
Tagging Documents using Neural Networks based on Local Word Features

Arnulfo P. Azcarraga, Paolo Tensuan
College of Computer Studies

De La Salle University,
Manila, Philippines

arnie.azcarraga/paolo.tensuan@delasalle.ph

Rudy Setiono
Department of Information Systems

School of Computing
Singapore

 rudys@comp.nus.edu.sg

Abstract—Keywords and key-phrases that concisely
represent text documents are integral to many knowledge
management and text information retrieval systems, as well as
digital libraries in general. Not all text documents, however,
are annotated with good keywords; and the quality of these
keywords is often dependent on a tedious, sometimes manual,
extraction and tagging process. To automatically extract high
quality keywords without the need for a semantic analysis of
the document, it is shown that artificial neural networks (ANN)
can be trained to only consider in-document word features
such as word frequency, word distribution in document, use of
word in special parts of the document, and use of word
formatting features (i.e. bold-faced, italicized, large-font size).
Results show that purely local features are adequate in
determining whether a word in a document is a keyword or
not. Classification performance yields a G mean of a least 0.83,
and weighted f-measure of 0.96 for both keywords and non-
keywords. Precision for keywords alone, however, is not as
high. To understand the basis for classifying keywords, C4.5 is
used to extract rules from the ANN. The extracted rules from
C4.5, in the form of a decision tree, show the relative
importance of the different document features that were
extracted.

Keywords—keyword extraction; document tagging; feature
selection; artificial neural network; scientific documents

I. INTRODUCTION
In this digital age, huge amounts of information in the

form of images, video-clips, and most of all, text documents
have made it more and more difficult for human users to sift
through the relevant and irrelevant information. Keywords
and key phrases, as concise and meaningful representation
of text documents, have thus become integral to many
knowledge management and text information retrieval
systems, as well as digital libraries in general [1][2][3][4].
Web search services are likewise aided enormously when
the most important words of every text-document are
available. Keywords have also become significant in e-
commerce, specifically in providing contextual
advertisements to online content, as well as for online news,
and other highly specialized digital libraries [5][6][7][8].

 Automatic keyword generation, selection, or extraction
have thus become a very important field of research in
Computer Science and Computational Linguistics
[9][10][11]. The field comes under other names, each with
slightly different emphasis, including document tagging and

annotation, as well as the more general problem of selecting
bigrams, and even entire phrases, more aptly referred to as
key phrase selection.

One approach to tagging documents is to simulate the
way human experts go about in annotating documents. This
would involve deep semantic analysis, and would include
understanding the nuances of words, understanding figures
of speech, idiomatic expressions, and the like. Such analyses
would also typically involve some syntactic analysis of each
sentence, extraction of named-entities and parts-of-speech
(POS), and semantic analysis of these sentence items in
order to understand the meaning of sentences, paragraphs,
sections, and entire documents.

Another approach, often related closely with Natural
Language Processing (NLP) techniques, is through the use
of carefully crafted rules for keyword extraction, in the form
of expert systems[12][13][14][15][16]. This approach may
be effective in specialized domains, and closed archives, but
they typically would require some manual construction of a
set of inference rules on very particular linguistic styles and
domains of knowledge. Such an approach would have
difficulty in scaling up to very large document sets because
of the tedious effort needed for each domain and for each
linguistic style, or manner of writing.

Yet another approach is the use of statistics-based
methods, such as Bayesian networks, k-nearest-neighbor
algorithms, and Expectation Maximization. Other
approaches that are statistical and computational in nature,
use data-driven machine learning algorithms to perform the
task of distinguishing keywords from non-keywords would
include Genetic Algorithms, Support Vector Machines,
Decision Trees, Self-Organizing Maps, and Artificial Neural
Networks [17][18][19][20][21][22][23].

