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Abstract—Keywords and key-phrases that concisely 
represent text documents are integral to many knowledge 
management and text information retrieval systems, as well as 
digital libraries in general. Not all text documents, however, 
are annotated with good keywords; and the quality of these 
keywords is often dependent on a tedious, sometimes manual, 
extraction and tagging process. To automatically extract high 
quality keywords without the need for a semantic analysis of 
the document, it is shown that artificial neural networks (ANN) 
can be trained to only consider in-document word features 
such as word frequency, word distribution in document, use of 
word in special parts of the document, and use of word 
formatting features (i.e. bold-faced, italicized, large-font size). 
Results show that purely local features are adequate in 
determining whether a word in a document is a keyword or 
not. Classification performance yields a G mean of a least 0.83, 
and weighted f-measure of 0.96 for both keywords and non-
keywords. Precision for keywords alone, however, is not as 
high. To understand the basis for classifying keywords, C4.5 is 
used to extract rules from the ANN. The extracted rules from 
C4.5, in the form of a decision tree, show the relative 
importance of the different document features that were 
extracted.  

Keywords—keyword extraction; document tagging; feature 
selection; artificial neural network; scientific documents 

I.       INTRODUCTION 
In this digital age, huge amounts of information in the 

form of images, video-clips, and most of all, text documents 
have made it more and more difficult for human users to sift 
through the relevant and irrelevant information. Keywords 
and key phrases, as concise and meaningful representation 
of text documents, have thus become integral to many 
knowledge management and text information retrieval 
systems, as well as digital libraries in general [1][2][3][4]. 
Web search services are likewise aided enormously when 
the most important words of every text-document are 
available. Keywords have also become significant in e-
commerce, specifically in providing contextual 
advertisements to online content, as well as for online news, 
and other highly specialized digital libraries [5][6][7][8]. 

 Automatic keyword generation, selection, or extraction 
have thus become a very important field of research in 
Computer Science and Computational Linguistics 
[9][10][11]. The field comes under other names, each with 
slightly different emphasis, including document tagging and 

annotation, as well as the more general problem of selecting 
bigrams, and even entire phrases, more aptly referred to as 
key phrase selection. 

One approach to tagging documents is to simulate the 
way human experts go about in annotating documents. This 
would involve deep semantic analysis, and would include 
understanding the nuances of words, understanding figures 
of speech, idiomatic expressions, and the like. Such analyses 
would also typically involve some syntactic analysis of each 
sentence, extraction of named-entities and parts-of-speech 
(POS), and semantic analysis of these sentence items in 
order to understand the meaning of sentences, paragraphs, 
sections, and entire documents. 

Another approach, often related closely with Natural 
Language Processing (NLP) techniques, is through the use 
of carefully crafted rules for keyword extraction, in the form 
of expert systems[12][13][14][15][16]. This approach may 
be effective in specialized domains, and closed archives, but 
they typically would require some manual construction of a 
set of inference rules on very particular linguistic styles and 
domains of knowledge. Such an approach would have 
difficulty in scaling up to very large document sets because 
of the tedious effort needed for each domain and for each 
linguistic style, or manner of writing. 

Yet another approach is the use of statistics-based 
methods, such as Bayesian networks, k-nearest-neighbor 
algorithms, and Expectation Maximization. Other 
approaches that are statistical and computational in nature, 
use data-driven machine learning algorithms to perform the 
task of distinguishing keywords from non-keywords would 
include Genetic Algorithms, Support Vector Machines, 
Decision Trees, Self-Organizing Maps, and Artificial Neural 
Networks [17][18][19][20][21][22][23]. 

These methods may yield quite accurate keywords, but 
for these methods to be scalable, they should not rely on 
features that are difficult and tedious to extract, such as 
when ITF and IDF features are used. The inverse document 
frequency (IDF), for example, would need the frequency 
counts of all words in all the documents in the corpus before 
it can be computed. Hence, methods that rely on such 
features can be troublesome when employed to handle 
rapidly growing document sets, such as the documents 
found on the Web.  
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The approach described in this paper does not attempt to 
do any level of semantic analysis of the individual 
sentences, nor any kind of natural language processing that 
would seek to understand what is being discussed. In 
particular, our approach is to use artificial neural networks 
(ANN) that are fed with word features based on frequency, 
position, usage, and format - and just on the basis of these 
features, the ANN learns to distinguish important words 
(keywords) from non-important words. None of these 
features would allude to any form of semantic analysis, nor 
any look-up of some online thesaurus or dictionary to check 
for the meaning of words. These features are very fast to 
compute and extract from each text document. 

