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Abstract—Linear Subspace Learning (LSL) has been widely
used in many areas of information processing, such as dimension-
ality reduction, data mining, pattern recognition and computer
vision. Recent years have witnessed several excellent extensions
of PCA in LSL. One is the recent L1-norm maximization prin-
cipal component analysis (L1Max-PCA), which aims at learning
linear subspace efficiently. L1Max-PCA simply simulates PCA by
replacing the covariance with the so-called L1-norm dispersion
in the mapped feature space. However, it is difficult to give an
intuitive interpretation. In this paper, a novel subspace learning
approach based on sparse dimension reduction is proposed, which
enforces the sparsity of the mapped data to better recover cluster
structures. The optimization problem is solved efficiently via
Alternating Direction Method (ADM). Experimental results show
that the proposed method is effective in subspace learning.

Index terms— subspace learning; L1-norm; principal com-

ponent analysis (PCA); Alternating Direction Method

I. INTRODUCTION

Automated learning of low-dimensional linear or multi-

linear models from training data has become a standard

paradigm in machine learning. This will greatly benefit de-

scribing class relationships among observed objects with lower

misclassification rates [14]. However, as observed data are

usually embedded in a high-dimensional space, one has to con-

front the increasing computational complexity of subsequent

tasks in high dimension, which is commonly referred to as

the curse of dimensionality [6]. Moreover, the classification

performance could be very poor in the cases where only

limited number of data are available.

In the past decades, linear subspace learning (LSL) has been

considered as a powerful tool for dimensionality reduction,

which has been widely used in many applications [4], such

as image segmentation [24], motion segmentation [22], face

clustering [13] and image processing [12]. By projecting data

onto the learned subspace, LSL can effectively reduce the

dimensionality of input data to simplify subsequent processing

tasks without degrading too much performance. Recently,

many LSL methods have been proposed such as null-space

linear discriminant analysis(NLDA) [5], Locality Preserving

Projections (LPP) [2], Marginal Fisher Analysis (MFA) [23],

and many more.

LSL is regarded as a pre-processing step in data analysis,

aiming to reduce the computational complexity for subsequent

processing while maintaining a minimal loss of information.

This is usually achieved by optimizing some criterion function,

e.g. least squares of error. For example, Zhang et al. [25]

proposed a novel LSL approach by using sparse coding and

feature grouping. The classical PCA tries to find a set of

projections that maximize the covariance of the projected data

[16]. This is equivalent to minimizing reconstruction error

measured by L2 norm, i.e. least squares. So we call it L2 norm

PCA. The L2-norm PCA has been widely and successfully

applied in data analysis [17], However, it is well known that

the L2-norm PCA is sensitive to outliers due to the least

squares of error. The L1-norm PCA [15] was proposed to

alleviate this disadvantage by applying maximum likelihood

estimation to input data. By combining the advantages of L2-

norm PCA and L1-norm PCA, Ding et al. proposed R1-PCA

[7] to suppress the effect of outliers. Although R1-PCA is

robust to outliers, the algorithm relies on the knowledge of the

dimension of the subspace to be learned. A more sophisticated

L1-PCA was proposed by using a probabilistic framework and

the model realization is implemented by variational Bayesian

[10]. Motivated by the fact that data often exhibit some sparsi-

ty, Zou et al. [26] proposed an elegant sparse PCA algorithm

(SPCA) using the elastic net for L1-penalized regression on

regular principle components.

In order to achieve robustness and rotational invariance,

Kwak [16] proposed a novel PCA recently under the criterion

of maximizing L1-norm of the projection of data in feature

space called L1Max-PCA. The subspace learning problem

formulated by L1-norm maximization is handled by greedy

search. However, a greedy search algorithm is often trapped

in a local optimum. To achieve a possible global solution, a

non-greedy L1-norm maximization was proposed for robust

principal component analysis [20].