These methods may yield quite accurate keywords, but
for these methods to be scalable, they should not rely on
features that are difficult and tedious to extract, such as
when ITF and IDF features are used. The inverse document
frequency (IDF), for example, would need the frequency
counts of all words in all the documents in the corpus before
it can be computed. Hence, methods that rely on such
features can be troublesome when employed to handle
rapidly growing document sets, such as the documents
found on the Web.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 724

The approach described in this paper does not attempt to
do any level of semantic analysis of the individual
sentences, nor any kind of natural language processing that
would seek to understand what is being discussed. In
particular, our approach is to use artificial neural networks
(ANN) that are fed with word features based on frequency,
position, usage, and format - and just on the basis of these
features, the ANN learns to distinguish important words
(keywords) from non-important words. None of these
features would allude to any form of semantic analysis, nor
any look-up of some online thesaurus or dictionary to check
for the meaning of words. These features are very fast to
compute and extract from each text document.

ANNs have been proven to be universal approximators
[24] which are theoretically able to learn any, possibly non-
linear, relation between a set of input features to some set
of output items, given the proper features and an adequate
data sample. Indeed, ANNs have been used for keyword
extraction [25][26][27][28] and the work reported in this
paper builds on past work reported in [25].

The rest of the paper is organized as follows: section II
describes the dataset; section III describes in some detail the
various word features used and how they are extracted from
the individual documents; section IV describes the five
experiments that were performed; section V discusses the
results; and finally section VI concludes the paper.

II. DATASET
The same IEEE documents previously used in [25] are

used for all the experiments reported here. The dataset is
composed of IEEE journal articles on different scientific
topics. Each journal document would typically have a title,
an abstract, some key index terms (i.e. user supplied
keywords), the text body, and a reference list. The IEEE
dataset originally had 300 documents, with 150 documents
that were randomly chosen for training and 150 randomly
chosen documents for testing. A number of the training
documents did not have an abstract or did not have a list of
keywords. So, after filtering out non-compliant documents,
a total of 270 documents were used in the final dataset, with
only 120 training documents left.

Every document is pre-processed, going through
standard text processing procedures prior to feature
extraction. These pre-processing steps include tokenization,
stop word removal, and stemming [33]. Each document is
then represented as a sequential list of stemmed words
which are then transformed into individual word feature
vectors, also following standard text processing procedures
[34][35].

In total, the processed documents yielded 427,185 word
feature vectors. The training set has 69,190 word vectors, of
which only 1.7% or 1,157 are keywords. The test set has
80,055 word vectors, of which 2.2% or 1,730 are keywords.
A validation set, composed of 6,688 word vectors, of which
1.7% or 116 were keywords, were randomly selected from
the training set.

Due to the heavily imbalanced nature of the dataset,
where only around 2% of the words are labeled as important
words (keywords), standard over-sampling was done on the
training and validation sets. Over-sampling is a method of
repeating word vectors from the under-represented class(es)
so that the number of sample data for the different classes
would even out.

III. WORD FEATURES
Each unique word in a document yields a word feature

vector. These feature vectors include the document
identifier, the word itself, and the selected word features for
the dataset. We concentrate just on features involving the
frequency, position, usage and format of a word in a
document – or a total of 14 word-features. All these features
are very easily computable given the word list (and their
XHTML tags) that represents each document. The features
are purely computational and can be extracted without
resorting to any form of semantic, and not even syntactic,
analysis of the sentences, paragraphs and sections of the
document.

A. Word Frequency Feature
Word frequency is the number of times, normalized, that

a term appears in the document. The frequency (count) of a
word can be extracted by the following formula, where ݊,
refers to the frequency of term ݐ in document ݀:

 tfi,j = ni,j/∑ ݊ k,j (1)

B. Position Features
Some writing styles recommend that the first sentence of

the paragraph should give the main thought, while other
sentences in the paragraph would only support the opening
sentence. In this kind of writing style, the words that appear
somewhere at the start of a paragraph can indicate that the
word is important. As such, the average position of a given
word in the different paragraphs (pos-in-paragraph) might
be a useful feature to extract. Given the number of words in
the paragraph p as NP and k as the position of the word in
the paragraph, a term's position in a paragraph is computed
as follows:

 pos(paragraph) = k/NP (2)

The average position is computed if the term appears

more than once in the document.
There is a similar feature extracted to represent the

average position of the word in all the sentences (pos-in-
sentence) of the document. Given the number of words in
sentence s as NS and k as the position of the word in that
sentence, a term's position in a sentence is computed as

 pos(sentence) = k/NS (3)

The average position is also computed if the term

appears more than once among the different sentences of the
document.

