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Abstract— The forecasting behavior of the high volatile 
and unpredictable wind power energy has always been a 
challenging issue in the power engineering area. In this 
regard, this paper proposes a new multi-objective 
framework based on fuzzy idea to construct optimal 
prediction intervals (PIs) to forecast wind power generation 
more sufficiently. The proposed method makes it possible to 
satisfy both the PI coverage probability (PICP) and PI 
normalized average width (PINAW), simultaneously. In 
order to model the stochastic and nonlinear behavior of the 
wind power samples, the idea of lower upper bound 
estimation (LUBE) method is used here. Regarding the 
optimization tool, an improved version of particle swam 
optimization (PSO) is proposed. In order to see the feasibility 
and satisfying performance of the proposed method, the 
practical data of a wind farm in Australia is used as the case 
study. 

Keywords— interactive fuzzy satisfying method; combined 
LUBE; wind power forecast; uncertainty  

I.  INTRODUCTION  
In recent years, the use of renewable energy sources 

(RESs) has become popular especially as the result of 
some useful characteristics such as cleanness, nearness to 
the consumers, modularity, etc [1]. Using these new RESs 
in the power systems has resulted in some significant 
improvements such as reducing power losses [2] and the 
system costs [3], increasing the power quality of the 
electrical services [4] and enhancing the reliability of the 
system [5] effectively. One of the most popular types of 
RESs is wind energy. Wind energy as an easy access 
source of energy in most of the areas has attracted the 
attention of many researchers in recent years [6]. 
Nevertheless, one significant issue regarding the use of 
wind energy is its volatile characteristic which makes 
accurate wind speed forecasting process a tedious and 
hard work [7]. In order to solve this problem, in recent 
years many different forecasting models are introduced. 

Most of these methods have tried to suggest more 
sufficient forecasting models which can track the wind 
speed/power samples more accurately [8]. But it is 
demonstrated in the literature that wind power forecast 
error can not be avoided even with the use of the most 
accurate forecasting models [9]. The output result of this 
conclusion has been a shift from the deterministic point 
forecast to the probabilistic uncertain forecast [10]. In this 
regard, many researches have been implemented in recent 
years which some of them can be named as quantile 
regression [11], fuzzy set theory [12], logit normal 
distribution [13] and quantile regression method [14].   

In a general classification, the forecasting models can 
be categorized in two main groups [10]: 1) statistical 
models and 2) artificial intelligence based models. In the 
first group, regression models (linear or piecewise-linear) 
[15], Kalman filter [16], time series [17], data mining 
methods [18] and state space techniques [19] are famous. 
While these methods have been the first models in the 
forecasting area, but their usage for the new complex and 
nonlinear data such as wind power samples is limited. In 
the second group, artificial based approaches exist which 
can be named as expert systems [20], fuzzy systems [21], 
neural networks (NNs) [22] and neuro-fuzzy systems [23]. 

The second group has found more popularity 
especially as the result of their high capability for 
modeling nonlinear mappings. However, as mentioned 
before, there are always some degrees of error in the 
forecast data. The response to this challenge has been 
construction of prediction intervals (PIs). Each PI 
constructs a bandwidth which the forecast point will fall 
in. Also a probability confidence level is defined which 
shows the percent of the forecast points that are in the PIs. 
Some of the most outstanding works in this area can be 
named bootstrap-based PIs [24], mean-variance 
estimation method [25], optimal PIs [26] and lower upper 
bound estimation (LUBE) [27] method. Amongst these 
methods LUBE method has been the most promising 
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solution since it can make PIs without any prejudgment 
about the distribution of the data samples. This issue is 
especially significant for wind power data which does not 
obey the normal distribution function.     

According to the above discussions, this paper aims to 
use the LUBE method for construction of optimal PIs to 
forecast the wind turbine output power. The LUBE method 
uses a cost function to find the most optimal PIs with 
lowest average width. In fact, two significant criteria for 
construction of PIs are 1) PI coverage probability (PICP) 
and 2) PI normalized average width (PINAW). To date all 
the works have mixed these two targets to make a single-
objective optimization method. However, in this work a 
fuzzy based approach is proposed to make a sufficient 
multi-objective framework to adjust the above two criteria 
suitably. Regarding the optimization process, particle 
swarm optimization (PSO) algorithm as a popular tool in 
this area is used. Also a sufficient modification is 
introduced for PSO algorithm to increase its search ability. 
The satisfying performance of the proposed method is 
examined on the practical data of a wind farm in Australia.     

II. PROPOSED MULTI-OBJECTIVE LUBE METHOD 
In order to make the LUBE model, a NN with two 

outputs are required to construct the upper and lower 
bounds. However, during the training of the NN, the 
upper and lower bounds are not available. Instead, a cost 
function is defined which should be optimized. The 
schematic diagram of this method is depicted in Fig. 1. As 
it was mentioned in the Introduction section, there are two 
main criteria for measuring a suitable PI: 1) PICP and 2) 
PINAW. By definition, PICP shows the percent of the 
forecast targets which have fallen in the bounds of the PI 
as follows:  
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where N is the number of samples, yt is the forecast 
target and Ut and Lt are upper and lower bounds of the PI. 
Meanwhile a confidence level is defined which is used to 
accept or discard the relevant PI is discarded. The 
criterion for accepting the interval is that PICP is bigger 
than or equal to the confidence level.  