ANNs have been proven to be universal approximators 
[24] which are theoretically able to learn any, possibly non-
linear,  relation between a set of input features to some set 
of output items, given the proper features and an adequate 
data sample. Indeed, ANNs have been used for keyword 
extraction [25][26][27][28] and the work reported in this 
paper builds on past work reported in [25]. 

The rest of the paper is organized as follows: section II 
describes the dataset; section III describes in some detail the 
various word features used and how they are extracted from 
the individual documents; section IV describes the five 
experiments that were performed; section V discusses the 
results; and finally section VI concludes the paper.  

II.       DATASET 
The same IEEE documents previously used in [25] are 

used for all the experiments reported here. The dataset is 
composed of IEEE journal articles on different scientific 
topics. Each journal document would typically have a title, 
an abstract, some key index terms (i.e. user supplied 
keywords), the text body, and a reference list. The IEEE 
dataset originally had 300 documents, with 150 documents 
that were randomly chosen for training and 150 randomly 
chosen documents for testing. A number of the training 
documents did not have an abstract or did not have a list of 
keywords. So, after filtering out non-compliant documents, 
a total of 270 documents were used in the final dataset, with 
only 120 training documents left. 

Every document is pre-processed, going through 
standard text processing procedures prior to feature 
extraction. These pre-processing steps include tokenization, 
stop word removal, and stemming [33]. Each document is 
then represented as a sequential list of stemmed words 
which are then transformed into individual word feature 
vectors, also following standard text processing procedures 
[34][35].  

In total, the processed documents yielded 427,185 word 
feature vectors. The training set has 69,190 word vectors, of 
which only 1.7% or 1,157 are keywords. The test set has 
80,055 word vectors, of which 2.2% or 1,730 are keywords. 
A validation set, composed of 6,688 word vectors, of which 
1.7% or 116 were keywords, were randomly selected from 
the training set.  

Due to the heavily imbalanced nature of the dataset, 
where only around 2% of the words are labeled as important 
words (keywords), standard over-sampling was done on the 
training and validation sets. Over-sampling is a method of 
repeating word vectors from the under-represented class(es) 
so that the number of sample data for the different classes 
would even out. 

III.     WORD FEATURES  
Each unique word in a document yields a word feature 

vector. These feature vectors include the document 
identifier, the word itself, and the selected word features for 
the dataset. We concentrate just on features involving the 
frequency, position, usage and format of a word in a 
document – or a total of 14 word-features. All these features 
are very easily computable given the word list (and their 
XHTML tags) that represents each document. The features 
are purely computational and can be extracted without 
resorting to any form of semantic, and not even syntactic, 
analysis of the sentences, paragraphs and sections of the 
document. 

A. Word Frequency Feature 
Word frequency is the number of times, normalized, that 

a term appears in the document. The frequency (count) of a 
word can be extracted by the following formula, where ݊, 
refers to the frequency of term ݐ in document ݀: 

                                     tfi,j = ni,j/∑ ݊ k,j                                             (1) 

B. Position Features 
Some writing styles recommend that the first sentence of 

the paragraph should give the main thought, while other 
sentences in the paragraph would only support the opening 
sentence. In this kind of writing style, the words that appear 
somewhere at the start of a paragraph can indicate that the 
word is important. As such, the average position of a given 
word in the different paragraphs (pos-in-paragraph) might 
be a useful feature to extract. Given the number of words in 
the paragraph p as NP and k as the position of the word in 
the paragraph, a term's position in a paragraph is computed 
as follows:  

 
                          pos(paragraph) = k/NP                        (2) 
 