725

C. Frequency in specific segments of document
Each document is divided into five segments, based

purely on the number of words that appear in the document
(i.e. with no regard for the logical sections and subsections
of the document). The frequency of each word is then
computed in each of segments 1 to 5. We denote as ݂,ሺݏሻ the frequency of the word i in the sth segment of
document j. The frequency computed below gives an
indication of where from among the five segments is the
given word most frequently appears. In that segment, ݂,ሺݏሻ
is 1. As for the other segments s, the value of ݂,ሺݏሻ would
be anywhere from 0 to 1, representing the ratio of the
frequency of the word in a given segment relative to its
frequency where it appears most often, as defined in (4).

 fi,j(s) = tfi,j(s)/[max{tfi,j(k)}, k = 1,2, …, 5] (4)

The special segment-specific frequency features

computed above as ݂,ሺݏሻ, s = 1,2,..5, are referred to as pos1,
pos2, … pos5. These features are extracted because words
that frequently appear in certain segments of the document
(e.g. pos1 and pos5, the first and last segments) are
predicted to be the more important words.

D. Word Usage Features
The word usage features are Boolean values, with a

value of 1 if the word has been used at least once as part of
at least one section heading (in-heading), as part of the
abstract (in-abstract), or as part of any of the Figure or
Table captions (in-caption).

E. Word Formatting Features
Similarly, the word formatting features are Boolean

values, with a value of 1 if the word has been italicized at
least once in any part of the document other than the title,
abstract and section headers (italicized), bold faced, (bold
faced), or written using a font size that is larger than the
most common font size (is-big).

IV. EXPERIMENTAL SET-UP
Aside from the 14 features discussed earlier, each word

feature vector carries a label – an indicator as to whether the
word is an important word (keyword) or not. Having no
access to an explicit list of “important words” per document,
we had to resort to proxy labels. A word is labelled as a
keyword if appears in the document title or in the list of
keywords found right after the abstract. Indeed, these are
the words, chosen by the document author/s, which are
probably important.

Aware that such proxy labels are inadequate in that some
title words are not keywords (although stop words in the
title would have been removed), and some keywords do not
appear in the title nor keyword list, we are constrained to
use this as basis for tagging words as keyword or non-
keyword. It was argued in the earlier study [25] that in the
absence of a more authoritative dataset that has manually
selected keywords (by experts), it is justifiable to use title
words and words in a keyword list as basis for proxy labels.

This is preferred over allowing researchers themselves to
assign the desired labels per document.

Once all the word vectors have been processed, feature
data values are normalized and the resulting word feature
vectors are used to train an ANN, with backpropagation as
the machine learning method used. All the experiments were
run using RapidMiner [36]. The backpropagation network
has 14 input nodes, one hidden layer consisting of nine
hidden nodes, and two output nodes. One output node is
trained to classify keywords, while the other is trained to
classify non-keywords.

A threshold is set for the output nodes. Following the
standard feed-forward activation of the nodes in multi-
layered perceptrons, every time an output node’s output
value exceeds the threshold, the word is classified as
keyword (or non-keyword), depending on which of the two
nodes fires.

 Experiment I provides the baseline information for
assessing how much gain in performance would result from
adding format features during training. Note that in the 2012
study [25], format features (italicized, bold-faced, and large
font size) were not included. Experiment II used all 14
features, including the format features. As for Experiment
III, the same 14 features as in Experiment II were used,
except that there is a validation set that is used to determine
the output threshold for the trained networks (referred to as
“calibrated neural network”).