A drawback of L1Max-PCA is that it lacks an intuitive

interpretation of the L1 dispersion. In this paper, instead of

maximizing L1-norm in feature space, we minimize the L1-

norm of the dispersion. The motivation is that the minimization

of a L1-norm usually produces sparse solutions leading to

robustness to outliers. Moreover, the minimization of the L1-

norm in the learned subspace gives an intuitive interpretation,

i.e. encouraging sparsity of projected data. We explain the

proposed method in the rest of this paper. In Section II,

we briefly review the PCA-based subspace learning methods

and explain the motivation of our approach. The L1-norm

minimization PCA for subspace learning is detailed in Section

III. In Section IV, we propose an optimization algorithm
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based on ADM. To evaluate the proposed method, we conduct

several experiments on real world database in Section V.

Finally, some conclusions are summarized in Section VI.

II. PROBLEM DEFINITION

In this section, we give a brief review of the conventional

PCA from LSL point of view. Denote a given data matrix by

X = [x1, ...,xn] ∈ Rd×n where n and d are the size and

the dimension of samples respectively. We assume that X has

already been centralized. A projection matrix is denoted by

P ∈ Rd×m, and pi is the ith row of P and pj the jth column.

The Frobenius norm of P is denoted as ‖P‖F = tr
(
PTP

)1/2

where tr(·) is the trace operator of a matrix.

The traditional PCA, i.e. L2 norm PCA, is to seek an

m(< d) dimensional linear subspace by minimizing the

reconstruction error measured by L2 norm as follows,

min
P,V

‖X−PV‖2 , s.t.PTP = I, (1)

where V = PTX is the projection of X on P and I is the

identity matrix with compatible dimensions. This problem can

be efficiently solved by eigen decomposition. However, it is

well known that L2-norm of error is sensitive to outliers as

the underlying error distribution in (1) is Gaussian. It has been

proved that the L1-norm of error is more robust to outliers, so

it is easy to apply L1-norm to the error in (1) as

min
P,V

‖X−PV‖1 , s.t. PTP = I. (2)

The L1-norm optimization in (2) improves the robustness

to outliers. However, it is variant to rotations and the exact

solution is also difficult to obtain. Gao [10] adopted a Bayesian

framework to solve it partially.

As a compromise, Ding et al [7] proposed the R1-norm

PCA to learn a subspace by solving an R1-norm minimization

problem,

min
P,V

‖X−PV‖R1
Δ
=

n∑

i=1

⎛

⎝
d∑

j=1

(

xji −
m∑

k=1

pjkvki

)2
⎞

⎠

1/2

(3)

In fact, R1-norm (also called L2/L1-norm ) PCA is a com-

bination of L2-norm PCA and L1-norm PCA. R1-norm PCA

is solved by performing a subspace iteration algorithm in the

original space, which is computationally expensive.

Interesting enough, L2 norm PCA can also be regarded as

finding a projection matrix to maximize the Frobenius norm

of the covariance of projected data as the following

max
P

∥
∥PTX

∥
∥
F
, s.t. PTP = I. (4)

This interpretation directly leads to the L1Max-PCA [16]

as follows,

max
P

∥
∥PTX

∥
∥
1
, s.t. PTP = I. (5)

(6)

This straightforward extension of the L2 norm PCA in (4) is

invariant to rotation and robust to outliers. However, an intu-

itive interpretation of L1Max-PCA is absent. A greedy search

[16] was applied to solve (6), which sequentially optimizes

projection direction one by one. However, it is well known

that greedy search is often trapped into a local optimum. To

resolve this issue, Nie [20] proposed a non-greedy scheme

by optimizing all the projection directions simultaneously. For

more details on greedy algorithms for L1Max-PCA, please

refer to [9].

III. L1-NORM MINIMIZATION PCA

As pointed out in the previous section, one drawback of

L1Max-PCA is its lack of direct interpretation of maximizing

the L1 dispersion. We henceforth adopt a minimization strat-

egy for the subspace learning. The reason is that minimizing

L1-norm of the projected data encourages sparsity in the target

space. Actually, it has been found that natural signals, in

various computer vision and pattern recognition applications,

can be generally represented by a small number of basis

functions chosen out of an over-complete code set [21]. This

observation gives rise to the work in compressive sensing.

The research on sparse methods in the last decade suggests

that under a minimization strategy we are seeking for a sparse

solution to the projection [19], so that the projected data lie on

either one low dimensional subspace or the union of several

disjoint subspaces. If data can be well represented in terms

of a few coordinates, it will be much easier to analyze and

interpret them in subsequent processing. Motivated by this

understanding, we propose a novel subspace learning method

which minimizes L1-norm of the projected data.

