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Abstract— This paper presents a novel observer–critic archi-
tecture for solving the near-optimal control problem of uncer-
tain nonlinear continuous-time systems. Two neural networks
(NNs) are employed in the architecture: an observer NN is
constructed to get the knowledge of uncertain system dynamics
and a critic NN is utilized to derive the optimal control. The
observer NN and the critic NN are tuned simultaneously. By
using the recorded and instantaneous data together, the optimal
control can be derived without the persistence of excitation
condition. Meanwhile, the closed-loop system is guaranteed
to be stable in the sense of uniform ultimate boundedness.
No initial stabilizing control is required in the developed
algorithm. An illustrated example is provided to demonstrate
the effectiveness of the present approach.

I. INTRODUCTION

THE core challenge of obtaining the solution for the
nonlinear optimal control problem is that it is often nec-

essary to solve the Hamilton-Jacobi-Bellman (HJB) equation
[1], [2], [3], [4], [5]. The HJB equation is actually a partial
differential/difference equation (PDE), which is intractable
to solve by analytical methods. For the sake of coping with
the problem, Bellman introduced the dynamic programming
(DP) method [6]. Though DP is successfully utilized to derive
the optimal control, a shortcoming of the approach is that
the computation grows exponentially with increase in the
dimensionality of nonlinear systems.

In order to overcome the difficulty of applying DP, Wer-
bos proposed adaptive/approximate dynamic programming
(ADP) algorithms, which derive approximate solutions of
HJB equations forward-in-time [7], [8]. Unfortunately, most
of ADP approaches are either implemented offline by using
iterative schemes or they require a priori knowledge of
system dynamics. Hence, many ADP approaches cannot be
applied to real-time process control. After that, reinforcement
learning (RL) methods are developed. RL is a class of
approaches used in machine learning to revise the actions of
an agent based on responses from its environment [9]. The
actor–critic architecture has been typically used to implement
the RL algorithm, where the actor performs actions by
interacting with its environment, and the critic evaluates
actions and offers feedback information to the actor, leading
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to the improvement in performance of the subsequent actor
[10]. In contrast to ADP methods, a distinct advantage of RL
approaches is that no prescribed behavior or training model
is required.

Up to now, while RL has been widely employed to
derive the optimal control for nonlinear systems [11], [12],
[13], [14], [15], [16], [17], [18], most of these applications
depend on an initial stabilizing control. From a mathematical
perspective, the initial stabilizing control is a suboptimal
control. The suboptimal control of the nonlinear system is
intractable to be obtained since it is generally impossible
to get analytical solutions of PDEs. On the other hand,
persistence of excitation (PE) is an indispensable condition
for obtaining the optimal control in aforementioned literature.
It should be mentioned that the PE condition is often difficult
to verify. In addition, all above literature assumed that the
system states were known. In practice, however, system states
are often unavailable. Estimations of states from the system
output for obtaining the adaptive optimal control is necessary.

In this paper, we develop a novel observer–critic architec-
ture for solving the near-optimal control problem of uncertain
nonlinear continuous-time (CT) systems. We employ two
neural networks (NNs) in the architecture: an observer NN is
utilized to get the knowledge of uncertain systems dynamics
and a critic NN is used to derive the optimal control. We tune
the observer NN and the critic NN simultaneously. By using
the recorded and instantaneous data together (i.e., concurrent
learning method), we obtain the optimal control without the
PE condition. Meanwhile, we keep the closed-loop system
stable in the sense of uniform ultimate boundedness. In
addition, we do not need the initial stabilizing control based
on the developed algorithm.

The paper is organized as follows. Section II provides
preliminaries of optimal control problems of nonlinear CT
systems. Section III presents the design of an online optimal
control. Section IV develops the stability analysis. Section
V provides an example to demonstrate the effectiveness of
theorem developed in Section IV . Finally, Section VI gives
several conclusions.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the nonlinear CT system given by the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t))
y(t) = Cx(t) (1)

with the state x(t) ∈ R
n, the control u(t) ∈ R

m, the output
y(t) ∈ R

p, the unknown nonlinear function f(x) ∈ R
n, and

the functional matrix g(x) ∈ R
n×m. It is assumed that f(x)+
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g(x)u is Lipschitz continuous on a compact set Ω ⊂ R
n

containing the origin, such that the solution x(t) of system
(1) is unique on Ω, and f(0) = 0. The state of system (1) is
unavailable, only the system output y(t) can be measured.

Assumption 1: The control matrix g(x) is known and
bounded over Ω, i.e., there exist gm and gM (0 < gm < gM )
such that gm ≤ ‖g(x)‖ ≤ gM , for ∀x ∈ Ω.

Assumption 2: System (1) is observable and the state x(t)
is bounded in L∞ [19]. In addition, C ∈ R

p×n (p ≤ n) is a
full row rank matrix, i.e., rank(C) = p.

The value function for system (1) is given by

V (x(t)) =
∫ ∞

t

r
(

y(s), u(s)
)

ds (s ≥ t) (2)

where r(y, u) = yTQy + uTRu, Q and R are constant
symmetric positive definite matrices.