The second criterion is PINAW. Too wide bounds for 
an interval are not useful in the forecasting targets while 
too narrow bounds will reduce the PICP value. 
Mathematically, PINAW can be calculated as follows:   
 

 
 

Fig. 1 Schematic diagram of LUBE method 
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where R is the range of the underlying targets used for 
normalizing PIs. This interactive relationship between the 
PICP and PINAW necessitates a useful framework for 
control of the quality of the intervals. In order to reach the 
suitable framework, we have designated two membership 
functions to the PICP and PINAW targets. The schematic 
of these membership functions are shown in Figs. 2 and 3. 
In these figures, μPICP and μPINAW are used to show the fuzzy 
membership functions of PICP and PINAW criterion, 
respectively. In order to reach an appropriate compromise 
between the optimization of these two targets, an 
interactive fuzzy satisfying solution is defined as follow: 

{ }, ,  1,...,
( ) min max ( )ref i f ix i n

F X Xμ μ
∈Ω =

= −

                                      

(4) 

where n is the number of targets (here n = 2); μf,i is the 
membership function value of ith target; Ω is the problem 
space; X is a vector including the NN weighting factors 
and μref,i is the reference membership value for ith target. 
The above formulation will let the decision maker to 
optimize both PICP and PINAW individually by adjusting 
the value of μref,i for each of them. Generally, μref,i is in 
the range [0,1].    

III. OPTIMIZATION TOLL BASED ON IMPROVED PSO 
(IPSO) 

The PSO algorithm was first introduced by Kennedy 
and Eberhart in 1995 [28]. This algorithm mimics the 
behavior of birds or fishes to immigrate to far distances.  

Fig. 2 Fuzzy membership function for PICP 

 
 

Fig. 3 Fuzzy membership function for PINAW 
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Some main characteristics of PSO algorithm can be 
named as 1) low adjusting parameters, 2) no need to 
derivative and 3) simple concept. The PSO algorithm 
performance greatly depends on the personal experience 
of the particles as well as the social experience of the total 
population.  

Similar to the other evolutionary optimization 
techniques, PSO starts with a random population. Then 
the objective function is calculated for all the particles and 
the best particle is found (gbest). Now, the position of 
each particle should be updated. Meanwhile, the best 
experience of each particle is stored in a specific variable 
called pbesti. For each firefly Xi, the below equations are 
computed to update its position: 
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where ω is the weighting factor, k is the iteration 
number, rand is a random number in the range of [0,1], c1 
and c2 are the learning parameters; 1k

iVel +  is the velocity 
of ith particle in kth iteration and swarmN is the number of 
swarms in the population.  

After updating the position of all particles, the gbest 
and pbesti are updated. The best particle in pbest is 
supposed as the gbest for the next iteration. This process 
is repeated for several times until the termination criterion 
is satisfied. In order to improve the search ability of the 
PSO algorithm, a powerful modification method based on 
the crossover and mutation operators are also introduced 
(here called IPSO algorithm). The key idea behind this 
modification is to increase the diversity of the particles 
population and thus increasing the possibility of 
generating more optimal solutions. This improvisation 
stage is taken from the genetic algorithm. In this regard, in 
each iteration and for each particle Xi, three random 
solutions Xm1, Xm2 and Xm3 are selected from the swarm 
population such that i≠m1≠m2≠m3. Then, using the 
mutation operator, the below test solution is produced:  
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In addition, by the use of the crossover operator, two 
other test solutions are generated as follows: 
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In the above equation, 1ρ to 4ρ are random values in the 
range [0,1]. The best solution among XTest1, XTest2 and 
XTest3 is compared with Xi. If it is better than Xi then 
replaces it.      

IV. SIMULATION RESULTS 
This part makes use of the practical dataset of the 

Starfish Hill Wind Farm located near Cape Jervis on the 
Fleurieu Peninsula. This wind farm is the first wind site in 

the south of Australia. Eight turbines are located on 
Starfish Hill and 15 on Salt Creek Hill [29]. The forecast 
time horizon is 15 minutes with the confidence level of 
90%. The best structure of NN for construction of PIs is 
found using the partial autocorrelation method. The NN 
has 1 hidden layer with 7 neurons, experimentally. For the 
proposed IPSO algorithm, 30 particles are supposed and 
the termination criterion is to reach 200 iterations. The 
values ofω , c1 and c2 are chosen 1.4, 0.8 and 0.8 
experimentally.  