Different from the way that imposes a sparse penalty to the

loading matrix [26], we minimize the L1-norm of projected

data to enforce the sparsity in the projected space as follows,

min
P

∥
∥PTX

∥
∥
1
, s.t. PTP = I. (7)

Our model aims at finding a projection matrix by which

the data can be directly compressed into low dimensional

and sparse representations so that the preferred information

underlain in the high dimensional and dense features can

be preserved subsequently. We hereafter call the proposed

approach L1Min PCA.

The orthonormality requirement PTP = I in (7) constrains

the solution over the Grassmann manifold resulting in a dif-

ficult problem. Although the orthogonal projection is desired

in practice, it does complicate the optimization problem dras-

tically. Introducing some slackness to this stringent condition

can greatly simplify the problem. Here we propose the relaxed

L1Min PCA as follows

min
P

∥
∥PTX

∥
∥
1
+ λ

∥
∥PTP− I

∥
∥2
F

(8)

In (8), the first term defines the L1-norm of the projected

data, which encourages sparsity. The second term is to relax

the orthonormality requirement on the projection. λ is a regu-

larization parameter to balance the sparsity and orthonormality.
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Algorithm 1: Minimization L1 PCA based on ADM

Input: X,λ > 0, ρ > 1
Initialization: G1 = 0; Q1 = X; μ1 = 0.1; ρ = 1.1;

λ = 0.01; k = 1.
Output: an optimal solution of the projection, i.e. P∗.

While not converged do
1. solve minP −〈Gk,P

TX〉+ μk

2 ‖Qk −PTX‖2F +

λ
∥
∥PTP− Im

∥
∥2
F

by L-BFGS solver [18],

2. update Qk+1: Qk+1 = S1/μk
(PT

k+1X− Gk

μk
),

3. update Gk+1: Gk+1 = Gk + μk(Qk −PT
kX),

4. update μk+1: μk+1 = ρ · μk.

5. k = k + 1.

End while

IV. OPTIMIZATION BASED ON ALTERNATING DIRECTION

METHOD

Although the solution to problem (8) can be solved by

gradient descent with projection [18], in this paper, we apply

the so-called Alternating Direction Method (ADM) [3] for

its high efficiency. ADM is a practical improvement of the

classical Augmented Lagrangian method for solving convex

programming problems with convex constraints. In recent

years, it has been widely used in many applications. Further-

more, because L1-norm is not differentiable, using a smooth

approximation to L1-norm is gradient descent brings another

layer of complexity. However, by introducing an auxiliary vari-

able Q such that Q = PTX in ADM, we avoid minimizing

L1-norm of PTX directly. Thus, (8) is reformulated as

minP,Q ‖Q‖1 + λ
∥
∥PTP− Im

∥
∥2
F
, s.t. Q = PTX.

The augmented Lagrangian function of the above problem

is given by

L(P,Q,G, μ) =‖Q‖1 + 〈G,Q−PTX〉
+
μ

2
‖Q−PTX‖2F + λ

∥
∥PTP− Im

∥
∥2
F
,

where G is the matrix of Lagrange multipliers and μ > 0 is a

penalty parameter. Then the alternating direction optimization

for L1Min-PCA goes as follows:

Pk+1 = argmin
P

L(P,Qk,Gk, μk) (9)

Qk+1 = argmin
Q

L(Pk+1,Q,Gk, μk) (10)

Gk+1 = Gk + μk(Qk −PT
kX) (11)

μk+1 = ρμk (12)

where ρ > 1 is a constant. Subproblem (9) is

min
P

−〈Gk,P
TX〉+ μk

2
‖Qk −PTX‖2F + λ

∥
∥PTP− Im

∥
∥2
F
,

which can be solved by a unconstrained gradient based solver

such as Limited-memory BFGS or CG [18]. Subproblem (10)

is

min
Q

‖Q‖1 + 〈Gk,Q〉+ μk
2
‖Q−PT

kX‖2F ,

which is a proximity problem for L1-norm and has a closed-

form solution [1] given by the so-called shrinkage (or soft-

thresholding) operator defined as follows,

Sτ (x) = sgn(x)×max(|x| − τ, 0)

where τ > 0.