Objective of Control: The control goal of the paper is to
get an online adaptive control not only stabilizes system (1)
but also minimizes the value function (2), while guaranteeing
that all the signals involved in the closed-loop system are
uniformly ultimately bounded (UUB).

III. ONLINE OPTIMAL CONTROL DESIGN

A. NN State Observer

Due to the unavailability of system states, a two-layer
feedforward NN is employed to construct the state observer.
According to [20], F(x) ∈ Cn(Ω) can be represented by
feedforward NNs as

F(x) = WT
1 σ(V T

1 x) + ε1(x) (3)

where σ(·) ∈ R
N1 is the activation function, V1 ∈ R

n×N1

and W1 ∈ R
N1×n are the weights for the input layer to

the hidden layer and the hidden layer to the output layer,
respectively, N1 is the number of nodes in the hidden layer,
and ε1(x) ∈ R

n is the NN function reconstruction error.
From system (1), we have

ẋ(t) = Ax+ F(x) + g(x)u
y(t) = Cx(t) (4)

where F(x) = f(x) − Ax, A ∈ R
n×n is a known constant

matrix, and (C,A) is observable.

By using (3), we can rewrite (4) as

ẋ(t) = Ax+WT
1 σ(V T

1 x) + g(x)u+ ε1(x)
y(t) = Cx(t). (5)

The NN state observer for system (1) is developed as

˙̂x(t) = Ax̂+ ŴT
1 σ(V̂ T

1 x̂) + g(x̂)u+B(y − ŷ)
ŷ(t) = Cx̂(t) (6)

where x̂(t) ∈ R
n and ŷ(t) ∈ R

p are the state and the output
of the observer respectively, Ŵ1 ∈ R

N1×n and V̂1 ∈ R
n×N1

are estimated weights, and the observer gain B ∈ R
n×p is

chosen such that the matrix A−BC is Hurwitz.

Define x̃(t) = x(t) − x̂(t) and ỹ(t) = y(t) − ŷ(t). From
(5) and (6), the observer error dynamics is derived as

˙̃x(t) = Acx̃(t) + W̃T
1 σ(V̂ T

1 x̂) + δ(x)
ỹ(t) = Cx̃(t) (7)

where Ac = A − BC, W̃1 = W1 − Ŵ1, and δ(x) =
WT

1

[

σ(V1
Tx) − σ(V̂ T

1 x̂)
]

+
[

g(x) − g(x̂)
]

u+ ε1(x).
Before showing the stability of the observer error x̃(t), we

provide the following assumptions and facts.
Assumption 3: The ideal observer NN weights W1 and V1

are bounded over Ω by known positive constants WM and
VM , respectively. That is, ‖W1‖ ≤WM , ‖V1‖ ≤ VM .

Assumption 4: The NN function reconstruction error
ε1(x) is bounded over Ω as ‖ε1(x)‖ ≤ εM , where εM > 0.

Fact 1: The NN activation function is bounded over Ω,
that is, there exists σM > 0 such that ‖σ(x)‖ ≤ σM , for
∀x ∈ Ω.

Fact 2: Since the matrix Ac is Hurwitz, there exists a
positive-definite symmetric matrix P ∈ R

n×n satisfying the
Lyapunov equation

AT
c P + PAc = −θIn

where θ > 0 is a design parameter.
Theorem 1: Let Assumptions 1–4 hold. If NN estimated

weights Ŵ1 and V̂1 are updated as
˙̂
W1 = − l1σ

(

V̂ T
1 x̂

)

ỹTCA−1
c − κ1‖ỹ‖Ŵ1 (8)

˙̂
V1 = − l2sgn(x̂)ỹTCA−1

c ŴT
1

(

IN1 − Φ(V̂ T
1 x̂)

)

− κ2‖ỹ‖V̂1 (9)

with design parameters li > 0 and κi > 0 (i =
1, 2), Φ

(

V̂ T
1 x̂

)

= diag
{

σ2
k

(

V̂ T
1kx̂

)}

(k = 1, . . . , N1), and
sgn(x̂) = [sgn(x̂1), . . . , sgn(x̂n)]T, where sgn(x̂ι) (ι =
1, . . . , n) is the sign function with respect to x̂ι. Then, the
NN observer developed in (6) can ensure that x̃(t) converges
to the compact set

Ωx̃ =

{

x̃ : ‖x̃‖ ≤ 2B
θ‖C‖λmin

[

(C+)TC+
]

}

(10)

where B is to be detailed (see (15)), C+ is the Moore-Penrose
pseudoinverse of C, and λmin

[

(C+)TC+
]

is the minimum
eigenvalue of (C+)TC+. In addition, NN weight estimation
errors W̃1 and Ṽ1 = V1 − V̂1 are guaranteed to be UUB.

Proof: Consider the Lyapunov function candidate

J(t) = J1(t) + J2(t)

where

J1(t) =
1
2
x̃TPx̃

J2(t) =
1
2
tr
(

W̃T
1 l

−1
1 W̃1

)

+
1
2
tr
(

Ṽ T
1 l

−1
2 Ṽ1

)

.

