
An Improved RBM based on Bayesian Regularization

Guangyuan PAN, Junfei QIAO*, Wei CHAI, Nikitas DIMOPOULOS

Abstract—Restricted Boltzmann Machine is a fundamental
method in deep learning networks. Training and
generalization is an ill-defined problem in that many
different networks may achieve the training goal; however
each will respond differently to an unknown input.
Traditional approaches include stopping the training early
and/or restricting the size of the network. These approaches
ameliorate the problem of over-fitting where the network
learns the patterns presented but is unable to generalize.
Bayesian regularization addresses these issues by requiring
the weights of the network to attain a minimum magnitude.
This ensures that non-contributing weights are reduced
significantly and the resulting network represents the
essence of the inter-relations of the training. Bayesian
Regularization simply introduces an additional term to the
objective function. This term comprises the sum of the
squares of the weights. The optimization process therefore
not only achieves the objective of the original cost (i.e. the
minimization of an error metric) but it also ensures that this
objective is achieved with minimum-magnitude weights. We
have introduced Bayesian Regularization in the training of
Restricted Boltzmann Machines and have applied this
method in experiments of hand-written numbers
classification. Our experiments showed that by adding
Bayesian regularization in the training of RBMs, we were
able to improve the generalization capabilities of the trained
network by reducing its recognition errors by more than
1.6%.

Keywords—Restricted Boltzmann Machine, over fitting,
regularization, classification

I. INTRODUCTION1
rtificial Neural Networks (ANN) are models
based on abstracting structures and function of
biological neural networks. ANN exhibit

self-learning, self-organization, non-linear approximation
capabilities and certain classes have been proven to be
universal approximators. As such, they have been
employed in many fields to model systems (static or

Guangyuan PAN is with the Institute of intelligent systems in Beijing
University of Technology, (PostBox.1305, NO.100 Pingleyuan,
ChaoYang District, 100124, BEIJING, CHINA, e-mail:
pgy_yuki@outlook.com; Phone: +86 15911065167)
Junfei QIAO is with the Institute of intelligent systems in Beijing
University of Technology, (e-mail: junfeiq@bjut.edu.cn; tel:
0086-010-67391766)
Wei CHAI is with the Institute of intelligent systems in Beijing
University of Technology, (chaiwei@bjut.edu.cn)
Nikitas Dimopoulos is with the Department of Electrical and Computer
Engineering, University of Victoria, Victoria, BC, CANADA
(nikitas@ece.uvic.ca)
This work is supported by National Natural Science Foundation of
China (NSFC, 61225016, 61203099), the State Key Program of
National Natural Science of China (61034008), and the Beijing
Municipal Natural Science Fund (Grant No. 4144067).

dynamic). Deep Belief Networks (DBN) [1] that use
Restricted Boltzmann Machine (RBM) as their basic
module are thought to be one of the most effective ANN.

RBM is a random neural network model that has a
two-layer symmetrical structure, and no self-feedback [2].
Full-connectivity is used between layers but no
connection exists between units in the same layer. With
the development of the fast training algorithm for RBM
[2], research on RBM’s training and applications within
Machine Learning (ML) is flourishing [3]. RBM’s
Contrastive Divergence (CD) [4] fast learning method
supports research on stochastic approximation theory and
energy-based models [5].
RBM has been used successfully in many ML tasks such
as classification, regression, dimension reduction, image
feature extraction and collaborative filtering [6-9]. RBM
is a powerful tool to solve Artificial Intelligence (AI)
problems, and it provides new methods and new
techniques to researches in other fields. RBM has recently
gained importance as it is used in deep learning networks
[10]. However, there are still many unsolved issues
related to the theory and learning algorithm. For example,
how to improve the identification ability of features that
is extracted in the process of unsupervised training? Can
one raise its approximation ability without increasing the
hidden neurons and only use the nonparametric form of
energy function? On this problem, Tieleman and Hinton
[11] raised a Fast Persistent Contrastive Divergence
(FPCD) by introducing a set of auxiliary parameter to
speed up the mixed rate of Markova Chain to improve
CD method. Lee [12] added a sparse parameter penalty
term in the basic log-likelihood function in order to
punish the hidden neurons that deviate from the given
level, and proposed a Sparse Restricted Boltzmann
Machine (SRBM). Other more related work [13-15]
indicated that it’s hard to model correctly if the
parameters were not set appropriately for a particular data
set.

This work focuses on improving the approximation
and generalization ability of RBMs. We accomplish this
by including Bayesian regularization in the training
process. Bayesian regularization, at least in
back-propagation networks, produces networks that have
small weights. Additionally, Bayesian regularization
optimizes the objective function in the sense that it
chooses the appropriate contributions of the response
error and the network weight components.