V. RESULTS AND DISCUSSION
The results from Experiments I and II show the skewed

classification performance of the trained neural network.
The trained classifiers perform better in recalling the non-
keywords, as around 90% of the 78,325 non-keywords in
the test set have been correctly classified. The trained
classifier is also quite accurate (precise) whenever it
predicts a word as a non-keyword. Of the more than 70,000
words predicted as non-keywords, indeed more than 99%
are found to be truly non-keywords.

The confusion matrices for experiments I, II, and III are
shown in Table I, while the recall and precision rates as
well as the other summative performance rates are provided
in Table II. From Experiment I, when only frequency,
position, and usage features are used, accuracy (recall) for
keywords is at 0.77. The figure is higher at 0.89 for non-
keywords. Precision is quite low for the keywords, at only
0.13, but is very high at 0.99 among non-keywords. Slightly
better results are obtained in Experiment II, attributable to
the inclusion of format features for training. Recall for
keywords are steady at around 0.76, and at 0.91 for non-
keywords. As to precision, although it has improved from
the 0.13 in Experiment I, it is still quite low for the
keywords at only 0.16, but remains very high at 0.99 among
non-keywords.

The same excellent precision results cannot be said for
the case of keywords. Although, of the 1,730 keywords in
the test set, more than 1,300 have been correctly classified
as keywords, and thus a recall of about 76-77% for
Experiments I and II, the precision for keyword prediction
is consistently quite low. For Experiment II, of the more

726

than 8,516 words that were predicted to be keywords, only
1,323 are indeed keywords, leaving many words
misclassified – and thus a precision of only about 16%.

This observation is all the more important to point out
because the study is mainly concerned with the extraction of
keywords, and therefore the assessment of the recall and
precision would normally be focused on the keywords, and
not the non-keywords.

TABLE I. CONFUSION MATRICES (CONTINGENCY TABLES) FOR THE
THREE EXPERIMENTS, DENOTED BY THE INPUT FEATURES USED:
FREQUENCY (FREQ), POSITION (P), USAGE (U) AND FORMATTING (F)

TABLE II. SUMMARY OF PERFORMANCE MEASURES FOR THE THREE
EXPERIMENTS.

As explained in section IV, however, title words and

words in the keyword list have been used as proxy labels. In
other words, when we say that a “non-keyword” has been
mistakenly classified as a keyword, it is possible that the
“non-keyword” did not appear in the title, nor in the
keyword list, and yet appeared quite frequently in the entire
document, and can be found in the abstract and section
headers as well as in some of the figure/table captions.
Perhaps that same “non-keyword” has been italicized and
printed in large bold-faced font. As far as its features are
concerned, it can really look like any of the important words
that were correctly classified as “keywords”.

Obviously then, there would be many other words in a
long document that can be considered important, but these
words may not figure among the title words and the
keyword list supplied by the authors of the journal paper.
This is an inherent limitation of the study. We will not be
able to compute the absolute precision and recall of our
keyword extraction procedure, nor the relevance of the
features that we have used, because we do not have access
to an authoritative dataset that has a definitive list of
keywords per document.

We have, however, manually inspected the “false
positives” among non-keywords which were misclassified
to be keywords. Practically all are substantial, non-trivial
words and really appeared to be important words in the
documents where they appeared. We also tried to rank the
extracted keywords per document, using the activation value
of the output nodes as basis for ranking. The higher the
activation value, the lesser was the chance that a word
tagged as keyword is in fact a non-keyword.

The various discussions regarding this manual
inspection of the documents are beyond the scope of this
paper. We should at least mention, however, that we have
developed a software module that allowed for a rapid visual
inspection of the “importance” of a word in a given
document. This is achieved by color coding of words, so its
frequency of appearance, scatter and spread, as well as the
various formatting that was used, can be rendered visually
and hence, a manual inspection of the tagged words could
be facilitated. Refer to Fig. 1. Note that words had been
stemmed, and so words with the same root/stem (e.g. query,
queries, querying) would be tagged as the same word, and
be given the same word color.

The manual inspection of the extracted (non)keywords
led to the observation that “false positives” tended to occur
more frequently among words that registered relatively
lower activation values at the output nodes of the trained
network. This observation was the basis for using a
validation set in Experiment III, which then would enable us
to determine at which threshold value should the output
nodes be set, so that the ratio of “true positives” and “false
positives” could be maximized, and thus improve the
precision for keywords, and therefore maximize the
weighted f-measure.

