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Abstract—Restricted Boltzmann Machine is a fundamental 
method in deep learning networks. Training and 
generalization is an ill-defined problem in that many 
different networks may achieve the training goal; however 
each will respond differently to an unknown input. 
Traditional approaches include stopping the training early 
and/or restricting the size of the network. These approaches 
ameliorate the problem of over-fitting where the network 
learns the patterns presented but is unable to generalize.  
Bayesian regularization addresses these issues by requiring 
the weights of the network to attain a minimum magnitude. 
This ensures that non-contributing weights are reduced 
significantly and the resulting network represents the 
essence of the inter-relations of the training. Bayesian 
Regularization simply introduces an additional term to the 
objective function. This term comprises the sum of the 
squares of the weights. The optimization process therefore 
not only achieves the objective of the original cost (i.e. the 
minimization of an error metric) but it also ensures that this 
objective is achieved with minimum-magnitude weights. We 
have introduced Bayesian Regularization in the training of 
Restricted Boltzmann Machines and have applied this 
method in experiments of hand-written numbers 
classification. Our experiments showed that by adding 
Bayesian regularization in the training of RBMs, we were 
able to improve the generalization capabilities of the trained 
network by reducing its recognition errors by more than 
1.6%. 
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I. INTRODUCTION1 
rtificial Neural Networks (ANN) are models 
based on abstracting structures and function of 
biological neural networks. ANN exhibit 

self-learning, self-organization, non-linear approximation 
capabilities and certain classes have been proven to be 
universal approximators. As such, they have been 
employed in many fields to model systems (static or 
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dynamic). Deep Belief Networks (DBN) [1] that use 
Restricted Boltzmann Machine (RBM) as their basic 
module are thought to be one of the most effective ANN.  

RBM is a random neural network model that has a 
two-layer symmetrical structure, and no self-feedback [2]. 
Full-connectivity is used between layers but no 
connection exists between units in the same layer. With 
the development of the fast training algorithm for RBM 
[2], research on RBM’s training and applications within 
Machine Learning (ML) is flourishing [3]. RBM’s 
Contrastive Divergence (CD) [4] fast learning method 
supports research on stochastic approximation theory and 
energy-based models [5].  
RBM has been used successfully in many ML tasks such 
as classification, regression, dimension reduction, image 
feature extraction and collaborative filtering [6-9]. RBM 
is a powerful tool to solve Artificial Intelligence (AI) 
problems, and it provides new methods and new 
techniques to researches in other fields. RBM has recently 
gained importance as it is used in deep learning networks 
[10]. However, there are still many unsolved issues 
related to the theory and learning algorithm. For example, 
how to improve the identification ability of features that 
is extracted in the process of unsupervised training? Can 
one raise its approximation ability without increasing the 
hidden neurons and only use the nonparametric form of 
energy function? On this problem, Tieleman and Hinton 
[11] raised a Fast Persistent Contrastive Divergence 
(FPCD) by introducing a set of auxiliary parameter to 
speed up the mixed rate of Markova Chain to improve 
CD method. Lee [12] added a sparse parameter penalty 
term in the basic log-likelihood function in order to 
punish the hidden neurons that deviate from the given 
level, and proposed a Sparse Restricted Boltzmann 
Machine (SRBM). Other more related work [13-15] 
indicated that it’s hard to model correctly if the 
parameters were not set appropriately for a particular data 
set. 

This work focuses on improving the approximation 
and generalization ability of RBMs. We accomplish this 
by including Bayesian regularization in the training 
process. Bayesian regularization, at least in 
back-propagation networks, produces networks that have 
small weights. Additionally, Bayesian regularization 
optimizes the objective function in the sense that it 
chooses the appropriate contributions of the response 
error and the network weight components.  

This paper is divided in the following sections. 
Section II introduces RBM and discusses the issues 
related to its approximation and generalization abilities. 
Section III presents the improved method. Section IV 
presents experimental results while Section V concludes 
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the paper. 

II. RESTRICTED BOLTZMANN MACHINE 

Structure and algorithm 
RBM is made of a visible layer V and a hidden 

layer H as seen in fig 1. The visible layer is the input 
part in the training process in which we use Simulated 
Annealing (SA) algorithm while the output part (the layer 
that follows hidden layer) is used for data comparison; its 
weights are determined through backpropagation. The 
structure of the network is that of a two-way full 
connectivity between V  and H . No connections exist 
between units of the same layer. The absence of 
intra-layer connections results to a “restricted” Boltzmann 
Machine. 