This paper is divided in the following sections.
Section II introduces RBM and discusses the issues
related to its approximation and generalization abilities.
Section III presents the improved method. Section IV
presents experimental results while Section V concludes

A

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2935

the paper.

II. RESTRICTED BOLTZMANN MACHINE

Structure and algorithm
RBM is made of a visible layer V and a hidden

layer H as seen in fig 1. The visible layer is the input
part in the training process in which we use Simulated
Annealing (SA) algorithm while the output part (the layer
that follows hidden layer) is used for data comparison; its
weights are determined through backpropagation. The
structure of the network is that of a two-way full
connectivity between V and H . No connections exist
between units of the same layer. The absence of
intra-layer connections results to a “restricted” Boltzmann
Machine.

The behavior of the hidden units as a function of the
behavior of the visible units is as per formula (1). ݌൫ ௝݄ ൌ 1൯ ൌ ଵଵା௘௫௣ ሺି௕ೕି∑ ௩೔௪೔ೕ೔ ሻ (1)

As RBM is symmetrical, the behavior of the visible
units as a function of the hidden ones is as per (2). ݌ሺݒ௜ ൌ 1ሻ ൌ ଵଵା௘௫௣ ሺି௖೔ି∑ ௛ೕ௪ೕ೔ೕ ሻ (2)

where ݒ௜ is the value of unit ݅ in visible layer, ௝݄ is the
value of unit ݆ in hidden layer, ܾ and ܿ are the biases
of V and H respectively, ݓ௜௝ is the weight between
visible unit ݅ and hidden unit ݆ , and ݌ሺሻ is the
probability that the identified unit obtain the stated value
(of 1).

0h 1h mh

0v
nv1v

Fig.1 Structure of RBM

The joint probability distribution of the characteristic

vector ݒ in visible layer V and ݄ in hidden layer H is
described as per equation (3). ܲሺݒ, ݄ሻ ן ,ݒሺܧ൫െ݌ݔ݁ ݄ሻ൯ ൌ ݁௛೅ௐ௩ା௕೅௩ା௖೅௛ (3)
where ܹ is the weight matrix between V and H ,ݒሺܧ , ݄ሻ is the expectation of ݒ and ݄; its absolute value
corresponds to the amount of information ݄ receives
from ݒ. The ideal parameters ߠ ൌ ሺܹ, ܾ, ܿሻ that result
to a peak joint probability distribution ܲሺݒ, ݄ሻ[10] can be
calculated through maximum likelihood. However the
maximum likelihood method often fails to yield the exact ߠ . Thus Markov Chain Monte Carlo (MCMC) that
renews V and H separately is often employed. The
parameter vector ߠ is gradually modified along the
gradient of ܲሺݒ, ݄ሻ by equation formula (4). ߠሺఛାଵሻ ൌ ሺఛሻߠ ൅ ߟ డ௟௢௚௉ሺ௩,௛ሻడఏ (4)
where ߬ is the iteration number that depending on

network size may be as large as ߬=100~2000, and ߟ is
learning speed that affects the speed of convergence.
Choosing an appropriate ߟ affects the speed of
convergence and the accuracy of the solution.

Let ݒ௜௠ be the state of visible unit ݅ at time ݐ ൌ ݉.
For example, ݒ଴ is the state vector at ݐ ൌ 0 (the input
of RBM), and ݄଴ is the state vector of hidden layer that
resulted from ݒ଴ by equation (1). Then ݒଵ is the state
vector at ݐ ൌ 1 resulted from ݄଴ by formula (2). And so
on, ݒஶ and ݄ஶ are state vectors at ݐ ൌ ∞ (steady
state). The slope in (4) can be calculated by (5) below.

,ݒሺܲ݃݋݈߲ ݄ሻ߲ߠ௜௝ ൌ൏ ௝݄଴ሺݒ௜଴ െ ௜ଵሻݒ ൐ ൅൏ ௜ଵ൫ݒ ௝݄଴ െ ௝݄ଵ൯ ൐ ൅ ൌ൏ ڮ ௝݄଴ݒ௜଴ ൐ െ൏ ௝݄∞ݒ௜∞ ൐ (5)
where ൏ ݄଴ݒ଴ ൐ is the dot product average of ݒ଴ and ݄଴, while ൏ ݄ஶݒஶ ൐, which is convergent, is the value
at the end point of MCMC. From (5) we can see the slope
is only related to the initial state and the final state. Thus
the formula to renew weights is, ߠሺఛାଵሻ ൌ ሺఛሻߠ ൅ ߟ ,ݒሺܲ݃݋݈߲ ݄ሻ߲ߠ ൌ ሺఛሻߠ ൅ ሺ൏ߟ ௝݄଴ݒ௜଴ ൐ െ൏ ௝݄ஶݒ௜ஶ ൐ሻ (6)