The average position is computed if the term appears 

more than once in the document.  
There is a similar feature extracted to represent the 

average position of the word in all the sentences (pos-in- 
sentence) of the document. Given the number of words in 
sentence s as NS and k as the position of the word in that 
sentence, a term's position in a sentence is computed as 

 
                            pos(sentence) = k/NS                        (3) 
 
The average position is also computed if the term 

appears more than once among the different sentences of the 
document. 
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C. Frequency in specific segments of document 
Each document is divided into five segments, based 

purely on the number of words that appear in the document 
(i.e. with no regard for the logical sections and subsections 
of the document). The frequency of each word is then 
computed in each of segments 1 to 5. We denote as ݂,ሺݏሻ  the frequency of the word i in the sth segment of 
document j. The frequency computed below gives an 
indication of where from among the five segments is the 
given word most frequently appears. In that segment, ݂,ሺݏሻ 
is 1. As for the other segments s, the value of ݂,ሺݏሻ would 
be anywhere from 0 to 1, representing the ratio of the 
frequency of the word in a given segment relative to its 
frequency where it appears most often, as defined in (4).   

         fi,j(s) = tfi,j(s)/[ max{tfi,j(k)}, k = 1,2, …, 5]              (4) 
 
The special segment-specific frequency features 

computed above as ݂,ሺݏሻ, s = 1,2,..5, are referred to as pos1, 
pos2, … pos5. These features are extracted because words 
that frequently appear in certain segments of the document 
(e.g. pos1 and pos5, the first and last segments) are 
predicted to be the more important words. 

D. Word Usage Features 
The word usage features are Boolean values, with a 

value of 1 if the word has been used at least once as part of 
at least one section heading (in-heading), as part of the 
abstract (in-abstract), or as part of any of the Figure or 
Table captions (in-caption).  

E. Word Formatting Features 
Similarly, the word formatting features are Boolean 

values, with a value of 1 if the word has been italicized at 
least once in any part of the document other than the title, 
abstract and section headers (italicized), bold faced, (bold 
faced), or written using a font size that is larger than the 
most common font size (is-big).  

IV.      EXPERIMENTAL SET-UP 
Aside from the 14 features discussed earlier, each word 

feature vector carries a label – an indicator as to whether the 
word is an important word (keyword) or not. Having no 
access to an explicit list of “important words” per document, 
we had to resort to proxy labels. A word is labelled as a 
keyword if appears in the document title or in the list of 
keywords found right after the abstract. Indeed, these are 
the words, chosen by the document author/s, which are 
probably important. 

Aware that such proxy labels are inadequate in that some 
title words are not keywords (although stop words in the 
title would have been removed), and some keywords do not 
appear in the title nor keyword list, we are constrained to 
use this as basis for tagging words as keyword or non-
keyword. It was argued in the earlier study [25] that in the 
absence of a more authoritative dataset that has manually 
selected keywords (by experts), it is justifiable to use title 
words and words in a keyword list as basis for proxy labels. 

This is preferred over allowing researchers themselves to 
assign the desired labels per document. 

Once all the word vectors have been processed, feature 
data values are normalized and the resulting word feature 
vectors are used to train an ANN, with backpropagation as 
the machine learning method used. All the experiments were 
run using RapidMiner [36]. The backpropagation network 
has 14 input nodes, one hidden layer consisting of nine 
hidden nodes, and two output nodes. One output node is 
trained to classify keywords, while the other is trained to 
classify non-keywords.  

A threshold is set for the output nodes. Following the 
standard feed-forward activation of the nodes in multi-
layered perceptrons, every time an output node’s output 
value exceeds the threshold, the word is classified as 
keyword (or non-keyword), depending on which of the two 
nodes fires. 

 Experiment I provides the baseline information for 
assessing how much gain in performance would result from 
adding format features during training. Note that in the 2012 
study [25], format features (italicized, bold-faced, and large 
font size) were not included. Experiment II used all 14 
features, including the format features. As for Experiment 
III, the same 14 features as in Experiment II were used, 
except that there is a validation set that is used to determine 
the output threshold for the trained networks (referred to as 
“calibrated neural network”). 