By using a validation set during training, the number of
false positives among non-keywords is drastically reduced
to only 3,207 in Experiment III, compared to 7,193 in
Experiment II. This resulted in the improvement of the
precision for keywords from 0.16 to 0.24, although, as
expected, the accuracy of predicting keywords (recall) went
significantly lower to 0.58 from 0.76. The precision among
non-keywords remained the same, while recall among non-
keywords improved from 0.91 to 0.96.

Individual recall and precision rates are helpful in
evaluating the accuracy of the trained classifier on a per
category basis (i.e. keyword or non-keyword). Since the test
set is highly imbalanced, with 98% of the words being non-
keywords, it is important to see the recall and precision
separately, as it is done in Table II.

Reporting the performance of any trained classifier is,
however, best done using aggregated and summative
measures such as the f measure, which combines recall (r)
and precision (p) in a single measure, as follows:

 f measure = 2rp/(r+p) (5)

We see from Table II that the f-measure for non-

keywords is consistently better than that for keywords, and
that the “calibration” using the validation set in Experiment
III has actually helped in getting better f-measures.

 Classified as

Candidate freq I (Freq, P, U) II (Freq, P, U, F) III (Freq, P, U, F)

words K NK K NK K NK

Keywords (K) 1,730 1,331 399 1,323 407 1,003 727

Non-Keywords (NK) 78,325 8,538 69,787 7,193 71,132 3,207 75,118

total 80,055 9,869 70,186 8,516 71,539 4,210 75,845

EXPERIMENTS
Performance Measures I II III (calibrated)

Freq, P, U Freq, P, U, F Freq, P, U, F
recall (K) 0.77 0.76 0.58

recall (Non-K) 0.89 0.91 0.96
precision (K) 0.13 0.16 0.24

precision (Non-K) 0.99 0.99 0.99
f-measure (K) 0.23 0.26 0.34

f-measure (Non-K) 0.94 0.95 0.97
average f-measure 0.58 0.60 0.66

weighted f-measure 0.92 0.93 0.96
G-mean 0.83 0.83 0.75

727

We can aggregate further the f-measures of keywords
and non-keywords into a single f-measure. One way is just
to take a simple average (average f-measure). The other
way is to consider the ratio of keywords to non-keywords
and to use a weighted mean. This yields the weighted f
measure in Table II. Once again, for both consolidated f-
measures, the “calibrated neural network” of Experiment III
produced the best results.

We studied yet another aggregated performance
measure, referred to as the Geometric mean (G mean) and
computed as shown in (6). This was first introduced by
[37][38], and was specifically focused on reporting the
classification performance on highly imbalanced datasets.

 G mean = √ ݈݈ܽܿ݁ݎሺܭሻ ൈ ሻ (6)ܭ݊ሺ݈݈ܰܽܿ݁ݎ

Note that since the recall among keywords dropped for

experiment III, the resultant G mean has actually decreased
to 0.75 compared to 0.83 for experiment II.

As a final step, it is important to figure out the “logic”
that the trained networks are using in classifying a given
word as keyword or not. This is a field of research in
artificial neural networks that is referred to as “rule
extraction” [39]. To extract rules from a trained network, we
take the initial labels of the word vectors in the test set and
replace them with the label (keyword or non-keyword), as
predicted by the trained network. This way, the word
vectors are now labeled with the neural network predicted
label. When we then subject the “re-labeled” test set” to the
C4.5 decision tree classifier [40][41], what we get is a
decision tree that actually reflects the “rules” that the trained
neural network was using. This is a subtle, simple, fast, but
effective way of extracting rules from trained neural
networks.

