
 
 

 

  

Abstract—Methylamine (MA) removal process using mixed 
bacteria strains depends highly on constant temperature (303 
K), at which the mixed bacteria strains provide highest activity 
in removing MA. Controlling MA removal reactor is extremely 
difficult for its inherent process nonlinearities and complex 
reaction kinetics and other uncertain factors. In the designed 
approach, a network predicted model is trained as a nonlinear 
process to predict the future output of the controlled process 
according to current and previous input and output over the 
specified horizon. The advanced predictive control strategy is 
used to minimize the cost function in order to calculate the 
optimal output of the controller. In this work, a neural network 
based predictive control (NNMPC) algorithm was implemented 
to control the temperature of MA removal reactor and the 
controller performance in set-point tracking and disturbance 
rejection was investigated, and the performance results of 
NNMPC was compared with conventional PID controller. It is 
concluded that the NNMPC performance is superior to the 
conventional PID controller in the control of MA removal 
reactor. 

I. INTRODUCTION 
ETHYLAMINE (MA), a kind of important aliphatic 
amine, is one of the basic organic chemical raw 

materials. It is mainly used in the production of pesticides, 
corrosion inhibitors, medicine, fuel, emulsifiers and rubber 
production [1]. MA is present in organic industrial 
wastewater, such as the fermentation broths used for ethanol 
production [2]. The wastewater containing methylamine can 
cause serious water pollution, such as water eutrophication, 
and even threaten the health of human [3]. Therefore, it is 
significant to remove MA from wastewater [4]. However, 
methylamine removal reactor involves complex reaction 
mechanisms and the removal process is highly nonlinear in 
nature. The control of methylamine removal reactor is 
difficult due to its inherent process nonlinearities and 
complex reaction kinetics, and few researches have been 
conducted to research the advanced control strategies for 
methylamine removal reactor in recent years.  

Model predictive control (MPC), an advanced process 
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control technology, is widely implemented in industrial 
applications recently [5, 6]. MPC improves the control 
performance in terms of accuracy and robustness since the 
application of strategies of multi-step prediction, rolling 
optimization and feedback correction. The MPC algorithm 
uses an explicit process model to predict the future behavior 
of the plant and most of the MPC strategies are based on 
linear models of the process which offers poorer 
performance in controlling the methylamine removal reactor 
for its inherent process nonlinearities and complex reaction 
kinetics [7].To overcome the difficulties connected with 
nonlinear factors and complex reaction kinetics of 
methylamine removal reactor, an MPC based on a nonlinear 
model is desirable [8]. Recently, neural network plays an 
important role in the identification and construction of 
models with complex nonlinear factors, and then neural 
network can offer an alternative nonlinear modeling 
approach for MPC [9-11].The combination of neural 
network and MPC approach can overcome the shortcoming 
of traditional linear MPC which cannot effectively control 
the model with highly nonlinear factors [12-13]. Neural 
network acts as a feed-forward process model predicting the 
output of the nonlinear process in the neural network model 
based prediction control [14].  

In this work, a neural network model based prediction 
controller (NNMPC) was developed for the control of 
methylamine removal reactor experimentally, and this kind 
of experiments haven’t been conducted in recent years. The 
model of methylamine removal reactor was constructed 
using a neural network with one hidden layer with 9 neurons 
and then the MPC strategy was used to calculate the optimal 
control inputs to control the process so that the temperature 
of the methylamine removal reactor was assured. 
Conventional PID controller was also used in the experiment 
and the performance of used controllers were compared and 
analyzed.  

II. METHYLAMINE REMOVAL REACTOR MODELING 
A schematic diagram of the experimental methylamine 

removal reactor is shown in Fig. 1. In order to obtain 
maximum efficiency of methylamine removal process, the 
temperature of the reactor must be kept at 303 K, at which 
the mixed bacteria strains have highest activity in removing 
MA. So, the controlled variable is the temperature of the 
experimental methylamine removal process. The flow rate of 
the coolant is selected as the control variable among the 
input variables, whereas the other variables keep constant. 
Considering the methylamine removal process using mixed 
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bacteria strains is exothermic, the circulating water bath can 
keep the process at a constant temperature by adjusting the 
flow rate of the coolant. The methylamine removal reactor 
uses a 100 L jacketed glass reactor. Thermocouple is used to 
measure the real-time temperature of the reaction process 

since the efficiency of methylamine removal process is 
highly dependent on temperature. The mixture inside the 
reactor is stirred using a turbine agitator, the speed of which 
can adjust in the range of 50–2000 rpm. In this study, speed 
of stirring turbine agitator is 800 rpm. 