V.      RESULTS AND DISCUSSION 
The results from Experiments I and II show the skewed 

classification performance of the trained neural network. 
The trained classifiers perform better in recalling the non-
keywords, as around 90% of the 78,325 non-keywords in 
the test set have been correctly classified. The trained 
classifier is also quite accurate (precise) whenever it 
predicts a word as a non-keyword. Of the more than 70,000 
words predicted as non-keywords, indeed more than 99% 
are found to be truly non-keywords. 

The confusion matrices for experiments I, II, and III are 
shown in Table I, while the recall and precision rates as 
well as the other summative performance rates are provided 
in Table II. From Experiment I, when only frequency, 
position, and usage features are used, accuracy (recall) for 
keywords is at 0.77. The figure is higher at 0.89 for non-
keywords. Precision is quite low for the keywords, at only 
0.13, but is very high at 0.99 among non-keywords. Slightly 
better results are obtained in Experiment II, attributable to 
the inclusion of format features for training. Recall for 
keywords are steady at around 0.76, and at 0.91 for non-
keywords. As to precision, although it has improved from 
the 0.13 in Experiment I, it is still quite low for the 
keywords at only 0.16, but remains very high at 0.99 among 
non-keywords. 

The same excellent precision results cannot be said for 
the case of keywords. Although, of the 1,730 keywords in 
the test set, more than 1,300 have been correctly classified 
as keywords, and thus a recall of about 76-77% for 
Experiments I and II, the precision for keyword prediction 
is consistently quite low. For Experiment II, of the more 
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than 8,516 words that were predicted to be keywords, only 
1,323 are indeed keywords, leaving many words 
misclassified – and thus a precision of only about 16%. 

This observation is all the more important to point out 
because the study is mainly concerned with the extraction of 
keywords, and therefore the assessment of the recall and 
precision would normally be focused on the keywords, and 
not the non-keywords.   

TABLE I.  CONFUSION MATRICES (CONTINGENCY TABLES) FOR THE 
THREE EXPERIMENTS, DENOTED BY THE INPUT FEATURES USED: 
FREQUENCY (FREQ), POSITION (P), USAGE (U) AND FORMATTING (F) 

 

TABLE II.  SUMMARY OF PERFORMANCE MEASURES FOR THE THREE 
EXPERIMENTS. 

 
 
 
As explained in section IV, however, title words and 

words in the keyword list have been used as proxy labels. In 
other words, when we say that a “non-keyword” has been 
mistakenly classified as a keyword, it is possible that the 
“non-keyword” did not appear in the title, nor in the 
keyword list, and yet appeared quite frequently in the entire 
document, and can be found in the abstract and section 
headers as well as in some of the figure/table captions. 
Perhaps that same “non-keyword” has been italicized and 
printed in large bold-faced font. As far as its features are 
concerned, it can really look like any of the important words 
that were correctly classified as “keywords”.  

Obviously then, there would be many other words in a 
long document that can be considered important, but these 
words may not figure among the title words and the 
keyword list supplied by the authors of the journal paper. 
This is an inherent limitation of the study. We will not be 
able to compute the absolute precision and recall of our 
keyword extraction procedure, nor the relevance of the 
features that we have used, because we do not have access 
to an authoritative dataset that has a definitive list of 
keywords per document. 

We have, however, manually inspected the “false 
positives” among non-keywords which were misclassified 
to be keywords. Practically all are substantial, non-trivial 
words and really appeared to be important words in the 
documents where they appeared. We also tried to rank the 
extracted keywords per document, using the activation value 
of the output nodes as basis for ranking. The higher the 
activation value, the lesser was the chance that a word 
tagged as keyword is in fact a non-keyword.  

The various discussions regarding this manual 
inspection of the documents are beyond the scope of this 
paper. We should at least mention, however, that we have 
developed a software module that allowed for a rapid visual 
inspection of the “importance” of a word in a given 
document. This is achieved by color coding of words, so its 
frequency of appearance, scatter and spread, as well as the 
various formatting that was used, can be rendered visually 
and hence,  a manual inspection of the tagged words could 
be facilitated. Refer to Fig. 1. Note that words had been 
stemmed, and so words with the same root/stem (e.g. query, 
queries, querying) would be tagged as the same word, and 
be given the same word color. 