By feeding a decision tree classifier with a re-labeled
test set, we were able to see which features were deemed
important for the backpropagation neural network. The most
important features according to the tree are the following:
frequency-in-segment-1, frequency-count, frequency-in-
segment-4, usage-in-caption, frequency-in-segment-5,
position-in-sentence, and position-in-paragraph. Figure 2
shows the resulting decision tree from the C4.5 algorithm,
giving the details as to how the above features have been
used by C4.5 (and the trained network) in arriving at a
conclusion, as to whether a word is a keyword or a non-
keyword. Due to limitations in space, further discussion on
the extracted rules from the resulting decision-tree,
particularly in comparison to the rules extracted from neural
networks trained using the Wikipedia dataset, would be
beyond the scope of this paper. Suffice it to say that the
classification performance rates for predicting important
from non-important words in IEEE journal articles, as well
as the most important features that were extracted, are
different from those for Wiki-documents.

VI. CONCLUSION AND RECOMMENDATION
Using word feature vectors extracted from IEEE

scientific journal articles as training data, several artificial
neural networks have been trained using the

backpropagation learning algorithm. Word features used
were limited to only frequency, position, usage and format
features – with no attempt to understand the individual
words, nor to do any syntactic, much less sematic analysis
of the document.

Recall rates for keywords are at around 0.75, while
recall rates for non-keywords are at around 0.91. The
classifiers produced are also highly precise when classifying
a word as non-keyword. Precision rates are consistently at
0.99. The precision for keywords is rather low, however, at
around 0.16. Many “non-keywords” have been tagged as
important keywords by the classifier. In the study, we used
proxy keyword labels in that any word that is in the title or
is among the list of keywords supplied just after the abstract
of a journal article, is considered a “keyword”. All other
words in the document are non-keywords. The poor
precision for the case of keywords can thus be explained
partly by the inherent limitation of the study, which had to
rely on proxy labels, because no real keyword labels are
available.

In an attempt to improve the precision of the neural
network in identifying keywords, the threshold for the
activation values of the output node of the trained neural
network was calibrated during training through the use of a
separate validation set. In general, and as expected, as the
threshold approaches 1.0, the precision increases, but the
recall rate decreases.

Various aggregated performance measures were also
used to assess the classification performance of the neural
networks in the three performed experiments. The recall and
precision rates were combined into an f-measure for
keywords, and an f-measure for non-keywords. The f
measures are further combined into an average f measure,
and a weighted mean of f-measures (weighted f-measure) to
take into account the huge imbalance in the dataset, where
less than 2% of the words are keywords. Another special
performance measure was computed, the Geometric mean
(G mean), which is suitable for imbalanced datasets. A G
mean of 0.83 was obtained.

Several possibilities for future research include 1)
comparison of the “learned” basis for extracting keywords
from journal articles with those from websites/homepages
and snippets from social media, 2) use of data clustering and
self-organizing maps that would render the keywords in a
2D or 3D map, rather than a plain list of extracted
keywords; and 3) detecting entire key-phrases, as a
sequence of keywords (bi-grams, tri-grams).

REFERENCES
[1] M.A. Hearst, “Untangling Text Data Mining”, Proc Annual Meeting

Association for Computational Linguistics, 1999 (invited paper).
[2] I.H. Witten. “Text mining”. M. Singh (Ed.), Practical handbook of

internet computing (p. 14-1 - 14-22), 2005, Boca Raton, Florida:
Chapman & Hall/CRC Press.

[3] R.M. Aliguliyev “Clustering of document collection - A weighting
approach”. Expert Systems with Applications. V36 I4. 2009, pp
7904-7916.

728

[4] J. Chuang, C.D. Manning and J. Heer, “Without the clutter of
unimportant words: Descriptive keyphrases for text visualization”,
ACM Trans Computer-Human Interaction , V19 I3, October 2012

[5] S.Y. Bong and K.B. Hwang, “Keyphrase extraction in biomedical
publications using mesh and intraphrase word co-occurrence
information”, Proc ACM 5th Intl Workshop Data and Text Mining in
Biomedical Informatics, October 2011.