Taking the time derivative of J1(t) and using Facts 1–2, we
derive

J̇1(t) ≤− θ

2
λmin

[

(C+)TC+
]‖ỹ‖2

+ ‖ỹ‖‖(C+)TP‖(‖W̃1‖σM + δM
)

. (11)
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Taking the time derivative of J2(t) and using (8) and (9), we
obtain

J̇2(t) ≤ ασM‖ỹ‖‖W̃1‖ +
κ1

l1
‖ỹ‖

(

WM‖W̃1‖ − ‖W̃1‖2
)

+ α
∥

∥IN1 − Φ(V̂ T
1 x̂)

∥

∥‖ỹ‖(WM + ‖W̃1‖
)‖Ṽ1‖

+
κ2

l2
‖ỹ‖

(

VM‖Ṽ1‖ − ‖Ṽ1‖2
)

(12)

where α = ‖CA−1
c ‖.

Combining (11) with (12) and noting ‖IN1 −Φ(V̂ T
1 x̂)‖ ≤ 1,

we get

J̇(t) ≤− θ

2
λmin

[

(C+)TC+
]‖ỹ‖2 +

{

δM‖(C+)TP‖

+
(

(‖(C+)TP‖ + α
)

σM +
κ1

l1
WM

)

‖W̃1‖

+
(

αWM +
κ2

l2
VM

)

‖Ṽ1‖ −
(κ1

l1
− α2

4

)

‖W̃1‖2

−
(κ2

l2
− 1

)

‖Ṽ1‖2 −
(α

2
‖W̃1‖ − ‖Ṽ1‖

)2
}

‖ỹ‖

= − θ

2
λmin

[

(C+)TC+
]‖ỹ‖2 +

{

δM‖(C+)TP‖

+
(κ1

l1
− α2

4

)

β2
1 +

(κ2

l2
− 1

)

β2
2

−
(κ1

l1
− α2

4

)

‖W̃1 + β1‖2 −
(κ2

l2
− 1

)

‖Ṽ1 + β2‖2

−
(α

2
‖W̃1‖ − ‖Ṽ1‖

)2
}

‖ỹ‖ (13)

where

β1 =
2l1

(

α+ ‖(C+)TP‖)σM + 2κ1WM

α2l1 − 4κ1

β2 =
αl2WM + κ2VM

2(l2 − κ2)
.

Selecting κ1 > α2l1/4, κ2 > l2 and using (13), we derive

J̇(t) ≤− θ

2
λmin

[

(C+)TC+
]‖ỹ‖2 +

{

δM‖(C+)TP‖

+
(κ1

l1
− α2

4

)

β2
1 +

(κ2

l2
− 1

)

β2
2

}

‖ỹ‖

= −
(

θ

2
λmin

[

(C+)TC
]‖ỹ‖ − B

)

‖ỹ‖ (14)

where

B = δM‖(C+)TP‖ +
(κ1

l1
− α2

4

)

β2
1 +

(κ2

l2
− 1

)

β2
2 . (15)

Consequently, J̇(t) is negative as long as

‖ỹ‖ > 2B
θλmin

[

(C+)TC+
] (16)

where B is defined as in (15). Note that ‖ỹ‖ ≤ ‖C‖‖x̃‖.
Then, (16) is developed as

‖x̃‖ > 2B
θ‖C‖λmin

[

(C+)TC+
] .

Hence, x̃(t) converges to the compact set Ωx̃ defined as in
(10). According to the standard Lyapunov extension theorem
[21], this verifies the uniform ultimate boundedness of the
observer NN weight estimation errors W̃1 and Ṽ1.

Remark 1: Noticing rank(C) = rank(C+), rank(C+) =
rank[(C+)TC+] and using Assumption 2, we can obtain that
rank[(C+)TC+] = p. Observe that [(C+)TC+] ∈ R

p×p is
semipositive definite. Therefore, we derive that (C+)TC+ is
positive definite. Then, we get λmin[(C+)TC+] > 0. This
shows that Ωx̃ defined as in (10) makes sense.

B. Hamilton-Jacobi-Bellman Equation

In what follows we replace system (1) with (6), since
system (1) can be approximated by (6) outside of Ωx̃. Mean-
while, we replace the actual state x(t) with the estimated
state x̂(t) due to the non-availability of x(t). Then, system
(1) can be represented as

˙̂x(t) = h(x̂) + g(x̂)u (17)

where h(x̂) = Ax̂ + ŴT
1 σ(V̂ T

1 x̂) + B(y − Cx̂). The value
function (2) is rewritten as

V (x̂(t)) =
∫ ∞

t

r
(

x̂(s), u(s)
)

ds. (18)

where r(x̂, u) = Qc(x̂)+uTRu with Qc(x̂) = x̂TCTQCx̂. If
the control u(x̂) is admissible and the value function V (x̂) ∈
C1(Ω), then we have

V T
x̂

[

h(x̂) + g(x̂)u
]

+Qc(x̂) + uTRu = 0

where Vx̂ ∈ R
n represents the partial derivative of V (x̂) with

respect to x̂.
Define the Hamiltonian for the control u(x̂) and the value
function V (x̂) as

H(x̂, Vx̂, u) = V T
x̂

[

h(x̂) + g(x̂)u
]

+Qc(x̂) + uTRu.