The behavior of the hidden units as a function of the 
behavior of the visible units is as per formula (1). ݌൫ ௝݄ ൌ 1൯ ൌ ଵଵା௘௫௣ ሺି௕ೕି∑ ௩೔௪೔ೕ೔ ሻ           (1) 

As RBM is symmetrical, the behavior of the visible 
units as a function of the hidden ones is as per (2). ݌ሺݒ௜ ൌ 1ሻ ൌ ଵଵା௘௫௣ ሺି௖೔ି∑ ௛ೕ௪ೕ೔ೕ ሻ           (2) 

where ݒ௜ is the value of unit ݅ in visible layer, ௝݄ is the 
value of unit ݆ in hidden layer, ܾ and ܿ are the biases 
of V  and H  respectively, ݓ௜௝  is the weight between 
visible unit ݅  and hidden unit ݆ , and ݌ሺሻ  is the 
probability that the identified unit obtain the stated value 
(of 1). 
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Fig.1  Structure of RBM 

 
The joint probability distribution of the characteristic 

vector ݒ in visible layer V and ݄ in hidden layer H is 
described as per equation (3). ܲሺݒ, ݄ሻ ן ,ݒሺܧ൫െ݌ݔ݁ ݄ሻ൯ ൌ ݁௛೅ௐ௩ା௕೅௩ା௖೅௛     (3) 
where ܹ  is the weight matrix between V  and H ,ݒሺܧ , ݄ሻ is the expectation of ݒ and ݄; its absolute value 
corresponds to the amount of information ݄  receives 
from ݒ. The ideal parameters ߠ ൌ ሺܹ, ܾ, ܿሻ that result 
to a peak joint probability distribution ܲሺݒ, ݄ሻ[10] can be 
calculated through maximum likelihood. However the 
maximum likelihood method often fails to yield the exact ߠ . Thus Markov Chain Monte Carlo (MCMC) that 
renews V  and H  separately is often employed. The 
parameter vector ߠ  is gradually modified along the 
gradient of ܲሺݒ, ݄ሻ by equation formula (4). ߠሺఛାଵሻ ൌ ሺఛሻߠ ൅ ߟ డ௟௢௚௉ሺ௩,௛ሻడఏ             (4) 
where ߬  is the iteration number that depending on 

network size may be as large as ߬=100~2000, and ߟ is 
learning speed that affects the speed of convergence. 
Choosing an appropriate ߟ  affects the speed of 
convergence and the accuracy of the solution. 

Let ݒ௜௠ be the state of visible unit ݅ at time ݐ ൌ ݉. 
For example, ݒ଴ is the state vector at ݐ ൌ 0 (the input 
of RBM), and ݄଴ is the state vector of hidden layer that 
resulted from ݒ଴ by equation (1). Then ݒଵ is the state 
vector at ݐ ൌ 1 resulted from ݄଴ by formula (2). And so 
on, ݒஶ  and ݄ஶ  are state vectors at ݐ ൌ ∞  (steady 
state). The slope in (4) can be calculated by (5) below. 

,ݒሺܲ݃݋݈߲  ݄ሻ߲ߠ௜௝  ൌ൏ ௝݄଴ሺݒ௜଴ െ ௜ଵሻݒ ൐ ൅൏ ௜ଵ൫ݒ ௝݄଴ െ ௝݄ଵ൯ ൐ ൅ ൌ൏ ڮ ௝݄଴ݒ௜଴ ൐ െ൏ ௝݄∞ݒ௜∞ ൐                    (5) 
where ൏ ݄଴ݒ଴ ൐ is the dot product average of ݒ଴ and ݄଴, while ൏ ݄ஶݒஶ ൐, which is convergent, is the value 
at the end point of MCMC. From (5) we can see the slope 
is only related to the initial state and the final state. Thus 
the formula to renew weights is, ߠሺఛାଵሻ ൌ ሺఛሻߠ ൅ ߟ ,ݒሺܲ݃݋݈߲ ݄ሻ߲ߠ  ൌ ሺఛሻߠ ൅ ሺ൏ߟ ௝݄଴ݒ௜଴ ൐ െ൏ ௝݄ஶݒ௜ஶ ൐ሻ       (6) 

Problem description 
Restricted Boltzmann Machine is one of the most 

important methods in Deep Belief Network. RBM is used 
to extract features of natural images. The amount of 
neurons in hidden layer determines how many features 
may be extracted from the input signal. However if the 
network size is too large, or the network is over trained, 
its generalization ability may deteriorate even though the 
training error is very small. This is because the network is 
trained to accurately recognize the examples presented in 
the training as separate cases ignoring possible 
associations between them. 

