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Abstract—In contrast to point forecast, prediction interval-
based neural network offers itself as an effective tool to
quantify the uncertainty and disturbances that associated with
process data. However, single best neural network (NN) does
not always guarantee to predict better quality of forecast for
different data sets or a whole range of data set. Literature
reported that ensemble of NNs using forecast combination
produces stable and consistence forecast than single best NN.
In this work, a NNs ensemble procedure is introduced to
construct better quality of PIs. Weighted averaging forecasts
combination mechanism is employed to combine the PI-based
forecast. As the key contribution of this paper, a new PI-based
cost function is proposed to optimize the individual weights
for NN in combination process. An optimization algorithm,
named simulated annealing (SA) is used to minimize the PI-
based cost function. Finally, the proposed method is examined
in two different case studies and compared the results with
the individual best NNs and available simple averaging PIs
aggregating method. Simulation results demonstrated that the
proposed method improved the quality of PIs than individual
best NNs and simple averaging ensemble method.

I. INTRODUCTION

NEURAL NETWORK (NN) is a popular tool to model
nonlinear system as it does not require any predefined

mathematical formulation for relationship between system
inputs and targets [1], [2]. However, NN performance sig-
nificantly drops in the presence of process disturbances
and uncertainties [3], [4]. In a recent study, Khosravi et
al. [5] reported that PI-based modelling technique is more
reliable and effective than point forecasting to quantify the
disturbances as well as uncertainty. Moreover, in contrast
to the traditional point forecast-based NN, PI-based NN
carries extra information such as the prediction accuracy. PI-
based NN can be developed with a prescribed probability
or predefined confidence level (CL) where CL relates to the
prediction accuracy. The basic idea of NN-based PIs is shown
in Fig. 1. Unlike tradition point-based NN, PI-based NN
generates an interval (upper bound and lower bound) with
a predefined CL. It is assumed that the target value should
lie between the upper bound and lower bound.

There are several existing methods in literature to con-
struct PIs. These include bootstrap [6], Bayesian [7], mean-
variance estimation [8], and delta methods [9]. The main
principle of these four methods to construct PIs is the same
as they use traditional error-based cost function to train
NNs. Moreover, the main strategy of all these methods is to
minimize the prediction error, instead of trying to improve
the PI quality (such as PI coverage probability and width)

Mohammad Anwar Hosen, Abbas Khosravi, Saeid Nahavandi and
Douglas Creighton are with the Centre of Intelligent Systems Research
(CISR), Deakin University, Australia (email: {ahosen, abbas.khosravi,
saeid.nahavandi, douglas.creighton}@deakin.edu.au)

This research was fully supported by the Centre for Intelligent Systems
Research (CISR) at Deakin University, Australia.

Fig. 1. Basic idea of PI-based NN

through changing parameters of NNs. Khosravi et al. [5]
reported that the quality of PIs constructed in this way is
questionable.

Recently another method, named lower upper bound es-
timation (LUBE) has been appeared in literature to construct
PIs [5]. This method constructs quality PIs through optimiz-
ing NN structure and utilizing a PI-based cost function for
a particular CL. The PI-based cost function includes two
quality indexes of PIs, PI coverage probability (PICP ) and
width of prediction intervals. This method produces high
quality PIs in terms of PICP and PI width rather than other
four methods that mentioned earlier.

It is argued that NN performance fluctuates from one
replicate of training to other one, even when retraining
with the same condition and the same data set. This is
because the NN performance highly depends on its initial
training parameters as well as perturbation of NN parameters.
Literature reported that best trained NN is not always best for
whole set or different data sets [10]. Recently, ensemble of
NN has appeared as an additive tool to improve the prediction
accuracy of NNs [11], [12]. An ensemble of NNs can greatly
improve the overall representation accuracy, generalization,
and robustness of NN predictions [13], [14]. The effects of a
poor prediction from one NN in combined networks is simply
minimized by effects of good predictions obtained from the
other NNs [15]. In this technique, the forecast from several
individual NNs are combined in a systematic way to get a
united forecast.