Then, the optimal value V ∗(x̂) is obtained by solving the
HJB equation

min
u(x̂)

H(x̂, V ∗
x̂ , u) = 0. (19)

Accordingly, the closed-form expression for optimal control
is derived as

u∗(x̂) = −1
2
R−1gT(x̂)V ∗

x̂ . (20)

Substituting (20) into (19), we get the HJB equation as

V ∗
x̂

Th(x̂) +Qc(x̂) − 1
4
V ∗

x
T
A(x̂)V ∗

x̂ = 0 (21)

where A(x̂) = g(x̂)R−1gT(x̂).
Actually, (21) is difficult to solve by analytical methods.

In what follows, we develop an online NN-based control
scheme to derive the optimal control. Before presenting the
control scheme, we provide a required assumption as follows.

Assumption 5: Assume that L1(x̂) is a continuously dif-
ferentiable Lyapunov function candidate for system (17) and
satisfies that L̇1(x̂) = LT

1x̂

(

h(x̂) + g(x̂)u∗
)

< 0 with L1x̂

the partial derivative of L1(x̂) with respect to x̂. Meanwhile,
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there exists a positive definite matrix Λ(x̂) ∈ R
n×n defined

on Ω such that

LT
1x̂

(

h(x̂) + g(x̂)u∗
)

= −LT
1x̂Λ(x̂)L1x̂. (22)

Remark 2: It should be emphasized that h(x̂) + g(x̂)u∗

is often assumed to be bounded by a positive constant [13],
[15], [16], i.e., there exists a constant ρ > 0 such that ‖h(x̂)+
g(x̂)u∗‖ ≤ ρ. In order to relax the condition, in this paper,
h(x̂) + g(x̂)u∗ is bounded by a function with respect to x.
Since L1x̂ is a function with respect to x̂, without loss of gen-
erality, we assume that ‖h(x̂) + g(x̂)u∗‖ ≤ �‖L1x̂‖(� > 0).
In this sense, one can derive that ‖LT

1x̂

(

h(x̂) + g(x̂)u∗
)‖ ≤

�‖L1x̂‖2. Noticing LT
1x̂

(

h(x̂) + g(x̂)u∗
)

< 0, one shall
find that (22) defined as in Assumption 5 is reasonable.
In addition, L1(x̂) can be derived through proper selecting
functions, such as polynomials.

C. Online Neuro-Optimal Control Scheme

In this subsection, an online optimal control scheme is
constructed by using a unique critic NN. According to [20],
the optimal value V ∗(x̂) can be represented as

V ∗(x̂) = WT
c σ(νT

c x̂) + ε2(x̂)

where νc ∈ R
n×N and Wc ∈ R

N denotes the weights for
the input layer to the hidden layer and the hidden layer to
the output layer respectively, N is the number of neurons in
the hidden layer, and ε2(x̂) is the NN function reconstruction
error. The derivative of V ∗(x̂) with respect to x̂ is given by

V ∗
x̂ = ∇σT(x̂)Wc + ∇ε2 (23)

where ∇σ(x̂) = ∂σ(x̂)/∂x̂ and ∇σ(0) = 0.

By utilizing (23), (20) can be represented as

u∗(x̂) = −1
2
R−1gT(x̂)∇σTWc + εu∗ (24)

where εu∗ = −1
2
R−1gT(x̂)∇ε2.

Similarly, (21) can be rewritten as

WT
c ∇σh(x̂) +Qc(x̂) + εHJB

− 1
4
WT

c ∇σA(x̂)∇σTWc = 0 (25)

where εHJB is the residual error converging to zero as long
as the number of NN nodes is large enough. That is, there
exists εa > 0 such that ‖εHJB‖ ≤ εa.

Since the ideal critic NN weight Wc is unavailable, the
control u∗(x̂) in (24) cannot be implemented. Consequently,
we use V̂ (x̂) to approximate the value function in (18) as

V̂ (x̂) = ŴT
c σ(x̂) (26)

where Ŵc is the estimated weight of Wc. Define the estima-
tion error for the critic NN as

W̃c = Wc − Ŵc. (27)

By utilizing (26), the estimates of (20) is given by

û(x̂) = −1
2
R−1gT(x̂)∇σTŴc. (28)

The approximated Hamiltonian is derived as

H(x̂, Ŵc) = ŴT
c ∇σh(x̂) +Qc(x̂)

− 1
4
ŴT

c ∇σA(x̂)∇σTŴc � e. (29)

Combining (24), (25), and (29), we have

e = − W̃T
c ∇σ

(

C(x̂) +
1
2
A(x̂)∇ε2

)

− 1
4
W̃T

c ∇σA(x̂)∇σTW̃c − εHJB (30)

with C(x̂) = h(x̂) + g(x̂)u∗.
In order to get the minimum value of e, it is desired to

choose Ŵc to minimize the squared residual error E =
1
2
eTe.