Problem description
Restricted Boltzmann Machine is one of the most

important methods in Deep Belief Network. RBM is used
to extract features of natural images. The amount of
neurons in hidden layer determines how many features
may be extracted from the input signal. However if the
network size is too large, or the network is over trained,
its generalization ability may deteriorate even though the
training error is very small. This is because the network is
trained to accurately recognize the examples presented in
the training as separate cases ignoring possible
associations between them.

As an example, we have used the MNIST data base
of hand-written numbers to train several networks with
varying sizes of hidden layers and a varying number of
(training) iterations. In our experiments, we used a 5000-
sample training set and a 1000-sample testing set. The
batch size (i.e. the number of samples used per iteration)
was also varied. Table I shows the results of our
experiments including Testing mistakes and
Reconstruction Error (RE) defined as ܴݎ݋ݎݎܧ ൌ ∑ ∑ ሺ௣೔,ೕିௗ೔,ೕሻ೘ೕసభ೙೔సభ ௡ൈ௠ൈ௣௫ (7)
where ݊ is the total number of samples, ݉ is the
number of pixels, ݌ is the result after iterations, ݀ is the
true value, ݔ݌ is the data range.

 The performance (as measured by the number of
Testing mistakes and RE) varies as the sizes and the
numbers of iterations vary.

TABLE I
DATA OF RBM WITH DIFFERENT SIZES

Exampl
e

Hidden
layer

neurons

Batch
size

Iterations Testing
mistakes

Reconstruction
error

1 100 100 10 100 2.343e-3
2 100 100 50 87 1.668e-3
3 50 100 50 110 2.436e-3
4 200 100 50 66 1.211e-3
5 200 200 25 89 1.712e-3

2936

6 200 100 100 76 1.070e-3
7 500 500 10 141 2.363e-3
8 500 100 100 67 1.010e-3

From the table we can see when the net size (hidden
neurons) is not large enough, testing mistakes decrease
when the numbers of iterations increase (examples 1, 2).
When the network size is suitable, the approximation
ability will be worse if the training process is long (too
many iterations, examples 4 and 6). When the size is
larger than necessary, the results will be very bad if we
train too many samples at a time (examples 7 and 8). RE
is related to both batch size and iteration.

III. IMPROVED ALGORITHM

Bayesian regularization method
Training a network based on limited samples is an

ill-posed problem. That is to say, there are many potential
models that can meet the set performance (that is the
response of the trained network is very close to the
expected one). In order to choose one of the possible
alternatives, the problem needs to be regularized. That is,
additional conditions, apart from the requirement that the
response of the trained network must agree with the
expected one, need to be imposed.

In Bayesian regularization, [16, 17], the additional
objective imposed ensures that the selected trained
network not only minimizes a metric of the error but also
it achieves this with weights that are of as small a
magnitude as possible. We shall therefore amend the
objective function presented in equation (3) above as
follows: ܨௐ ൌ ܲߙ ൅ ௐ (9)ܧߚ
where ܨௐ is the new objective function, ܲ is the
original one as per equation (3). ܧௐ is the regularization
term, and ߙ and ߚ are performance parameters that
need to be calculated in the iterations or be set before
iteration. ܧௐ has the form of mean square of weights. ܲ ൌ ܲሺݒ, ݄ሻ ן ,ݒሺܧ൫െ݌ݔ݁ ݄ሻ൯ ൌ ݁௛೅ௐ௩ା௕೅௩ା௖೅௛ (10) ܧௐ ൌ ଵ௠ൈ௡ ∑ ∑ ௜௝ଶ௡௜ୀଵ௠௝ୀଵݓ (11)
where ݓ௜௝ means the weight between ݅ in visible layer
and ݆ in hidden layer. If ߙ ب ௐܨ then the first part of ,ߚ dominates which means that the objective of the
training is to decrease the training error. Specifically, if ߙ ൌ 1, ߚ ൌ 0, then ܨௐ ൌ ܲ. On the other hand, if ߙ ا ,ߚ
the training will focus on decreasing the weights. So, by
introducing this regularization term, we expect that
weights that do not contribute to the response will be
minimized ensuring thus that only parts of the network
that have learned “important” features common to all the
input patterns will remain. We expect therefore an
improvement in the response of the trained network to
unknown test inputs.