The most popular forecast combination techniques are
simple averaging and weighted averaging. In simple aver-
aging mechanism, mean or median values of every sample
instant are used. The main limitation of this method is that all
NN ensemble members contribution is the same though they
are not the same in terms of accuracy. In weighted averaging
method, the weights (w) are assigned to each ensemble
member based on their accuracy where their summation
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equal to one. In this case, the contribution of a better NN is
more than a poor one. The application of weighted averaging
mechanism in forecast combination method can be found in
[16], [17].

Though there are vast application of ensemble technique
for point forecast-based NNs, ensemble of PI-based NN is
still limited. In recent years, Khosravi et al. [12] proposed
a NN-based PI ensemble method using simple averaging of
PIs generated from individual PI-NN models. It is the only
existing method in literature to combine PI-based forecast.
Firstly, they developed a couple of NN models and filter
them based on their prediction performance. PIs are then con-
structed from those filtered NN models. Finally, constructed
PIs are combined using simple averaging of PIs for every
sample instance. They have shown that this simple averaging
method can improve the quality of PIs in terms of PI width
and PICP . It is also shown that the consistency of ensemble
NN performance is better than individual ones. As described
before, the main limitation of the simple averaging method is
that it treats all individual NN ensemble members equally by
ignoring their own prediction accuracy. The present work is
the extended version of this paper where weighted averaging
method is chosen to combine the NN forecasts for further
improvement of PI quality.

II. NN-BASED PIS

LUBE method is an effective, reliable and fast method
to generate quality PIs than other traditional methods [5].
In the present work, it is used to develop feedforward NN
to construct quality PIs. NN is trained with a pre-defined
confidence level. As there are no target values of PIs but the
point values to train the NN, the quality of PIs is measured
by the following indexes: (i) PICP , and (ii) width of PIs,
known as PI normalized average width (PINAW ). A high
PICP with a low PINAW means that the quality of PIs
is good.

In contrast to traditional error-based cost functions,
LUBE method uses a PI-based cost function to optimize the
NN structure. PI-based cost function, known as the coverage
width criterion (CWC) consists two quality indexes of PIs,
PICP and PINAW , and it is defined as:

CWC = PINAW
(

1 + γ(PICP )e−η(PICP−ϕ)
)

(1)

where

γ =

{

0, P ICP ≥ ϕ

1, P ICP ≤ ϕ

Here η is a hyperparameter that scales up the PIs coverage
error (PICP -CL) assigning more penalties undercoverage.
ϕ corresponds to the nominal CL (1−α). The two objective
parameters for CWC, PICP and PINAW are define as,

PICP =
1

n

n
∑

j=1

cj (2)

where

cj =

{

1, tj ∈ [Lj , Uj ]

0, tj /∈ [Lj , Uj ]

and

PINAW =
1

R

⎛

⎝

1

n

n
∑

j=1

(Uj − Lj)

⎞

⎠ (3)

Here tj , Lj and Uj are the target value, lower bound and
upper bound for jth sample, respectively. R is the range of
the underlying target values.

As seen in (1), CWC not only increases the PICP but
also decreases the width of PIs leading to generating quality
PIs. A simulated annealing optimization algorithm is used
to optimize the NN structure through minimizing the CWC
value. The detailed procedure for the LUBE method can be
found in [5].

III. COMBINATION OF NN FORECASTS

The key contribution of this paper is to improve the
LUBE PI quality through aggregating the PIs generated from
the individual LUBE NN models. Many literatures works
reported that the NN prediction accuracy can be improved
by combining the forecasts of several NNs, even using
a simple averaging method. In ensemble method, several
networks (1 . . . N ) are trained for the same task (based on
NN inputs and outputs). The structure of NN can be varied
from one replicate to another one. Finally, the predicted
output of each of these networks is combined to produce
a single forecast. The proposed methodology of PI-based
forecast combination follows three steps. This includes (i)
development of NN models, (ii) choosing the ensemble
members, and (iii) combining forecasts with an appropriate
mechanism. The brief description of these three steps are
given below.