[6] C-H Wang, M-Z Zhang, L-Y Ru and S-P Ma, “An automatic online
news topic keyphrase extraction system, Proc IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 2008

[7] Z. Ding, Q. Zhang and X Huang, “Learning to extract coherent
keyphrases from online news”, Proce 7th Asia Conference on
Information Retrieval Technology, 2011, Springer-Verlag

[8] F. Zhang, G. Qiu, J. Bu, M. Qu and C. Chen “A novel approach to
keyword extraction for contextual advertising”. Proc. Asian
Conference on Intelligent Information and Database Systems, 2009,
pp 51-56.

[9] S-T Li and F-C Tsai, “Constructing tree-based knowledge structures
from text corpus”, Applied Intelligence, 33 (1), 2010, p.67-78

[10] L. Massey, “Autonomous and adaptive identification of topics in
unstructured text”, Proc Intl Conf Knowledge-Based and Intelligent
Information and Engineering Systems, 2011

[11] K.i Zervanou, “UvT: The UvT term extraction system in the
keyphrase extraction task”, SemEval '10: Proc Intl ACL Workshop on
Semantic Evaluation, July 2010

[12] D. X. Wang, X. Gao and P. Andreae, “DIKEA: domain-independent
keyphrase extraction algorithm”, Proc Australasian Joint Conf on
Advances in Artificial Intelligence, 2012, Springer-Verlag

[13] S R. El-Beltagy and A Rafea, “KP-Miner: A keyphrase extraction
system for English and Arabic documents”, Information Systems , 34
(1), 2009, Elsevier Science

[14] S.T. Yanga, J.L. Houb and J.Y. Chenb , “A knowledge component
extraction technology using figures and tables”, Journal of
Experimental & Theoretical Artificial Intelligence, 25(2), 2013, pp
147-175

[15] P. Thomson “A combination of expert opinion approach to
probabilistic information retrieval, Part 1: The conceptual model”,
Information Processing & Management, 26 (3), 1990, pp. 371-382,
Pergamon Press

[16] L. Sbattella and R. Tedesco, “A novel semantic information retrieval
system based on a three-level domain model”, Journal of Systems and
Software, 86 , 2013, pp 1426– 1452

[17] A.P. Azcarraga and T.N. Yap Jr., “Extracting meaningful labels for
Websom text archives”. Proc. Intl Conf on Information and
Knowledge Management, 2001, pp 41–48.

[18] M.S. Paukkeri, A.P. García-Plaza, V. Fresno, R.M. Unanue and T.
Honkela, “Learning a taxonomy from a set of text documents”,
Applied Soft Computing , 12 (3) 2012, Elsevier Science

[19] C-H Chou, C-C Han and Y-H Chen, “GA based optimal keyword
extraction in an automatic Chinese web document classification
system”. In ISPA 2007 Workshops, LNCS 4743, (2007) pp. 224–234.

[20] M. Efron,” Linear time series models for term weighting in
information retrieval”, Journal of the American Society for
Information Science and Technology, 61 (7),2010, pp.1299-1312,
2010 [doi>10.1002/asi.v61:7]

[21] C. Wu, M. Marchese, Y. Wang, M. Krapivin, C. Wang, X. Li and Y.
Liang “Data preprocessing in SVM-based keywords extraction from
scientific documents”. Proc. Intl Conf on Innovative Computing,
Information and Control, 2009, pp 810–813.

[22] W-J Ni, T-L Liu and Q-T Zeng “Extracting keyphrase set with high
diversity and coverage using structural SVM”, Proc Asia-Pacific Intl
Conf on Web Technologies and Applications, 2012, Springer-Verlag.

[23] K. Zhang, H. Xu, J. Tang and J. Li. “Keyword extraction using
support vector machine”. Proc 7th international conference on
Advances in Web-Age Information Management, LNCS 4016, 2006,
pp. 85-96. Springer-Verlag.

[24] K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward
networks are universal approximators”, Neural Networks, 2(5), 1989,
pp. 359-366.

[25] A.P. Azcarraga, M.D. Liu and R. Setiono, “Keyword extraction
using backpropagation neural networks and rule extraction”. Proc
International Joint Conference on Neural Networks (IJCNN 2012),
Brisbane, Australia.