The traditional way of training Bayesian
regularization is to also calculate the values of ߙ and ߚ
in the training process [16]. It treats weights as random
variables, and assumes that the prior probabilities of ܲ
and ܧௐ are Gaussian. Then ߙ and ߚ can be obtained
by using Bayes criterion. But in RBM, because the hidden
neurons are binary (0 and 1), the Hessian matrix cannot
be calculated. We have elected to determine the
appropriate values of ߙ and ߚ experimentally.

IV. EXPERIMENT AND ANALYSIS
A digital recognition experiment that uses the

MNIST [18] database is designed to study the
effectiveness of the proposed method. The original matlab
code is provided by Andrej Karpathy [19], and it has been
modified by us to include the regularization term in the
objective function. The MNIST database includes 60,000
training images and 10,000 test images all of which are
images of handwritten numbers each obtained from
different subjects. The images represent the numerals 0 to
9 (10 output layer neurons, Fig 1), with sizes of 28 ൈ 28
(visible neurons) pixels and each of them is from 0 to 1.

In this experiment, 5,000 randomly chosen samples
are used for the training process, and an additional 1,000
for the testing process.

TABLE II

DATA OF THE NEW RBM WITH 200 NEURONS
neurons iterations Batch

size
Alpha Beta mistakes R-error

200 50 100 1 0 66 1.211e-3
200 50 100 0.9 0.1 64 1.219e-3
200 50 100 0.9 0.5 60 1.226e-3
200 100 100 1 0 76 1.070e-3
200 100 100 0.9 0.1 66 1.079e-3
200 100 100 0.9 0.5 61 1.096e-3

The first set of experiments involved a hidden layer
with 200 neurons. The batch size was set to 100 and the
number of training iterations to 100. The results are
shown in Table II. As it can be seen, for ߙ ൌ 1, ߚ ൌ 0.
The network was trained without regularization.
Subsequently, ߚ was increased to 0.1 and 0.5 ensuring
the presence of regularization. For both cases, the testing
mistakes decreased. Given that he test set cad a
cardinality of 1000, the testing mistakes varied between
6.0% and 7.6%. Observe the over fitting exhibited in the
example of row 4. There, when the iterations increased
from 50 to 100, the resulting training error decreased to
1.07e-3 while the classification mistakes increased to 76.
However, when the regularization term was introduced,
the network was able to overcome the over fitting and
improve its classification abilities (c.f. rows 5 and 6 in
Table II).

The results of the network corresponding to row 3 of
Table II are shown below.

Fig 2 depicts the 60 misclassifications (out of a set
of 1000 test patterns) that the trained network made. Fig 3
shows the weights of the 200 neurons learnt in hidden
layer. Fig 4 is the training error line showing convergence
at about 1.226e-3.

Fig.2 Classification mistakes

2937

Fig.3 Learned weights

Fig.4 Training error in RBM

In a second experiment, the size of the hidden layer

was increased by 300 to 500 neurons. In this experiment,
we explored the influence of the regularization term on
the performance of the network. The results can be seen
in Table III. As it can be seen, as ߚ increased, both the
classification and training errors decreased. However,
large increases of ߚ beyond 0.2 reversed the trend
increasing both the classification and training errors. At
the optimum, ߚ ൌ 0.2 the classification error was
improved as compared with the first experiment where
only 200 hidden neurons were used.

TABLE III

DATA OF THE NEW RBM WITH 500 NEURONS
neurons iterations Batch

size
Alpha Beta mistakes R-error

500 100 100 1 0 67 4.040e-4

500 100 100 0.9 0.1 62 3.640e-4

500 100 100 0.9 0.5 56 3.600e-4

500 100 100 0.8 0.2 59 3.620e-4

500 100 100 0.7 0.3 62 3.650e-4

Fig.5 Data of the new RBM with 500 neurons

Fig.6 Learned weights

Fig.7 Training error in RBM

Fig 5 shows the 56 classification mistakes for RBM

with 500 hidden neurons at the optimum training
condition of ߙ ൌ 0.9, ߚ ൌ 0.5 . The 500 weights are
shown in fig 6, where as we can see most of them have
light colors, indicating values very near zero. The training
error line is in fig 7. The training error decreases very
rapidly at first, but after iteration 50, the rate has
decreased dramatically converging slowly to 3.600e-4.

These two experiments show that introducing a
regularization term in the training procedure improves the
performance of the network in that it reduces
misclassifications. It was further noted that different
values of α and β affect the performance significantly.
It remains an open problem, in the case of discrete value
networks such as RBM, of how to choose the optimum
values for α and β.