The complete algorithm is summarized in Algorithm 1.

(a)

(b)

Fig. 1. Samples for performance testing. (a) ORL database, (b) COIL100
database.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

L1Min-PCA for unsupervised learning and supervised learning

tasks by comparing against L2-norm PCA (L2PCA), L1-norm

maximization PCA with greedy algorithm [16](L1PCA G)

and its non-greedy version [20] (L1PCA NG).

Four public test databases were used as test data in our

experiments. The first one is CMU PIE face database1, which

contains 41,368 face images of 68 human subjects. These face

images were acquired from 13 synchronized cameras and 21

flashes, with varying poses, illustration and expression. In our

experiment, the frontal poses (named as C27) with different

illustration and expressions were selected, which contains

3329 face images in total. The second database is the Extended

Yale-B2, consisting of 16128 images of 38 human subjects

1http://www.ri.cmu.edu/projects/project 418.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
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TABLE I
CLASSIFICATION ERROR RATES (%) BY DIFFERENT METHODS

Method
PIE YaleB

33% Test 50%Test 66% Test 33% Test 50%Test 66% Test
Dim. error Dim. error Dim. error Dim. error Dim. error Dim. error

Baseline 1024 11.17 1024 6.73 1024 3.06 1024 28.64 1024 19.47 1024 16.27
L2PCA 650 11.17 650 6.73 650 3.06 850 28.63 850 19.55 900 16.27
L1PCA G 325 11.70 400 6.78 340 3.15 185 31.6 185 23.2 185 19.9
L1PCA NG 400 11.60 445 6.78 440 3.15 185 33.4 185 25.7 185 22.2
L1Min-PCA 280 4.68 340 3.54 180 2.34 145 15.0 185 9.20 165 6.90

(a) (b)

(c) (d)

Fig. 2. Bases learned for ORL by different methods. (a) L2PCA; (b) L1PCA G; (c) L1PCA NG; and (d) L1Min-PCA.

with 9 poses and 64 illustration conditions. The third database

is ORL3, in which there are ten different images for each of

40 distinct subjects. All the images in this database were taken

against a dark homogeneous background with the subjects

in an upright, frontal position (with tolerance for some side

movement). All the face images have been manually aligned

and cropped. The size of each cropped image is 32×32 pixels

with 256 gray levels per pixel. Therefore, a 1024-dimensional

vector represents an image. Besides face databases, we also

used COIL100 database4 for performance evaluation, which

contains images of 100 objects. For each object, there are 72

images taken 5 degrees apart as the object is rotated on a

turning table. Some samples from testing database are shown

in Fig.1.

3http://www.cad.zju.edu.cn/home/dengcai/
4http://www.cad.zju.edu.cn/home/dengcai/

A. Projection Bases

First, we present the learned bases, i.e. P, by using different

PCA methods before evaluating the performance of L1Min-

PCA on supervised and unsupervised learning tasks. Figures

2 and 3 plot the bases estimated for data sets ’ORL’ and

’COIL100’, respectively. As we can see from Figures 2 and

3, the proposed L1Min-PCA can find the major components

of the data set as other methods. There is no essential

visual difference among those bases sets obtained by different

methods. However, as we shall see later, sparsity associated

with L1Min-PCA has advantage in subsequent tasks.

B. Unsupervised Learning

We evaluate the performance and accuracy of face clustering

using K-Means on the projected data obtained by different

methods. As a benchmark, K-means [8] is directly applied

to the original data for comparison. In general, the clustering

result is assessed by the number of misclassified samples when

the ground truth is available. In this paper, we apply a criterion,

3543



(a) (b)

(c) (d)

Fig. 3. Bases learned for COIL100 with different methods (from top to bottom: (a) L2PCA; (b) L1PCA G; (c) L1PCA NG; and (d) L1Min-PCA.)

termed Normalized Mutual Information (NMI) [4], to quantify

the clustering performance more precisely.

