reduced set, Mackey-Glass
and ARMA, respectively. Each neuron has an identification
number, which is the first number inside the hexagon. The size
of the hexagons in the figures represents the number of models
in the group, which is also shown by the second number in
brackets. The groups marked in dark gray with a letter “A”
contain the models with the best expected SMAPE (referenced
as subset A). The farthest group to subset A is referenced as
subset B. Neurons marked in dark gray with a letter “W”
contain the model with the worst expected SMAPE.

Fig. 5. SOM map with the time series 1 of the NN5 reduced set.

In Figure 5 for the time series 1 of the NN5 reduced set,
subset A corresponds to group number 24 with 16 models.
The best model was a NARX trained with “traincgf”, m = 25
feedback delays and 20 neurons in the hidden layer; its
expected SMAPE was 34.69. In the same case, B corresponds
to group number 1 with 9 models. The best model in the subset
B was an ARIMA with 0 auto-regressive terms, 1 lagged
forecast error, 1 non-seasonal difference, and a seasonality of
12; its expected SMAPE was 106.46. Also, the subset B was
far from the group with the worst expected SMAPE.

In Figure 6 for the time series Mackey-Glass, subset A was
group number 9 with 31 models. The best model was a NARX
with m = 25 feedback delays, 30 neurons in the hidden layer
and trained with the “trainbr” algorithm; its expected SMAPE
was 0.04. Subset B was group number 21 with 1 model. The
model in subset B was an ARIMA with 1 auto-regressive
term, 0 lagged forecast errors, 2 non seasonal differences, and
a seasonality of 12; its expected SMAPE was 173.60. Also,
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subset B was far from the group with the worst expected
SMAPE.

Fig. 6. SOM map with the time series Mackey-Glass.

In Figure 7 for the time series generated by a defined
ARMA, subset A corresponds to group number 24 with 4
models. The best model was an ARIMA with 1 auto-regressive
term, 2 lagged forecast errors, 0 non seasonal differences, and
a seasonality of 12; its expected SMAPE was 141.39. Subset
B corresponds to group number 1 with 2 models. The best
model in subset B was an ARIMA with 1 auto-regressive
term, 0 lagged forecast errors, 2 non-seasonal differences, and
a seasonality of 7; its expected SMAPE was 191.37. Subset
B contains the model with the worst expected SMAPE.

Fig. 7. SOM map with the time series generated with an ARMA model.

Figure 8 shows the metrics SMAPE, RMSE and MAE
obtained by the proposed method with different percentages
of selected models to be combined. The forecast values of
selected models were combined by average. The results plotted
are the averages obtained with all the time series for every
single rule. Figure 9 shows the same for results obtained by a
combination based on the median.

It can be seen in Figures 8 and 9 that the model
combination based on the median has a better performance
than a model combination based on the average. These figures
also show that, when the median is used, fewer models are
needed to achieve good results. This is because the median

TABLE I. STATISTICAL SIGNIFICANCE ANALYSIS FOR DIFFERENT
RULES AND EVALUATION FUNCTIONS. A VALUE “1” MEANS THAT THE

DIFFERENCE AMONG COMBINATION STRATEGIES AVERAGE AND MEDIAN
IS STATISTICALLY SIGNIFICANT.

Evaluation functions
Rules RMSE MAE SMAPE
Rule 1 1 1 1
Rule 2 0 0 1
Rule 3 1 1 1
Rule 4 1 1 1

is not affected by the extreme values in the predictions.
With the aim of evaluating whether the difference in results
(dr) between combining models with median and combining
models with average has a statistical significance, we defined
a null hypothesis assuming that the dr is equal to 0. The
alternative hypothesis is that there exists a difference among
combination methods in average. A t-test [40] was executed
for every single rule and evaluation function. Table I shows the
results of these tests. The columns are the evaluation functions
and the rows are the rules. A value 1 indicates that the t-test
rejected the null hypothesis; a value 0 shows that the null
hypothesis was not rejected. These tests confirmed that the
difference between the two methods is statistically significant
with most of the evaluation functions and rules. In other words,
combining models with median obtained results statistically
better than combining with average in most cases.

It is also clear that, even when the SOM separated the
models based on the representative error, in most cases, the
farthest group did not have the model with the worst expected
SMAPE. However, the models of the farthest group sometimes
did not have a good expected SMAPE compared with the
model with the best SMAPE. Then, the selection of groups
based on the rules of excluding groups with more than two
or three times the error had the same performance. In general,
the best results were obtained with the second rule, which is
only to combine the models of the subset A.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we presented four rules for selecting models
based on a self-organizing map and two ways of combining
the model predictions. Combining the models using the median
obtained the best results, because the median is not affected by
extreme values in the predictions. The best rule for selecting
models was to choose only the group with the model with
the best expected SMAPE. The farthest group, based on the
representative error, had a different behavior but its models
did not have a good expected SMAPE. In future work we
will analyze the results of selecting models considering the
neighborhood of the group with the best expected SMAPE.
In addition, the behavior of the models in different prediction
windows will be analyzed.
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Technology (CONACYT), México, for the scholarship granted
to him, No. 234540. This research has been partially supported
by CONACYT, project grant No. CB-2010-155250. R. Fonseca
also wishes to thank Rebekah Clark for her valuable assistance.

2621



0 20 40 60 80 100
20

40

60

80

100

120

140

160

Percentage of models by group

SM
A

PE
Always

First
Max. 2
Max. 3

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Percentage of models by group

R
M

SE

Always
First

Max. 2
Max. 3

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Percentage of models by group

M
A

E

Always
First

Max. 2
Max. 3

Fig. 8. Performance of the proposed method for each rule, using average as combination strategy. Results of each rule are marked as: “Always” for #1, “First”
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