The simulations are implemented to show three main 
targets: 1) the satisfying performance of the proposed 
IPSO algorithm to optimize the fuzzy cost function, 2) the 
applicability of the proposed cost function and 3) the high 
accuracy of the LUBE forecasting model. In order to 
demonstrate the first target, the performance of proposed 
IPSO algorithm is compared with that of the original PSO 
algorithm. The simulation results for optimizing the 
proposed fuzzy cost function is shown in Table I. Here 
equal values are considered for the reference 
memberships. As it can be seen from Table I, the 
proposed method has satisfied both PICP and PINAW 
appropriately. From the optimization view, the proposed 
IPSO has also shown superior performance than the 
original PSO algorithm (less membership function value). 
According to Table I, the proposed IPSO algorithm has 
reached to higher PICP and lower PINAW values which 
show more its superior search ability than original PSO.         

In the second part of the simulations, the high 
efficiency of the proposed cost function is shown. In this 
way and in order to see the effect of changing the values 
of reference memberships on the final solution, the results 
of considering five different preferences of (μref,1=1, μref,2=1), (μref,1=1, μref,2=0.9), (μref,1=0.9, μref,2=1), (μref,1=1, μref,2=0.8)  and (μref,1=0.8, μref,2=1)  are shown in Table II. 
According to this table, changing the values of the 
reference membership can affect the satisfying degree of 
PICP and PINAW targets directly. This full control on the 
values of these two objectives can provide a useful tool 
for the operator to apply his/her preferences effectively. In 
comparison with the traditional cost functions that are 
discussed in the literature [27], this useful idea for control 
of the PICP and PINAW objectives can provide more 
authority for decision maker. It is worth noting that the 
three operating points which are shown in Table II are all 
acceptable. In fact, all these five forecasting models have 
met the confidence level of 90% and thus it depends to the 
operator decision to choose the best one.  

In order to show the high forecasting ability of the 
proposed LUBE method, Fig. 4 depicts the relative plot of 
the forecast upper bound (red curve), forecast lower 
bound (blue curve) and the real values of wind sample 
data (brown circles) through the optimization of the 
proposed fuzzy based framework. Note it that this plot is 
for the case of equal reference membership values, i.e. μref,1 = 1.0 , μref,2 = 1.0.    

 
TABLE I  

RESULTS OF OPTIMIZING OF THE PROPOSED FUZZY COST FUNCTION 
Membership   

Function value PINAW PICP Algorithm 

0.1765390 38.0039 87.9943 PSO 
0.1472777 35.9473 91.4882 Proposed IPSO 
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TABLE II 
RESULTS OF OPTIMIZING THE PROPOSED COST FUNCTION FOR 

REFERENCE MEMBERSHIP  

PINAW PICP Reference  
Membership Value 

Case 

35.477322 91.68433 μref,1 = 1.0  ,  μref,2 = 1.0 1 
36.245390 92.00127 μref,1 = 1.0  ,  μref,2 = 0.9 2 
32.496512 90.88436 μref,1 = 0.9  ,  μref,2 = 1.0 3 
37.947386 93.49924 μref,1 = 1.0  ,  μref,2 = 0.8 4 
31.094241 89.88403 μref,1 = 0.8  ,  μref,2 = 1.0 5 

 

 
Fig. 4 Optimal PIs for wind power test data using the proposed fuzzy 

based framework 
 
As it can be seen, the forecast points are in the range 

of the forecast PIs suitably. It should be considered that 
the high variation of the wind turbine output power in Fig. 
4 from 0 to 50 MW shows the high complexity and 
nonlinearity of the data samples for the forecasting 
purposes. Nevertheless, the proposed method has 
forecasted the wind power samples, successfully. These 
variations for the first 200 samples are more severe than 
the rest. Using optimal PIs for forecasting the wind power 
samples can help the optimal operation and management 
of the power systems effectively. Without an accurate 
estimation of the wind turbine output power, a part of the 
electric consumers may not be supplied or at least are 
supplied with low quality electrical services. Using the 
proposed LUBE method can give a good estimation of the 
output variations of the wind turbine.        

V. CONCLUSION 
This paper proposed a new fuzzy based cost function 

for optimizing the LUBE method to construct more 
optimal PIs with more controllability. In this regard, 
according to the nature of the problem, new membership 
functions were suggested for PICP and PINAW 
objectives. Also, a sufficient min-max approach was 
suggested to convert the multi-objective optimization 
framework into its equivalent single-objective 
optimization framework. In order to search the problem 
space deeply, a new improved algorithm called IPSO was 
proposed too. This algorithm is equipped with one 
mutation and two crossover operators to increase the 
diversity of the particles. The simulation results on the 
practical data of wind farm showed the high performance 
and suitability of the proposed method for forecasting 
wind turbine output power. Also, it was seen that the 

proposed fuzzy based framework can give more authority 
to the operator for applying his/her preferences to the 
system. From the optimization view, the usefulness of the 
modification method for increasing the ability of the PSO 
algorithm to optimize the proposed fuzzy cost function 
was demonstrated too.    
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