The manual inspection of the extracted (non)keywords 
led to the observation that “false positives” tended to occur 
more frequently among words that registered relatively 
lower activation values at the output nodes of the trained 
network.  This observation was the basis for using a 
validation set in Experiment III, which then would enable us 
to determine at which threshold value should the output 
nodes be set, so that the ratio of “true positives” and “false 
positives” could be maximized, and thus improve the 
precision for keywords, and therefore maximize the 
weighted f-measure.  

By using a validation set during training, the number of 
false positives among non-keywords is drastically reduced 
to only 3,207 in Experiment III, compared to 7,193 in 
Experiment II. This resulted in the improvement of the 
precision for keywords from 0.16 to 0.24, although, as 
expected, the accuracy of predicting keywords (recall) went 
significantly lower to 0.58 from 0.76. The precision among 
non-keywords remained the same, while recall among non-
keywords improved from 0.91 to 0.96.  

Individual recall and precision rates are helpful in 
evaluating the accuracy of the trained classifier on a per 
category basis (i.e. keyword or non-keyword). Since the test 
set is highly imbalanced, with 98% of the words being non-
keywords, it is important to see the recall and precision 
separately, as it is done in Table II. 

Reporting the performance of any trained classifier is, 
however, best done using aggregated and summative 
measures such as the f measure, which combines recall (r) 
and precision (p) in a single measure, as follows: 

 
                       f  measure = 2rp/(r+p)                            (5)  
  
We see from Table II that the f-measure for non-

keywords is consistently better than that for keywords, and 
that the “calibration” using the validation set in Experiment 
III has actually helped in getting better f-measures.  

      Classified as

Candidate freq    I ( Freq, P, U)    II (Freq, P, U, F)   III (Freq, P, U, F)

words K NK K NK K NK

Keywords (K) 1,730 1,331 399 1,323 407 1,003 727

Non-Keywords (NK) 78,325 8,538 69,787 7,193 71,132 3,207 75,118

total 80,055 9,869 70,186 8,516 71,539 4,210 75,845

EXPERIMENTS
Performance Measures I II III (calibrated)

Freq, P, U Freq, P, U, F Freq, P, U, F
recall (K) 0.77 0.76 0.58

recall (Non-K) 0.89 0.91 0.96
precision (K) 0.13 0.16 0.24

precision (Non-K) 0.99 0.99 0.99
f-measure (K) 0.23 0.26 0.34

f-measure (Non-K) 0.94 0.95 0.97
average f-measure 0.58 0.60 0.66

weighted f-measure 0.92 0.93 0.96
G-mean 0.83 0.83 0.75
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We can aggregate further the f-measures of keywords 
and non-keywords into a single f-measure. One way is just 
to take a simple average (average f-measure). The other 
way is to consider the ratio of keywords to non-keywords 
and to use a weighted mean. This yields the weighted f 
measure in Table II. Once again, for both consolidated f-
measures, the “calibrated neural network” of Experiment III 
produced the best results. 

We studied yet another aggregated performance 
measure, referred to as the Geometric mean (G mean) and 
computed as shown in (6). This was first introduced by 
[37][38], and was specifically focused on reporting the 
classification performance on highly imbalanced datasets.  

 
        G mean =  √ ݈݈ܽܿ݁ݎሺܭሻ ൈ  ሻ           (6)ܭ݊ሺ݈݈ܰܽܿ݁ݎ
 
Note that since the recall among keywords dropped for 

experiment III, the resultant G mean has actually decreased 
to 0.75 compared to 0.83 for experiment II. 

As a final step, it is important to figure out the “logic” 
that the trained networks are using in classifying a given 
word as keyword or not. This is a field of research in 
artificial neural networks that is referred to as “rule 
extraction” [39]. To extract rules from a trained network, we 
take the initial labels of the word vectors in the test set and 
replace them with the label (keyword or non-keyword), as 
predicted by the trained network. This way, the word 
vectors are now labeled with the neural network predicted 
label. When we then subject the “re-labeled” test set” to the 
C4.5 decision tree classifier [40][41], what we get is a 
decision tree that actually reflects the “rules” that the trained 
neural network was using. This is a subtle, simple, fast, but 
effective way of extracting rules from trained neural 
networks. 