A. Development of PI-based NN models

The very first step of the proposed ensemble method is
randomly split the available sample data into the training
(Dtrain), validation (Dvald) and test (Dtest) data sets. LUBE
method as described in Section II, is used to developed Ntotal

NN-based PI models with a predefined CL utilizing PI-based
cost function. Only the training data set is used in the NN
training process. The rest of the data sets are reserved for
examining the prediction performance of individual NNs and
ensemble of NNs. Random initialization of NN parameters
and different NN structures (by changing the number of neu-
rons in the hidden layer) are chosen in the training process
to diversify the NN models. SA optimization algorithm is
employed to optimize the NN parameters through minimizing
the cost function, CWC.

B. Selection of NN Ensemble Members

It is known that the prediction accuracy of all developed
NNs with the same data set and the same procedure is not
the same, as some of them produce very poor predictions
[12]. Therefore Nbest NNs are selected from the Ntotal NNs
developed in the previous step. This is done by examining
the prediction accuracy of NN models using Dvald data set.
Total Ntotal PIs (PINtotal) sets are constructed by using
Ntotal LUBE NN models. Ntotal PICP and PINAW
values are then determined by using PINtotal and calculate
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the Ntotal CWC (CWCNtotal). Ntotal NNs are then sorted
based on CWC values. CWC is used here as a performance
criterion of NN models. A NN with low CWC means that
the prediction accuracy of NN model is better than a NN
with large CWC. The NN with the minimum CWC is
placed as rank one in terms of prediction accuracy. The NN
models are sorted in ascending order of CWCNtotal,i, where
i = 1, 2, . . . Ntotal. Finally the first Nbest NN (NNNbest)
models are selected as ensemble members for the forecast
combination process. The PICP and CWC values for these
Nbest NNs are referred to as PICPNbest and CWCNbest
respectively.

C. Weighted Averaging of PI-based Forecasts

The PIs are generated for forecast combination from the
Nbest ensemble members. Total Nbest sets of PIs (PItest,em,
where em = 1, 2, . . . Nbest) are constructed using Dtest data
set. This Dtest data set is not used in the previous two
steps. The CWCtest,em are then calculated using (1-3) to
check the prediction performance of individual NN ensemble
members. The constructed PItest,em are then combined by
using a weighted averaging mechanism. The general equation
of weighted averaging combined PIs (PIcomb) can be defined
as:

PIcomb =

Nbest
∑

em=1

wemPItest,em (4)

where em(em = 1, 2, . . . Nbest) is the NN ensemble member
with a ranking position and wem is its corresponding weight.
wem is referred here to as ensemble parameters for easy
understanding.

Traditionally, error-based cost functions, such as SSE,
MSE and MAPE are used to optimize the weight in point-
forecasting problems. However, there is no available lit-
erature works to optimize wem for PI-based forecasting
problems. As the key contribution of the present work, we
use a PI-based cost function to obtain optimal wem. The cost
function CWC is utilized in the PI combination process. As
mentioned before CWC covers both quality indexes of PIs,
PICP and width of PIs. It is expected that minimization of
CWC through adjusting the ensemble parameters provides
quality PIs (high coverage with low width).

CWC is nonlinear, nondifferentiable and complex as
seen in (1). SA optimization algorithm is used to solve this
cost function as this technique is suitable for this type of
complex cost function [5]. Two constrains are defined in
optimization process that allow positive contribution of all
ensemble members. These include:

0 ≤ wem ≤ 1 and
Nbest
∑

r=1
wem = 1

The initial ensemble parameters (winitial,em) for opti-
mization process are determined by using CWC values as
CWC indicates the accuracy of NN model. CWCNbest
values (using Dvald data set) obtained in the ensemble
member selecting stage are used to calculate winitial,em as

below:

winitial,em =

1
CWCNbest,em

Nbest
∑

em=1

1
CWCNbest,em

(5)

In optimization, winitial,em is firstly set as the opti-
mal ensemble parameters (wopt,em). PIcomb is calculated
using (4). CWCopt is then calculated with the help of
(1-3). For every iteration, a new set of ensemble param-
eters (wnew,em) is generated through random perturbation
of one of the current ensemble parameters. CWCnew is
then determined. If CWCnew ≤ CWCopt, then wopt,em
and CWCopt are replaced with wnew,em and CWCnew
respectively; otherwise wopt,em remains unchanged. After
completing the optimization process, the latest ensemble pa-
rameters (wopt,em) are used to generate PIcomb and, calculate
and record PICPcomb, PINAWcomb and CWCcomb to
check the quality of PIs.