[26] T.W.S Chow, H. Zhang and M.K.M Rahman, “A new document
representation using term frequency and vectorized graph
connectionists with application to document retrieval”. Expert
Systems with Applications. 36 (10), 2009, pp 12023-12035.

[27] T. Jo, M. Lee and T.M. Gatton. “Keyword extraction from documents
using a neural network model”. Proc. IEEE Intl Conf on Hybrid
Information Technology, 2006, pp 194–197

[28] E.D. Wiener, J.O. Pedersen and A.S. Weigend “A neural network
approach to topic spotting”. Proc. Annual Symposium on Document
Analysis and Information Retrieval, 1995, pp 317-322.

[29] T.D. Nguyen and MY Kan “Keyphrase extraction in scientific
publications”, ICADL'07: Proc 10th international conference on
Asian digital libraries, 2007, Springer-Verlag

[30] K. Niraj and S. Kannan, “Automatic keyphrase extraction from
scientific documents using N-gram filtration technique”, Proc 8th
ACM Symposium on Document Engineering

[31] S-N Kim and M-Y Kan, “Re-examining automatic keyphrase
extraction approaches in scientific articles”, Proc Workshop on
Multiword Expressions: Identification, Interpretation, Disambiguation
and Applications, 2009, Association for Computational Linguistics

[32] A. Joorabchi and A.E. Mahdi, “Automatic keyphrase annotation of
scientific documents using Wikipedia and genetic algorithms”,
Journal of Information Science , 39(3), 2013, Sage

[33] M.F. Porter, “An algorithm for suffix stripping”. Readings in
Information Retrieval, 1997, pp 313-316. 1997, Morgan Kaufmann

[34] G. Salton, A. Wong and C.S. Yang, “A vector space model for
automatic indexing”. Communications of the ACM. 18(11), 2005, pp
613-620

[35] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval”, Information Processing and Management: an
International Journal, 24 (5), 1988, pp.513-523.

[36] I Mierswa, M Wurst, R Klinkenberg, M Scholz and T Euler, “YALE:
Rapid Prototyping for Complex Data Mining Tasks”, Proc ACM
SIGKDD Intl Conf Knowledge Discovery and Data Mining, 2006.

[37] M.K. Robert, R.Holte and S. Matwin, “Learning when negative
examples abound”. Proc European Conference on Machine Learning,
1997

[38] M Kubat and S. Matwin “Addressing the curse of imbalanced training
sets: one-sided selection”, Proc Intl Conf on Machine Learning, 1997,
Morgan Kaufmann

[39] R. Setiono, B. Baesens and C. Mues, “Recursive neural network rule
extraction for data with mixed attributes”, IEEE Trans. on Neural
Networks, 19(2), 2008, pp 299–307.

[40] J.R. Quinlan, “C4.5: Programs for machine learning”. 1993, Morgan
Kaufmann

[41] J.R. Quinlan “Improved use of continuous attributes in C4.5”. Journal
of Artificial Intelligence Research, 4, 1996, pp. 77-90.

[42] H. Goto, Y. Hasegawa and M. Tanaka, “Efficient Scheduling
Focusing on the Duality of MPL Representatives,” Proc. IEEE Symp.
Computational Intelligence in Scheduling (SCIS 07), IEEE Press,
Dec. 2007, pp. 57-64, doi:10.1109/SCIS.2007.357670.

729

Figure 1. Visualization tool that assigns color-codes t
formatting that was used, can be readily see
stemmed, and so words with the same root/
word color.

to tagged keywords, so their frequency of appearance, scatter and spread
en and observed, thus facilitating the manual inspection of the tagged wo
/stem (e.g. query, queries, querying) would be tagged as the same word a

d, as well as the various
ords. Note that words had been
and are assigned the same

730

Figure 2. Decision tree generated with C4.5 based on the n
classifying a given word as either a keyword or n

neural network classifications. The resultant tree reflects the “rules” used
non-keyword. Class 0 refers to non-keywords, class 1 refers to keywords

d by the neural network in
s.

731