By using the gradient descent algorithm, the weight tuning
law for the critic NN is generally given as [12], [15], [16]

˙̂
Wc = −η ∂E

∂Ŵc

= −η φ

(1 + φTφ)2
e (31)

where φ = ∇σ[h(x̂) + g(x̂)û
]

, η > 0 is a design parameter,
and the term φ/(1 + φTφ)2 is employed for normalization.

However, there are two issues about the tuning rule (31):
1. Tuning the critic NN weights to minimize E alone

cannot guarantee the stability of system (17) during the
learning process of NNs.

2. The signal φ/(1 + φTφ) is required to be PE for
guaranteeing the weights of the critic NN exponential
converges to the actual optimal values. Nevertheless, the
PE condition is intractable to verify due to the presence
of hidden-layers involving in φ/(1 + φTφ).

For the sake of addressing above issues, a novel weight
update law for the critic NN is developed as

˙̂
Wc = − ηφ̄

(

Y (x̂) − 1
4
ŴT

c ∇σA(x̂)∇σTŴc

)

− η
N
∑

j=1

φ̄(j)

(

Y (x̂tj
) − 1

4
ŴT

c ∇σ(j)A(x̂tj
)∇σT

(j)Ŵc

)

+
η

2
Π(x̂, û)∇σA(x̂)L1x̂ (32)

where Y (x̂) = ŴT
c ∇σh(x̂) + Qc(x̂), φ̄ = φ/m2

s, ms =
1 + φTφ, j ∈ {1, . . . , N} denotes the index of a stored data
point x̂(tj) (for convenience, written as x̂tj ), φ̄(j) = φ̄(x̂tj ),
msj

= 1+φT(x̂tj
)φ(x̂tj

), ∇σ(j) = ∇σ(x̂tj
), L1x̂ is defined

as in Assumption 5, and Π(x̂, û) is defined as

Π(x̂, û) =

⎧

⎨

⎩

0, if LT
1x̂

(

h(x̂) − 1
2
A(x̂)∇σTŴc

)

< 0

1, otherwise.
(33)

Remark 3: If there is no the second term in (32), one shall
find ˙̂

Wc = 0 when there exists x̂ = 0. That is, the weights of
the critic NN will not be updated. Under this circumstance,
the critic NN might not be convergent. Hence, PE of the
input signal is required. Nevertheless, by using (32), the PE
condition is relaxed as long as {φ̄(j)}N

1 is selected to be
linearly independent. Now we show this fact as follows:
Suppose that ˙̂

Wc = 0 when there exists x̂ = 0. From
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(32), we can obtain that
∑N

j=1 φ̄(j)ej = 0, where ej =
Y (x̂tj )−ŴT

c ∇σ(j)A(x̂tj )∇σT
(j)Ŵc/4. Since {φ̄(j)}N

1 is lin-
early independent, we can conclude ej = 0 (j = 1, . . . , N ).
However, this case will not happen until the system state
stays at the equilibrium point. In other words, there exists at
least j0 ∈ {1, . . . , N} such that ej0 	= 0 during the learning
process of NNs. Accordingly, we can draw the conclusion
that the second term in (32) guarantees ˙̂

Wc 	= 0 during
the learning process of NNs. That is, the PE condition is
removed.

In order to guarantee the linear independence of {φ̄(j)}N
1 ,

the following condition should be satisfied.
Condition 1: Let D =

[

σ(x̂t1), . . . , σ(x̂tN
)
] ∈ R

N×N be
the recorded data matrix. There exists sufficient large number
of recorded data such that D is nonsingular, that is, ‖D‖ 	= 0.

Remark 4: Condition 1 is first introduced in [22], which
is used to derive adaptive control for tracking problems.
Condition 1 can be satisfied by selecting and recording
data during the learning process of NNs over a finite time
interval. Compared with the PE condition, a clear advantage
of Condition 1 is that it can be easily checked online.

By the definition of φ in (31) and using (24) , we have

φ = ∇σ
(

C(x̂) +
1
2
A(x̂)∇ε2

)

+
1
2
∇σA(x̂)∇σTW̃c (34)

with C(x̂) defined as in (30). From (27), (30), (32), and (34),
we derive

˙̃Wc = − η

m2
s

(

∇σL(x̂) +
1
2
Ā(x̂)W̃c

)

×
(

W̃T
c ∇σL(x̂) +

1
4
W̃T

c Ā(x̂)W̃c + εHJB

)

−
N
∑

j=1

η

m2
sj

(

∇σ(j)L(x̂tj
) +

1
2
Ā(x̂tj

)W̃c

)

×
(

W̃T
c ∇σ(j)L(x̂tj

) +
1
4
W̃T

c Ā(x̂tj
)W̃c + εHJB

)

− η

2
Π(x̂, û)∇σA(x̂)L1x̂ (35)

where L(x̂) = C(x̂) +
1
2
A(x̂)∇ε2, Ā(x̂) = ∇σA(x̂)∇σT,

and Ā(x̂tj ) = ∇σ(j)A(x̂tj )∇σT
(j).