 
Fig.1. Experimental setup for the methylamine removal. 

 
The mathematical model of the methylamine removal 

reactor is derived under several simplifying assumptions. 
The density of the wastewaterρ1, the density of coolantρc, 
the specific heat capacity of wastewater Cp and the specific 
heat capacity of coolant Cpc re assured to be constant. The 
simplified non-linear dynamic mathematical model of the 
methylamine removal reactor is described by two partial 
differential equations 
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Where, ஺଴ܥ  -Concentration of wastewater with MA, ܥ஺-Concentration of wastewater without MA, ݍ-Flow rate 
of wastewater with MA, ݍ௖-Flow rate of coolant, ݒ-Volume 
of methylamine removal reactor, ௙ܶ -Temperature of 
wastewater with MA, ܶ -Temperature of methylamine 
removal process, ௖ܶ-Temperature of coolant,ܧ ܴ⁄ -Activation 
energy, time constant ݇ଵ, ݇ଶ, ݇ଷ are calculated as follows 
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Here, ∆ܪ -Heat of reaction, ݇଴ -Exponential factor, ݄௔-Heat-transfer coefficient, ߩଵ- Density of wastewater with 
MA, ߩ௖- Density of coolant. Parameters and steady-state 
inputs of the methylamine removal reactor are enumerated in 
TABLE I. 

 The steady-state analysis of the MA removal reactor 
was shown in Fig.2, which demonstrated the dependence of 
temperature of the MA removal process on the flow rate of 
coolant. It confirmed that the MA removal reactor contains 
highly nonlinear factors. 

 
Fig.2. Steady-state analysis of the MA removal reactor. 
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TABLE I 
MA REMOVAL REACTOR PARAMETERS AND STEADY-STATE INPUTS 

Variable Value Unit 

CA0 0.50 mol/L 
CA 0.48 mol/L 
Tf 310.00 K 
Tc 285.00 K 
T 303.15 K 
q 10.00 L/min 
qc 3.80 L/min 
v 100.00 L 
ρ1 1×103 g/L 
ρc 1×103 g/L 
Cp 1.00 cal/g⋅K 
Cpc 1.00 cal/g⋅K 
ha 7.20×105 J/min⋅K 
k0 7.20×1010 min-1 
ΔH -2.00×105 cal/mol 

III. NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL 
Several researches have confirmed the successful 

application of data-based modeling methods such as neural 
network in the field of industry processes [15-19]. In recent 
years, some process systems have witnessed the extensively 
application of artificial intelligence approaches using 
artificial neural networks [15], [20-22].The recent upsurge of 
researching neural network has promoted the application for 
identifying nonlinear system which even contains noise and 
uncertain factors using neural network [23-25].   

 It is important for MPC to getting the predictive model 
of the controlled plant, which can predict the output of the 
system using the current input and output value. In nature, 
MPC use a kind of optimization algorithm which can 
optimizes the objective function subject to the model of 
plant and some constraint functions over a finite time 
horizon. Fig. 3 shows the schematic diagram using neural 
network identifier as a predictive model. 

 

 
Fig.3. Schematic diagram using neural network identifier as predictive 

model. 
 

The neural network identifier predicts the future output 
of the plant ௠ሺ݇ݕ ൅ ݆ሻ, ሺ݆ ൌ 1,2, ڮ , ܲሻ , according to the 
input ݑ  and output ݕ௢௨௧ of the controlled system. The 
vector form of ݕ௠ሺ݇ ൅ ݆ሻ is expressed as follows 

( 1) [ ( 1) ( 2), , ( )]T
m m m mY k y k y k y k P+ = + + ⋅⋅⋅ +，     (6) 

where, ܲ is the predictive time horizon. 
Considering the effects caused by model identify error, 

external disturbances and other uncertain factors, the output 
error of predictive model and actual controlled model in 
current time ݁ሺ݇ሻ ൌ ሺݕ௢௨௧ሺ݇ሻ െ  ௠ሺ݇ሻሻ is calculated as aݕ

feedback correction in order to obtain the corrected predicted 
output in future time, which is determined as 

( ) ( ) ( ), 1,2, ,p m jy k j y k j h e k j P+ = + + = ⋅⋅⋅         (7) 

where, ௝݄  is the feedback correction coefficient. 
In order to provide the smooth running and good dynamic 
characteristics of the system, the output of the system is 
demanded to reaches the set value along a pre-specified 
reference trajectory. The control strategy of multi-step 
prediction model is shown in Fig. 4. 
 