As an example, we have used the MNIST data base 
of hand-written numbers to train several networks with 
varying sizes of hidden layers and a varying number of 
(training) iterations. In our experiments, we used a 5000- 
sample training set and a 1000-sample testing set. The 
batch size (i.e. the number of samples used per iteration) 
was also varied. Table I shows the results of our 
experiments including Testing mistakes and 
Reconstruction Error (RE) defined as   ܴݎ݋ݎݎܧ ൌ ∑ ∑ ሺ௣೔,ೕିௗ೔,ೕሻ೘ೕసభ೙೔సభ ௡ൈ௠ൈ௣௫             (7) 
where ݊  is the total number of samples, ݉  is the 
number of pixels, ݌ is the result after iterations, ݀ is the 
true value, ݔ݌ is the data range.  

 The performance (as measured by the number of 
Testing mistakes and RE) varies as the sizes and the 
numbers of iterations vary. 

TABLE I 
DATA OF RBM WITH DIFFERENT SIZES 

Exampl
e 

Hidden 
layer 

neurons 

Batch 
size 

Iterations Testing 
mistakes 

Reconstruction 
error 

1 100 100 10 100 2.343e-3 
2 100 100 50 87 1.668e-3 
3 50 100 50 110 2.436e-3 
4 200 100 50 66 1.211e-3 
5 200 200 25 89 1.712e-3 
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6 200 100 100 76 1.070e-3 
7 500 500 10 141 2.363e-3 
8 500 100 100 67 1.010e-3 

From the table we can see when the net size (hidden 
neurons) is not large enough, testing mistakes decrease 
when the numbers of iterations increase (examples 1, 2). 
When the network size is suitable, the approximation 
ability will be worse if the training process is long (too 
many iterations, examples 4 and 6). When the size is 
larger than necessary, the results will be very bad if we 
train too many samples at a time (examples 7 and 8). RE 
is related to both batch size and iteration. 

III. IMPROVED ALGORITHM 

Bayesian regularization method 
Training a network based on limited samples is an 

ill-posed problem. That is to say, there are many potential 
models that can meet the set performance (that is the 
response of the trained network is very close to the 
expected one). In order to choose one of the possible 
alternatives, the problem needs to be regularized. That is, 
additional conditions, apart from the requirement that the 
response of the trained network must agree with the 
expected one, need to be imposed.  

In Bayesian regularization, [16, 17], the additional 
objective imposed ensures that the selected trained 
network not only minimizes a metric of the error but also 
it achieves this with weights that are of as small a 
magnitude as possible. We shall therefore amend the 
objective function presented in equation (3) above as 
follows: ܨௐ ൌ ܲߙ ൅  ௐ                  (9)ܧߚ
where ܨௐ  is the new objective function, ܲ  is the 
original one as per equation (3). ܧௐ is the regularization 
term, and ߙ  and ߚ  are performance parameters that 
need to be calculated in the iterations or be set before 
iteration. ܧௐ has the form of mean square of weights. ܲ ൌ ܲሺݒ, ݄ሻ ן ,ݒሺܧ൫െ݌ݔ݁ ݄ሻ൯ ൌ ݁௛೅ௐ௩ା௕೅௩ା௖೅௛  (10) ܧௐ ൌ ଵ௠ൈ௡ ∑ ∑ ௜௝ଶ௡௜ୀଵ௠௝ୀଵݓ                (11) 
where ݓ௜௝  means the weight between ݅ in visible layer 
and ݆ in hidden layer. If ߙ ب ௐܨ then the first part of ,ߚ  dominates which means that the objective of the 
training is to decrease the training error. Specifically, if ߙ ൌ 1, ߚ ൌ 0, then ܨௐ ൌ ܲ. On the other hand, if ߙ ا  ,ߚ
the training will focus on decreasing the weights. So, by 
introducing this regularization term, we expect that 
weights that do not contribute to the response will be 
minimized ensuring thus that only parts of the network 
that have learned “important” features common to all the 
input patterns will remain. We expect therefore an 
improvement in the response of the trained network to 
unknown test inputs.  

The traditional way of training Bayesian 
regularization is to also calculate the values of ߙ and ߚ 
in the training process [16]. It treats weights as random 
variables, and assumes that the prior probabilities of ܲ 
and ܧௐ are Gaussian. Then ߙ and ߚ can be obtained 
by using Bayes criterion. But in RBM, because the hidden 
neurons are binary (0 and 1), the Hessian matrix cannot 
be calculated. We have elected to determine the 
appropriate values of ߙ and ߚ experimentally. 

 

IV. EXPERIMENT AND ANALYSIS 
A digital recognition experiment that uses the 

MNIST [18] database is designed to study the 
effectiveness of the proposed method. The original matlab 
code is provided by Andrej Karpathy [19], and it has been 
modified by us to include the regularization term in the 
objective function. The MNIST database includes 60,000 
training images and 10,000 test images all of which are 
images of handwritten numbers each obtained from 
different subjects. The images represent the numerals 0 to 
9 (10 output layer neurons, Fig 1), with sizes of 28 ൈ 28 
(visible neurons) pixels and each of them is from 0 to 1. 