IV. STABILITY ANALYSIS

In this section, we present our main results based on
Lyapunov’s direct method. Prior to giving the main theorem,
we provide another assumption as follows:

Assumption 6: The derivative of σ(x̂) with respect to x̂ is
bounded, that is, there exists bσ > 0 such that ‖∇σ(x̂)‖ <
bσ . The derivative of the NN reconstruction error ε2(x̂) with
respect to x̂ is bounded as ‖∇ε2(x̂)‖ < εb, where εb > 0.

With Assumptions 1–6 and Facts 1–2, our main theorem
is developed as follows:

Theorem 2: Consider system (1) with the associated HJB
equation (21). Let Assumptions 1–6 be satisfied and take
the control input for system (1) as in (28). Meanwhile, let
weight update laws for the observer NN be (8) and (9), and
let weight tuning rule for the critic NN be (32). Then, the

state observer error x̃(t), NN weight estimation errors W̃1,
Ṽ1, and W̃c are all guaranteed to be UUB.

Proof: We provide an outline of the proof due to the
space limit. Consider the Lyapunov function candidate

L(t) = L1(x(t)) + L2(t) +
1
2
W̃T

c η
−1W̃c (36)

where L1(x(t)) is defined as in Assumption 5, L2(t) = J(t)
with J(t) defined as in Theorem 1.

Taking the time derivative of (36) and by using Theorem 1,
we derive

L̇(t) ≤ LT
1x̂

(

h(x̂) − 1
2
A(x̂)∇σTŴc

)

− θ

2
λmin

[

(C+)TC+
]‖Cx̃‖2 + B‖Cx̃‖

+ W̃T
c η

−1 ˙̃Wc (37)

where B is defined as in (15).

By utilizing (35), we derive the last term in (37) as

W̃T
c η

−1 ˙̃Wc = F1 + F2 − 1
2
W̃T

c Π(x̂, û)∇σA(x̂)L1x̂ (38)

where

F1 = − 1
m2

s

(

W̃T
c ∇σL(x̂) +

1
2
W̃T

c Ā(x̂)W̃c

)

×
(

W̃T
c ∇σL(x̂) +

1
4
W̃T

c Ā(x̂)W̃c + εHJB

)

F2 = −
N
∑

j=1

1
m2

sj

(

W̃T
c ∇σ(j)L(x̂tj ) +

1
2
W̃T

c Ā(x̂tj )W̃c

)

×
(

W̃T
c ∇σ(j)L(x̂tj ) +

1
4
W̃T

c Ā(x̂tj )W̃c + εHJB

)

.

Note that F1 and F2 in (38) can be developed as

F1 ≤− 1
m2

s

{

1
16

(

W̃T
c Ā(x̂)W̃c

)2

− 4
(

W̃T
c ∇σL(x̂)

)2

− 5
2
ε2HJB

}

.

F2 ≤−
N
∑

j=1

1
m2

sj

{

1
16

(

W̃T
c Ā(x̂tj )W̃c

)2

− 4
(

W̃T
c ∇σ(j)L(x̂tj

)
)2

− 5
2
ε2HJB

}

. (39)

Substituting (39) into (38), and noting that 1 ≤ m2
s ≤ 4,

1 ≤ m2
sj

≤ 4, we have

W̃T
c η

−1 ˙̃Wc ≤− 1
64

{

N
∑

j=1

μ2
inf

(

Ā(x̂tj
)
)

+ μ2
inf

(

Ā(x̂)
)

}

× ∥

∥W̃c

∥

∥

4 + 4b2σ

{

N
∑

j=1

ϑ2
sup

(

L(x̂tj
)
)

+ ϑ2
sup

(

L(x̂)
)

}

∥

∥W̃c

∥

∥

2 +
5
2
(N + 1)ε2a

− 1
2
W̃T

c Π(x̂, û)∇σA(x̂)L1x̂ (40)
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where μinf(Y) denotes the lower bound of Y (Y =
Ā(x̂), Ā(x̂tj

)
)

, and ϑsup(Z) represents the upper bound of
Z (Z = L(x̂),L(x̂tj

)), and N is the number of neurons in
the hidden-layer.

Combining (37) and (40), we obtain

L̇(t) ≤ LT
1x̂

(

h(x̂) − 1
2
A(x̂)∇σTŴc

)

− 1
2
W̃T

c Π(x̂, û)∇σA(x̂)L1x̂

− T1

64
‖W̃c‖4 + 4T2‖W̃c‖2

− γ

2

(

‖Cx̃‖ − B/γ
)2

+
B2

2γ

+
5
2
(N + 1)ε2a (41)

where

T1 = μ2
inf

(

Ā(x̂)
)

+
N
∑

j=1

μ2
inf

(

Ā(x̂tj )
)

T2 = b2σϑ
2
sup

(

L(x̂)
)

+ b2σ

N
∑

j=1

ϑ2
sup

(

L(x̂tj
)
)

γ = θλmin

[

(C+)TC+
]

.