 
Fig.4. Control strategy of multi-step prediction model. 

 
Generally, the reference trajectory ݕ௥ሺ݇ሻ  is an 

exponential curve leaving from the current actual output of 
the system ݕ௢௨௧ሺ݇ሻ, which is expressed as follows 

( ) ( ) (1 ) ( ), 1, 2,r r out r sy k i y k y k iα α+ = + − = ⋅⋅⋅      (8) 
where, ߙ௥is the parameters of reference trajectory;  ݕ௦ሺ݇ሻis 
the set value. 

With reference trajectory and predicted output, the 
performance of rolling optimization can be established to 
calculate the control signal. The performance objective 
function is determined as 

2 2

1 1
[ ( ) ( )] [ ( 1)]

p uN N

j r p i
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J y k i y k i u k iθ λ
= =

= + − + + + −∑ ∑   (9) 

where, ௣ܰis prediction horizon and ௨ܰ is control horizon, θ௝and ߣ௜  are the weighting factors of tracking error and 
control signal. In order to calculate the control rate 
conveniently, the objective function can be expressed as 

( ( 1) ( 1)) ( ( 1) ( 1)) ( ) ( )T T
r rJ k k k k k k= + − + + − + +p pY Y θ Y Y U λU (10) 

where, ( 1) [ ( 1), ( 2), , ( )]T
r r r r pk y k y k y k N+ = + + ⋅⋅⋅ +Y , 

( 1) [ ( ), ( 1), , ( 1)]T
uk u k u k u k N+ = + ⋅⋅⋅ + −U and assuming 

that the control value will stay constant since the time 
1uk N+ − ,which also means 

( 1)= ( )= = ( 1)u u pu k N u k N u k N+ − + ⋅⋅⋅ + − . θ and λ are the 
weighting factor matrix of tracking error and control signal, 
which are expressed by two diagonal matrixes 
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where, ۵ and ۴ are coefficient matrixes, which are 
constituted by the coefficients of impulse responses. ig is 
the impulse responses sequence of the controlled object, 

( 1,2, , )ig i N= ⋅⋅⋅ ,and ܰ is the impulse response truncation 
length of the model.  
 The neural network model based prediction controller 
contains the neural network model which act as the 
controlled process to predict the future output of the process. 
With reference trajectory and predicted output the 

optimization algorithm is used to calculate the proper output 
of the controller. The structure of NNMPC is shown in Fig. 
5.System identification that constructing the neural network 
model is the first step in designing NNMPC, in which a 
two-layer network with liner transfer functions in the output 
layer and sigmoid transfer functions in the hidden layer is 
used. 

 
Fig.5. Neural network model based prediction controller. 

 
During the neural network modeling process, the 

network is trained by the error between plant output and the 
neural network output. The neural network is used to predict 
the future plant output according to the previous input and 
output of the model in NNMPC. Fig. 6 shows the structure 
of the neural network model, where ݕ௣ሺ݇ሻ  is neural 
network output, ݑሺ݇ሻis the plant input, yሺ݇ሻ is the plant 
output, the TDL blocks are the tapped delay lines, ۷܅௜,௝is 
the weight from the input number j to the layer number i, ܅ۺ௜,௝is the weight matrix from the layer number j to the 
layer number i, b1 is bias of the hidden layer, b2 is the bias of 
the output layer. 
 

 
Fig.6. Neural network plant model. 

 

IV. CONTROL OF METHYLAMINE REMOVAL REACTOR 
The controlled process is the MA removal reactor 

described in Section 2, and the control algorithm is NNMPC 
described in Section 3. The training data were obtained from 

the nonlinear model of the MA removal reactor (1)-(5) and 
the network was trained offline. The parameters of neural 
network prediction model and the parameters of plant 
identification are shown in TABLE II. Fig.7 and Fig.8 show 
the training result obtained from training and validation data 
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respectively. Considering that the identification error is 
sufficiently small in both case and the plant actual output 
and the neural network output fit well, the neural network 
training and model identification were successful. 

 Once the neural network prediction model was 

obtained, the control for the MA removal reactor was 
started, using NNMPC. The chosen parameters for 
prediction control of MA removal actor with NNMPC were 
shown in TABLE III. 

 

 
Fig.7. Training data for neural network model. 