In this experiment, 5,000 randomly chosen samples 
are used for the training process, and an additional 1,000 
for the testing process. 

 
TABLE II  

DATA OF THE NEW RBM WITH 200 NEURONS 
neurons iterations Batch 

size 
Alpha Beta mistakes R-error 

200 50 100 1 0 66 1.211e-3 
200 50 100 0.9 0.1 64 1.219e-3 
200 50 100 0.9 0.5 60 1.226e-3 
200 100 100 1 0 76 1.070e-3 
200 100 100 0.9 0.1 66 1.079e-3 
200 100 100 0.9 0.5 61 1.096e-3 

The first set of experiments involved a hidden layer 
with 200 neurons. The batch size was set to 100 and the 
number of training iterations to 100. The results are 
shown in Table II. As it can be seen, for ߙ ൌ 1, ߚ ൌ 0. 
The network was trained without regularization. 
Subsequently, ߚ was increased to 0.1 and 0.5 ensuring 
the presence of regularization. For both cases, the testing 
mistakes decreased. Given that he test set cad a 
cardinality of 1000, the testing mistakes varied between 
6.0% and 7.6%. Observe the over fitting exhibited in the 
example of row 4. There, when the iterations increased 
from 50 to 100, the resulting training error decreased to 
1.07e-3 while the classification mistakes increased to 76. 
However, when the regularization term was introduced, 
the network was able to overcome the over fitting and 
improve its classification abilities (c.f. rows 5 and 6 in 
Table II). 

The results of the network corresponding to row 3 of 
Table II are shown below. 

Fig 2 depicts the 60 misclassifications (out of a set 
of 1000 test patterns) that the trained network made. Fig 3 
shows the weights of the 200 neurons learnt in hidden 
layer. Fig 4 is the training error line showing convergence 
at about 1.226e-3.  

 
Fig.2  Classification mistakes 
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Fig.3  Learned weights 

 
Fig.4  Training error in RBM 

 
In a second experiment, the size of the hidden layer 

was increased by 300 to 500 neurons. In this experiment, 
we explored the influence of the regularization term on 
the performance of the network. The results can be seen 
in Table III. As it can be seen, as ߚ increased, both the 
classification and training errors decreased. However, 
large increases of ߚ  beyond 0.2 reversed the trend 
increasing both the classification and training errors. At 
the optimum, ߚ ൌ 0.2   the classification error was 
improved as compared with the first experiment where 
only 200 hidden neurons were used. 

 
TABLE III  

DATA OF THE NEW RBM WITH 500 NEURONS 
neurons iterations Batch 

size 
Alpha Beta mistakes R-error 

500 100 100 1 0 67 4.040e-4 

500 100 100 0.9 0.1 62 3.640e-4 

500 100 100 0.9 0.5 56 3.600e-4 

500 100 100 0.8 0.2 59 3.620e-4 

500 100 100 0.7 0.3 62 3.650e-4 

 

 
Fig.5  Data of the new RBM with 500 neurons 

 
Fig.6  Learned weights 

 
Fig.7  Training error in RBM 

 
Fig 5 shows the 56 classification mistakes for RBM 

with 500 hidden neurons at the optimum training 
condition of ߙ ൌ 0.9, ߚ ൌ 0.5 . The 500 weights are 
shown in fig 6, where as we can see most of them have 
light colors, indicating values very near zero. The training 
error line is in fig 7. The training error decreases very 
rapidly at first, but after iteration 50, the rate has 
decreased dramatically converging slowly to 3.600e-4. 

These two experiments show that introducing a 
regularization term in the training procedure improves the 
performance of the network in that it reduces 
misclassifications. It was further noted that different 
values of α and β affect the performance significantly. 
It remains an open problem, in the case of discrete value 
networks such as RBM, of how to choose the optimum 
values for α and β. 

V. CONCLUSIONS 
In this paper, we introduced Bayesian Regularization 

in Restricted Boltzmann Machine (RBM) networks. We 
showed that the introduction of the regularization term 
improved the performance of the resulting trained 
network in classifying handwritten numerals. Our 
experiments showed that there are optimum parameters 
for the regularization term; however, because of the 
discrete nature of the networks involved, we can only 
propose choosing these parameters experimentally.  

Future work will focus on devising criteria of 
selecting the performance, ultimately automatically. In 
addition, we plan to explore experimentally the 
application of the improved regularized RBMs in 
different fields to further establish its efficacy 
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