Case I: Π(x̂, û) = 0. In this sense, we derive that the first
term in (41) is negative by using the definition of Π(x̂, û) in
(33). Noting that LT

1x̂
˙̂x < 0, based on Archimedean property

of R, one can conclude that there exists a constant τ > 0
such that −‖L1x̂‖τ ≥ LT

1x̂
˙̂x. Then, (41) is developed as

L̇(t) ≤− τ‖L1x̂‖ − γ

2

(

‖Cx̃‖ − B/γ
)2

− T1

64

(

‖W̃c‖2 − 128T2

T1

)2

+
256T2

2

T1

+
1
2γ

[B2 + 5γ(N + 1)ε2a
]

. (42)

Therefore, (42) yields L̇(t) < 0 as long as one of the
following conditions holds:

‖L1x̂‖ > 256T2
2

τT1
+

B2 + 5γ(N + 1)ε2a
2τγ

or

‖x̃‖ > 1
‖C‖

√

512T2
2

γT1
+

B2 + 5γ(N + 1)ε2a
γ2

+
B

γ‖C‖
or

‖W̃c‖ > 2

√

√

√

√32T2

T1
+

√

2T1

[B2/γ + 5(N + 1)ε2a
]

+ 1024T2
2

T1
.

Case II: Π(x̂, û) = 1. By the definition of Π(x̂, û) in (33), we
find that, in this case, the first term in (41) is nonnegative
which implies that the control defined as in (28) may not

stabilize system (17). Then, (41) becomes

L̇(t) ≤ LT
1x̂

(

C(x̂) +
1
2
A(x̂)∇ε2

)

− γ

2

(

‖Cx̃‖ − B/γ
)2

+
B2

2γ

− T1

64

(

‖W̃c‖2 − 128T2

T1

)2

+
256T2

2

T1
+

5
2
(N + 1)ε2a (43)

where C(x̂) is defined as in (30).

By using (22) and Assumption 6, (43) is developed as

L̇(t) ≤− λmin

(

Λ(x̂)
)

(

‖L1x̂‖ −
εbϑsup

(

A(x̂)
)

4λmin

(

Λ(x̂)
)

)2

− γ

2

(

‖Cx̃‖ − B/γ
)2

− T1

64

(

‖W̃c‖2 − 128T2

T1

)2

+
εbϑsup

(

A(x̂)
)

16λmin

(

Λ(x̂)
) +

256T2
2

T1

+
1
2γ

[B2 + 5γ(N + 1)ε2a
]

(44)

where λmin

(

Λ(x̂)
)

represents the minimum eigenvalue of
Λ(x̂), ϑsup(·) is defined as in (40).

Hence, we obtain that (44) implies that L̇(t) < 0 as long as
one of the following conditions holds:

‖x̃‖ > 1
‖C‖

√

2d
γ

+
B

γ‖C‖
or

‖W̃c‖ > 2

√

32T2

T1
+ 2

√

d

T1

or

‖L1x̂‖ >
εbϑsup

(

A(x̂)
)

4λmin

(

Λ(x̂)
) +

√

d

λmin

(

Λ(x̂)
)

where

d =
εbϑsup

(

A(x̂)
)

16λmin

(

Λ(x̂)
) +

256T2
2

T1
+

1
2γ

[B2 + 5γ(N + 1)ε2a
]

.

Combining Cases I and II and using the standard Lyapunov
extension theorem [21], one can derive that the state observer
error x̃(t), the NN weight estimation errors W̃1, Ṽ1, and W̃c

are all UUB.

V. SIMULATION RESULTS

Consider the nonlinear CT system described by

ẋ = f(x) + g(x)u
y = Cx (45)

where

f(x) =
[ −x1 + x2

−0.5x1 − 0.5x2 + 0.5x2

(

cos(2x1) + 2
)2

]

g(x) =
[

0
cos(2x1) + 2

]

C =
[

1 0
0 1

]

.
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The value function is defined as in (2), where Q and R
are chosen as identity matrices of approximate dimensions.
The prior knowledge of system states is assumed to be
unavailable, and only the output y(t) is measurable in system
(45). In order to obtain the knowledge of system dynamics,
an NN state observer defined as in (6) is employed. The gains
for the observer are selected as

A = [−1 1;−0.5 − 0.5], B = [1 0;−0.5 0],
l1 = 20, l2 = 10, k1 = 6.1, k2 = 15, N1 = 8,

and the gain for the critic NN is chosen as η = 2.5. The
activation function for the critic NN is selected with N = 3
neurons as

σ(x) = [x2
1 x2

2 x1x2]T

and the weight of the critic NN is denoted as Ŵc =
[W 1

c W 2
c W 3

c ]T.
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Fig. 1. Trajectories of real state x1(t) and observed state x̂1(t)
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Fig. 2. Trajectories of real state x2(t) and observed state x̂2(t)
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Fig. 3. NN observer errors x̃1(t) and x̃2(t)

0 2 4 6 8 10
0

3

6

9

12

15

Time (s)

‖Ŵ1‖
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The initial weights Ŵ1 and V̂1 for the observer NN are
selected randomly within an interval of [−10, 10] and [−5, 5],
respectively. Meanwhile, the initial weights for the critic NN
are chosen to be zeros, and the initial system state is selected
to be x0 = [3.5,−3.5]T. In this sense, one can find the
initial control can not stabilize system (45). In other words,
no initial stabilizing control is required for implementing the
algorithm. In addition, by using the method proposed in [22],
the recorded data can be easily made qualified for Condition
1. That is, the PE condition is removed.