By feeding a decision tree classifier with a re-labeled 
test set, we were able to see which features were deemed 
important for the backpropagation neural network. The most 
important features according to the tree are the following: 
frequency-in-segment-1, frequency-count, frequency-in-
segment-4, usage-in-caption, frequency-in-segment-5, 
position-in-sentence, and position-in-paragraph. Figure 2 
shows the resulting decision tree from the C4.5 algorithm, 
giving the details as to how the above features have been 
used by C4.5 (and the trained network) in arriving at a 
conclusion, as to whether a word is a keyword or a non-
keyword. Due to limitations in space, further discussion on 
the extracted rules from the resulting decision-tree, 
particularly in comparison to the rules extracted from neural 
networks trained using the Wikipedia dataset, would be 
beyond the scope of this paper. Suffice it to say that the 
classification performance rates for predicting important 
from non-important words in IEEE journal articles, as well 
as the most important features that were extracted, are 
different from those for Wiki-documents.  

VI.      CONCLUSION AND RECOMMENDATION 
Using word feature vectors extracted from IEEE 

scientific journal articles as training data, several artificial 
neural networks have been trained using the 

backpropagation learning algorithm. Word features used 
were limited to only frequency, position, usage and format 
features – with no attempt to understand the individual 
words, nor to do any syntactic, much less sematic analysis 
of the document. 

Recall rates for keywords are at around 0.75, while 
recall rates for non-keywords are at around 0.91. The 
classifiers produced are also highly precise when classifying 
a word as non-keyword. Precision rates are consistently at 
0.99. The precision for keywords is rather low, however, at 
around 0.16. Many “non-keywords” have been tagged as 
important keywords by the classifier.  In the study, we used 
proxy keyword labels in that any word that is in the title or 
is among the list of keywords supplied just after the abstract 
of a journal article, is considered a “keyword”. All other 
words in the document are non-keywords. The poor 
precision for the case of keywords can thus be explained 
partly by the inherent limitation of the study, which had to 
rely on proxy labels, because no real keyword labels are 
available.  

In an attempt to improve the precision of the neural 
network in identifying keywords, the threshold for the 
activation values of the output node of the trained neural 
network was calibrated during training through the use of a 
separate validation set. In general, and as expected, as the 
threshold approaches 1.0, the precision increases, but the 
recall rate decreases.   

Various aggregated performance measures were also 
used to assess the classification performance of the neural 
networks in the three performed experiments. The recall and 
precision rates were combined into an f-measure for 
keywords, and an f-measure for non-keywords. The f 
measures are further combined into an average f measure, 
and a weighted mean of f-measures (weighted f-measure) to 
take into account the huge imbalance in the dataset, where 
less than 2% of the words are keywords. Another special 
performance measure was computed, the Geometric mean 
(G mean), which is suitable for imbalanced datasets. A G 
mean of 0.83 was obtained. 

Several possibilities for future research include 1) 
comparison of the “learned” basis for extracting keywords 
from journal articles with those from websites/homepages 
and snippets from social media, 2) use of data clustering and 
self-organizing maps that would render the keywords in a 
2D or 3D map, rather than a plain list of extracted 
keywords; and 3) detecting entire key-phrases, as a 
sequence of keywords (bi-grams, tri-grams). 
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Figure 1.   Visualization tool that assigns color-codes t
formatting that was used, can be readily see
stemmed, and so words with the same root/
word color. 

 

to tagged keywords, so their frequency of appearance, scatter and spread
en and observed, thus facilitating the manual inspection of the tagged wo
/stem (e.g. query, queries, querying) would be tagged as the same word a

 

d, as well as the various 
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Figure 2.   Decision tree generated with C4.5 based on the n
classifying a given word as either a keyword or n

 

neural network classifications. The resultant tree reflects the “rules” used
non-keyword. Class 0 refers to non-keywords, class 1 refers to keywords

 

 

d by the neural network in 
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