 

 
Fig.8. Validation data for neural network model. 
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TABLE II 
PARAMETERS OF NEURAL NETWORK MODEL IDENTIFICATION 

Parameters Value 

No. of input nodes 6 
No. of hidden layer nodes 9 
No. of delayed plant input 2 
No. of delayed plant output 2 
No. of output nodes 1 
Maximum plant input 10 L/min 
Minimum plant input 0 L/min 
Maximum plant output 315 K 
Minimum plant output 285 K 
Total sample size 2,000 
Training function Levenberg-Marquardt method 
Training epochs 400 
No. of input nodes 6 
No. of hidden layer nodes 9 

 
TABLE III 

PARAMETERS OF PREDICTION CONTROL OF MA REMOVAL ACTOR 

Parameters Value 

Prediction horizon  27 
Control horizon 15 
Sampling interval 2 s 
Control weight factor  0.05 
Searching factor  0.001 
Minimization routine  Backtracking optimization[26] 

The control input constrains were 1 L/min<qc<10 L/min 
and the control output constrains were 285 K<T<315k. The 
NNMPC block was implemented in MATLAB-Simulink. 

V. RESULTS AND DISCUSSION 
In this section, NNMPC algorithm was implemented to 

control the temperature of MA removal reactor and the 
controller performance in set-point tracking and disturbance 
rejection was investigated compared with conventional PID 
controller. 

Considering that no definite criteria provided in the choice 
of the prediction horizon for nonlinear system, closed loop 
simulations were carried out for step tracking with different 
prediction horizons in Fig.9, in order to select the 
appropriate value for the prediction horizon. Obviously, the 
prediction horizon of 27 provides most satisfactory control 
performance from Fig.9. 

 
Fig.9. Control performance with different prediction horizons. 

Similarly, the simulations to selecting the value control 
horizon were carried out. It was obviously observed that the 
control horizon value of 15 provides most satisfactory 
control performance from in Fig.10. 

 
Fig.10. Control performance with different control horizons. 

 
Fig.11 shows a comparison of the MA removal reactor 

temperature responses to a series of set-point changes due to 
the NNMPC and PID controllers. Initially, the coolant starts 
circulating at the rate 2L/min, at the same time, 100 L 
wastewater containing MA at the temperature of 310 K and 
the mixed bacteria strains were charge into the MA removal 
reactor and the initial temperature of the reactor was 300 K. 
The controlled temperature of the reactor was set 302 K at 
time100s, and 303.5 K at time 200 s. The control response 
obtained from Fig.11 shown that NNMPC was ideal with 
smaller overshoot and shorter settling times in comparison 
with the PID controller. In this work, the Cohen-Coon 
method was used for tuning the PID controller and the 
control setting for the PID controller was shown in TABLE 
IV. Besides, IAE (integrated absolute error) and ISE 
(integrated squared error) were employed to compare the 
performances of NNMPC and PID controllers quantitatively 
in TABLE V. 

 
Fig.11. Control performance using NNMPC and PID controller. 
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TABLE IV 
PARAMETERS FOR PID CONTROLLER 

PID parameters Value 

Proportional constant -15.12 
Integral constant 0.44 
Derivative constant 5.47 

 
TABLE V 

VALUE OF ISE AND IAE 

Method ISE IAE 

NNMPC 396.2648 707.3366 
PID 521.9249 861.9722 

Obviously, the error of NNMPC is smaller and the 
NNMPC provides more satisfactory control effect. In order 
to check the stability of NNMPC of MA removal reactor 
against process disturbances, another set of experiments 
were conducted. Fig.12 shown the control effect under the 
disturbance made by changing the temperature of 
wastewater containing MA from 310 K to 308 K at time 100 
s. The simulation results shown in Fig.12 depicted that the 
controlled reactor temperature increased a little away from 
the set-point value then was driven back to track the 
set-point value faster in comparison with the PID controller. 

 
Fig.12. NNMPC and PID controller under disturbance made by changing 

the temperature of wastewater containing MA. 
Similar procedure was performed under the disturbance 

made by changing the flow rate of wastewater containing 
MA from 1 L/min to 1.5L/min at time 100 s in Fig.13 and 
NNMPC provided stronger ability to reject disturbances in 
comparison with the PID controller. 

 
Fig.13. NNMPC and PID controller under disturbance made by changing 

the flow rate of wastewater containing MA. 

VI. CONCLUSION 
In this paper, the application of neural network based 

model predictive control strategy for controlling 
methylamine removal reactor is presented, which is to cover 
the gap between theoretical and practical control studies for 
the MA removal reactor. NNMPC shows better performance 
both in set-point tracking and disturbance rejection on the 
temperature control of MA removal reactor in comparison 
with the conventional PID controller. This study highlights 
the significance of using nonconventional system 
identification techniques and advanced control strategies for 
the control of complex MA removal reactor. 
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