The simulation results are presented in Figs. 1–6. Figs. 1
and 2 show the trajectories of system state x1(t) and ob-
served state x̂1(t), and the trajectories of system state x2(t)
and observed state x̂2(t), respectively. Fig. 3 illustrates the
performance of the NN state observer errors x̃1(t) and x̃2(t).
Fig. 4 indicates the 2-norm of the weights of the observer
NN ‖Ŵ1‖ and ‖V̂1‖. Fig. 5 displays the performance of the
convergence of the critic NN weights. Fig. 6 illustrates the
optimal control u. From Figs. 1–3, it is observed that the
NN observer can approximate the real system very fast and
well. From Figs. 4 and 5, one can find that the observer
NN and the critic NN are tuned simultaneously. Meanwhile,
Fig. 5 indicates that no initial stabilizing control is required.
Moreover, comparing Figs. 1–2 with simulation results in
[15], one shall find that there is no probe noise added to get
the PE signal. That is, the restrictive PE condition is relaxed.
In addition, our algorithm ensures that the closed-loop system
is stable in the sense of uniform ultimate boundedness and
that learning is very fast.

VI. CONCLUSIONS

We have developed a new observer–critic architecture
to derive the optimal control for uncertain nonlinear CT
systems. Based on the present architecture, the observer
NN and the critic NN are tuned simultaneously. Meanwhile,
the restrictive conditions that the initial stabilizing control
and PE are removed. In our future work, we shall focus

on developing online algorithms for solving optimal control
problems of nonaffine nonlinear CT systems.

REFERENCES

[1] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control (3rd edn.).
New Jersey: John Wiley & Sons, Inc., 2012.

[2] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[3] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic
programming algorithm for optimal control of unknown discrete-time
nonlinear systems with constrained inputs,” Inf. Sci., vol. 220, pp. 331–
342, Jan. 2013.

[4] X. Yang, D. Liu, and Q. Wei, “Neuro-optimal control of unknown
nonaffine nonlinear systems with saturating actuators,” in Proc. 3rd
IFAC International Conference on Intelligent Control and Automation
Science, Chengdu, China, 2013, pp. 569–574.

[5] H. N. Wu and B. Luo, “Neural network based online simultaneous
policy update algorithm for solving the HJI equation in nonlinear
H∞ control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 12,
pp. 1884–1895, Dec. 2012.

[6] R. E. Bellman, Dynamic Programming. New Jersey: Princeton Uni-
versity Press, 1957.

[7] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analy-
sis in the Behavioral Sciences. Ph.D. Dissertation, Harvard University,
USA, 1974

[8] P. J. Werbos, “Approximate dynamic programming for real-time con-
trol and neural modeling,” in Handbook of Intelligent Control. D. A.
White and D. A. Sofge, Eds. Van Nostrand Reinhold, New York, 1992.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning–An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[10] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Syst. Mag., vol. 32,
no. 6, pp. 76–105, Nov. 2012.

[11] F. L. Lewis and D. Liu, Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Hoboken, New Jersey:
Wiley, 2013.

[12] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adaptive
optimal control of unknown continuous-time nonlinear systems with
input constraints,” Int. J. Control, vol. 87, no. 3, pp. 553–566, 2014.

[13] D. Liu, X. Yang, and H. Li, “Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics,” Neural Comput. Appl., vol. 23, no. 7–8, pp. 1843–1850,
Dec. 2013.

[14] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network
HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[15] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

[16] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L.
Lewis, and W. E. Dixon, “A novel actor-critic-identifier architecture
for approximate optimal control of uncertain nonlinear systems,”
Automatica, vol. 49, no. 1, pp. 82–92, Jan. 2013.

[17] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear
continuous-time systems,” in Amer. Control Conf., Baltimore, MD,
USA, 2010, pp. 1568–1573.

[18] X. Yang, D. Liu, and Y. Huang, “Neural-network-based online optimal
control for uncertain non-linear continuous-time systems with control
constraints,” IET Contr. Theory Appl., vol. 7, no. 17, pp. 2037–2047,
Nov. 2013.

[19] F. Abdollahi, H. A. Talebi, and R. V. Patel, “A stable neural network-
based observer with application to flexible-joint manipulators,” IEEE
Trans. Neural Netw., vol. 17, no. 1, pp. 118–129, Jan. 2006.

[20] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation
of an unknown mapping and its derivatives using multilayer feedfor-
ward networks,” Neural Netw., vol. 3, no. 5, pp. 551–560, 1990.

[21] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network
Control of Robot Manipulators and Nonlinear Systems. London: Taylor
& Francis, 1999.

[22] G. V. Chowdhary, Concurrent Learning for Convergence in Adaptive
Control without Persistency of Excitation. Ph.D. Dissertation, Georgia
Institute of Technology, USA, 2010.

238