V. CONCLUSIONS
In this paper, we introduced Bayesian Regularization

in Restricted Boltzmann Machine (RBM) networks. We
showed that the introduction of the regularization term
improved the performance of the resulting trained
network in classifying handwritten numerals. Our
experiments showed that there are optimum parameters
for the regularization term; however, because of the
discrete nature of the networks involved, we can only
propose choosing these parameters experimentally.

Future work will focus on devising criteria of
selecting the performance, ultimately automatically. In
addition, we plan to explore experimentally the
application of the improved regularized RBMs in
different fields to further establish its efficacy

ACKNOWLEDGMENT
Research of this paper was carried out while the first
author was visiting the University of Victoria. He
expresses his sincere thanks to China Scholarship Council
for financial support and to the Department of Electrical

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

-3

epoches

R
E

rr
or

Rerror in RBM

learned weights

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

epoches

R
E

rr
or

Rerror in RBM

2938

and Computer Engineering at the University of Victoria
for the kind hospitality.

REFERENCES
[1] Hinton G E and Salakhutdinov R R, “Reducing the

dimensionality of data with neural networks”. Science, 313(5786):
504–507, 2006.

[2] Smolensky P. “Information processing in dynamical systems:
Foundations of harmony theory”. Rumelhart D E, McClelland J L.
parallel distributed processing: Explorations in the
microstructure of cognition. Vol.1: Foundations. Cambridge, MA:
MIT Press, 1986.

[3] Arel I, Rose D C, Karnowski T P. “Deep machine learning- A new
frontier in artificial intelligence research”. IEEE Computational
Intelligence Magazine, 5(4): 13-18, 2010.

[4] Hinton G E. “Training products of experts by minimizing
contrastive divergence”. Neural Computation, 14(8): 1771-1800,
2002.

[5] Hinton, G. E., Osindero, S. and Teh, Y, “A fast learning algorithm
for deep belief nets”. Neural Computation, 18:1527-1554, 2006

[6] The Y W, Hinton G E. “Pare-coded restricted Boltzmann
machines for face recognition”. Advances in Neural Information
Processing Systems 13 (NIPS’ 00), MIT Press, pp.908-914, 2001.

[7] Salakhtdinv R, Mnih A, Hinton G E. “Restricted Boltzmann
machines for collaborative filtering”. Proceedings of the 24th
International Conference on Machine Learning, Corvallis, OR,
pp.791-798, 2007.

[8] Roux N L, Bengio Y. “Representational power of restricted
Boltzmann machines and deep belief networks”. Neural
Computation, 20(6): 1631-1649, 2006.

[9] Cho K Y. “Improved learning algorithms for restricted Boltzmann
machines”. Espoo: Aalto University, 2011.

[10] Hinton G E. “A practical guide to training restricted Boltzmann
machines”. Montreal: Department of Computer Science,
University of Toronto, 2010.

[11] Tieleman T, Hinton GE. “Using fast weights to improve persistent
contrastive divergence”. Proceedings of the 26th International
Conference on Machine Learning, Montreal, Canada,
pp.1033-1040, 2009.

[12] Lee H, Ekanadham C, Ng A Y. “Sparse deep belief net model for
visual area V2”. Advances in Neural Information Processing
Systems 20 (NIPS’ 07), Vancouver, Canada: MIT Press,
pp.873-880, 2008.

[13] Schulz H, Muller A, Behnke S. “Investigating convergence of
restricted Boltzmann machine learning”. NIP 2010 Workshop on
Deep Learning and Unsupervised Feature Learning, Whistler,
Canada, pp.1-9, 2010.

[14] Fischer A, Igel C. “Empirical analysis of the divergence of Gibbs
sampling based learning algorithms for restricted Boltzmann
machine”. Proceedings of the 20th International Conference on
Artificial Neural Networks, Part 3, LNCS 6354, Berlin,
Springer-Verlag, pp.208-217, 2010.

[15] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and
Yann LeCun, “Efficient Learning of Sparse Representations with
an Energy-Based Model”. Advances in Neural Information
Processing Systems (NIPS 2006) MIT Press, 2007

[16] Forsee F D, Hagan F D. “Gauss-Newton Approximation to
Bayesian Regularization”. Proceeding of the IEEE International
Joint Conference on Neural Networks (6): 1930-1935, 1997.

[17] Kunisch K., Zou J. “Iterative Choices of Regularization
Parameter in Linear Inverse Problems”. Inverse Problems, 14:
1247-1264, 1998.

[18] Yann LeCun, Corinna Cortes, Christopher J.C. Burges. THE
MNIST DATABASE of handwritten digits. Available:
http://yann.lecun.com/exdb/mnist/

[19] Hinton. Deep learning. Available:
http://deeplearning.net/software_links/

2939