IV. SIMULATION RESULTS

A. Case Studies

The performance of the proposed ensemble method is
examined for two different case studies. A nonlinear model
(time delay Mackey-Glass differential equation) is used as
the first case study [18]. The Mackey-Glass equation can be
defined as:

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− γx(t) (6)

where τ is positive constant.

The parameter τ is set to 17. x(0) is also set to 1.2
[19]. Total 1000 data samples are generated. Four lagged
values are used as inputs to train the PI-NN model to
predict x(t). The inputs-output vector for NN training data
is [x(t− 4), x(t− 3), x(t− 2), x(t− 1);x(t)]. The second
case study is a nonlinear plant, where its output nonlinearly
depends on both its past output values and the input values
[20]. The plant difference model is given by,

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) (7)

where

u(t) = sin

(

2Πt

100

)

(8)

y(1) is set to 0.05. 500 samples are generated. Both y(t)
and u(t) are used to predict y(t+1). The input-output vector
for NN training data is [u(t), y(t), y(t+ 1)].

B. Data and parameters for proposed method

The NN models are developed using the LUBE method
(with a 90% CL) for proposed forecasts aggregating method.
The first step of the LUBE method is to prepare the training
data. The collected data (case 1 and 2) for NN training are
prepared by random sampling from the original data set. The
prepared data are then split into training (50%), validation
(30%) and testing (20%) data sets [21]. Only training data set
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TABLE I. PARAMETERS USED IN LUBE METHOD TO TRAIN PI-NN
MODEL

Parameters values

Training data set (Xtrain) 50% of total data
η 50
ϕ 0.90
TSA0 5
Number of hidden layer 1
Number of neurons 6, 8, 10, 12, 14
Geometric cooling factor 0.9

is used to train LUBE NN models. Table I lists the parameters
used in LUBE method. Five different NN structures are
chosen in the training process to diversify the NN models.
This is done by changing the number of neurons (Nu) in the
hidden layer. Nu is set to 6, 8, 10, 12, and 14. This leads to
Ntotal

5 NNs with a similar structure in each class.

SA optimization algorithm is employed to optimize the
NN parameters by minimizing the cost function, CWC. The
parameters for SA are chosen from the previous work of
Khosravi et al. [5] as seen in Table I. A geometric cooling
schedule with a cooling factor 0.9 is used for SA.

Ntotal and Nbest are set to 150 and 10 respectively.
It means that ten best NNs are selected as NN ensemble
members out of 150 NNs. After selecting ensemble members,
10 sets of PIs are constructed by using Dtest data set for all
those ensemble members. These sets of PIs are then used
for constructing combined PIs using the weighted averaging
method as proposed in Section III.

C. Results and discussion

This section examine the quality of PIcomb, and compare
the results with the PIs from individual ensemble members.
The results of proposed weighted averaging forecast com-
bination method is also compared with simple averaging
forecast combination method proposed in [12]. Comparison
is made in terms of the cost function, CWC, and coverage
probability (PICP ).

Firstly, the performance of the proposed ensemble
method is compared with individual best NNs and simple
averaging method in terms of the CWC. CWC indirectly
declares the quality of PIs as it covers both quality indexes
of PIs (PICP and width of PIs). The smaller the CWC
value, the better the PI quality. Fig. 2 shows the CWC
values for the best ten individual NN ensemble members
and two combined forecasts (simple averaging and weighted
averaging) methods. For ease of reference, CWC values
for simple averaging and weighted averaging with SA are
referred to as CWCcomb,simple and CWCcomb,SA respec-
tively. As can be seen in Fig. 2 (a and b), CWC values
for the forecast aggregation methods are lower than CWC
values for the individual NNs for both case studies. The order
of CWC values is CWCcomb,SA < CWCcomb,simple <
CWCNbest. This means that proposed weighted averaging
forecast combination method produces high quality PIs than
individual NNs and simple averaging ensemble method. The
CWCcomb,SA values for the first and second case studies
are 14.68 and 12.78 respectively that are significantly lower
than their corresponding mean values of CWCNbest,i (20.97
and 303.80 for the first and the second case studies). The

main interesting phenomena is that CWCcomb,SA is lower
than any CWCNbest,i (i = 1, 2,. . .Nbest = 10) for both case
studies. This indicates that the proposed method significantly
improves the quality of PIs compared to individual NNs as
well as simple averaging method.