Let K be the set of ground truth clusters and K ′ the clusters

obtained by a clustering algorithm. The mutual information

metric MI(K,K ′) is defined as

MI(K,K′) =
∑

ki∈K,k′j∈K′
p
(
ki, k

′
j

)
log2

p
(
ki, k

′
j

)

p (ki) p
(
k′j
) ,

where p(c) is the probability of a sample belonging to cluster

c and p(c1, c2) the probability of a sample from both cluster

c1 and c2. Then, the NMI is represented by

NMI(K,K′) =
MI(K,K′)

max (H (K) ,H(K′))
,

where H(K) and H(K′) denote the entropy of K and K ′,

respectively. Usually, NMI(K,K′) ranges from 0 to 1. 1 means

the two sets of clusters are identical and 0 means that the two

are independent.

Figure 4(a) shows the quality of different clustering so-

lutions on PIE database with different target dimensions e-

valuated by NMI. K is set as the ground truth cluster of

the data. All methods can achieve stable performance with

dimensionality ranging from 40 to 90. However, when dimen-

sionality varies from 5 to 150, K-Means with projected data

obtained by L1Min-PCA is consistently better than K-Means

with original data and reduced data obtained by other methods.

This suggests that L1Min-PCA can find a subspace in which

the data show better cluster structure than in the original

space, even when the dimensionality is as low as 5. From

clustering point of view, dimensionality reduction by L1Min-
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PCA reduces redundant and possible misleading information

successfully and therefore improves the clustering result. In

contrast, other methods failed to find suitable subspaces for

clustering. Although they managed to have comparable per-

formance with baseline method when dimensionality is more

than 40, the situation is certainly worse when dimensionality

drops below 20.

We repeated the same experiment on Yale-B database. The

results are shown in Figure 4(b). Similar observations can be

made from the figure. These experiments demonstrate that the

proposed L1Min-PCA is capable of capturing cluster structure

in low dimensional space for test databases.

C. Supervised Learning

Face recognition is a typical supervised learning task [11].

For PIE face database, we randomly selected r = 33, 50, 66%

samples for training. The rest of the samples were used for

testing. The recognition was carried out by using the nearest

neighbor classifier on the subspace learned in training (That

is, K = 1). Precisely, the testing images were projected onto

lower dimensional subspace by using the bases learned from

training images, and then the recognition was performed. For

fair comparison, we average the recognition results given for

given value of r over 10 repeats.

We evaluated the recognition error rate versus dimension-

ality on PIE and YaleB databases. Figure 5 shows the results

of different methods for this task. Overall, L1Min-PCA out-

performs other methods in terms of classification error rates.

Especially when the size of training set is small, L1Min-

PCA is better than others by a large margin. Although it

is not much so when more data are available for training

on PIE database, L1Min-PCA leads quite a lot on YaleB
database. This once again confirms the capability of L1Mn-

PCA in finding the meaningful subspace suitable for clustering

and classification. Another advantage of L1Min-PCA is that

it produces sparse embeddings of the data (the projected

data in lower dimensional subspace), which is known to be

more computational efficient for subsequent tasks such as

classification.

In Table I, we report the best recognition results that each

method can possibly achieve by repeating the same experiment

with different target dimensionality. Interestingly, for L1Min-

PCA, it requires less dimensionality than other methods to

achieve better classification rate for both datasets. This result

shows that seeking a sparse representation of the data in lower

dimensional space is promising in improving the classification

rate.

VI. CONCLUSION

In this paper, a novel linear subspace learning method

called L1 Norm Minimization PCA (L1Min-PCA) has been

proposed. It minimizes L1-norm of the dispersion in low

dimensional feature space so that an optimal subspace with

maximum sparsity can be achieved. To avoid greedy search

and smooth approximation to L1 norm, we relaxed the or-

thonormality condition of the projection, and the optimization

is carried out by ADM. The efficacy of our proposed L1Min-

PCA is verified using clustering and classification experiments

on faces images. The quantitative analysis of the experimental

results indicates that L1Min-PCA outperforms other similar

PCA methods. It is able to reduce the redundant information

and recover the cluster structure of data in low dimensional

space.
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Fig. 5. Error rate vs dimensionality reduction on PIE (the first row) and Yale-B (the second row) databases: (a) and (d) 33 % training; (b) and (e) 50 %
training; (c) and (f) 66 % training.
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