Now, we examine the quality of combined PIs in terms
of their coverage probability, PICP . In training process,
the NN models are developed using LUBE method with a
CL 90%. This means that PIs should cover at least 90%
of target values (PICP ≥ 90%). Fig. 3 demonstrated the
PICP values for PINbest,i, PIcomb,simple and PIcomb,SA.
It can be seen that PICPcomb,SA value is 90% for both
case studies which is satisfied with the predefined CL where
the PICP values for individual NNs fluctuate from 89.5-
93% and 81-89% for the first and second cases, respectively.
However, simple averaging ensemble method covers a higher
percentage of the target value (PICPcomb,simple = 94 and
92% in the first and second cases, respectively) than indi-
vidual NNs and proposed method. Though PICPcomb,SA
is less than PICPcomb,simple, weighted averaging forecast
aggregation method constructs high quality PIs in terms of
CWC as CWCcomb,SA is lowers (see Fig. 2). A high PICP
with a large CWC value indicates that PIs are too wide and
accordingly less informative. Note that the predefined CL is
90%. It is not practically desirable to have too wide intervals
as they do not carry much information about the target values
and their fluctuations.

It is noticeable that all PICPNbest,i values are lower than
nominal CL, 90% for the second case study. This is highly
likely attributable to dissimilar patterns in training, validation
and testing data sets, and small data size. However, forecast
combination methods eliminate this unfortunate circumstance
as PIs for these methods cover at least 90% of target values.
This means that forecast combination method produces high
quality PIs, even when it is a simple averaging method.

The improvement of the PI quality of individual NNs
through the proposed aggregation method is presented in Fig.
4. The improvements (Im,em) of individual NNs (in terms
of the CWC) are calculated by the following equation

Im,em =
CWCNbest,em

− CWCcomb,SA

CWCNbest,em

(9)

Fig. 4 depicts that the proposed ensemble method im-
proves the PI quality on an average of 18% and 76% for
the first and second case studies, respectively. Significant
improvement can be observed for the second case as PIs
is improved at least 70% in 80% (8 out of 10) of ensem-
ble members. Fig. 4 also demonstrates that the proposed
weighted averaging method improves the PI quality by 3%
and 4% for the first and second case studies compared to
simple averaging method proposed in [12].

In summary, weighted averaging aggregation method
through minimizing PI-based cost function produces quality
PIs better than individual NNs. This method also improves
the PI quality at least 3% compared to the simple averaging
ensemble method. Therefore, it is reasonable to conclude
that proposed method constructs higher quality PIs than
individual LUBE NN models and any other existing PI-based
forecast ensemble methods.
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V. CONCLUSIONS

In this paper, a new NN ensemble method is proposed to
improve the quality of PIs that generated using the LUBE
method. LUBE method is a reliable, fast and effective method
to develop NN model for constructing quality PIs. Weighted
averaging forecast aggregation mechanism is employed in the
NN ensemble method. In contrast to traditional error-based
cost function, a PI-based cost function, CWC is introduced
to optimize the ensemble parameters (weights). A global
optimization algorithm, named SA, is used to minimize
the PI-based cost function. Finally, the proposed ensemble
method is examined for two case studies.

Simulation results demonstrate that proposed method
improves the LUBE PI quality on an average of 25% and
95% for the first and second case studies, respectively.
Improvement of PI quality is measured in terms of CWC as
this covers both quality indexes of PIs (width and coverage
probability). The proposed aggregated PIs also improves the
simple averaging PI combination method by at least 3%
for both case studies. Further improvement of the proposed
method can be achieved by determining the optimal structure
of NN models.
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Fig. 2. CWC for best ensemble members and combined PIs, (a) for the first case study, and (b) for the second case study
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Fig. 3. PICP for best ensemble members and combined PIs, (a) for the first case study, and (b) for the second case study

Fig. 4. Improvement of individual NN ensemble members and simple averaging aggregation method for both case studies
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