
Data-Driven Iterative Adaptive Dynamic
Programming Algorithm for Approximate Optimal

Control of Unknown Nonlinear Systems
Hongliang Li, Derong Liu, Fellow, IEEE, Ding Wang, and Chao Li

Abstract—In this paper, we develop a data-driven iterative
adaptive dynamic programming algorithm to learn offline the
approximate optimal control of unknown discrete-time nonlin-
ear systems. We do not use a model network to identify the
unknown system, but utilize the available offline data to learn
the approximate optimal control directly. First, the data-driven
iterative adaptive dynamic programming algorithm is presented
with a convergence analysis. Then, the error bounds for this
algorithm are provided considering the approximation errors of
function approximation structures. To implement the developed
algorithm, two neural networks are used to approximate the
state-action value function and the control policy. Finally, two
simulation examples are given to demonstrate the effectiveness
of the developed algorithm.

I. INTRODUCTION

DYNAMIC programming [1] is a very effective method
in solving the optimal control problem of nonlinear

systems which relies on solving the Hamilton-Jacobi-Bellman
(HJB) equation. However, it is computationally untenable for
dynamic programming to obtain the optimal solution due to the
well-known “curse of dimensionality” [2]. Adaptive dynamic
programming (ADP) [3]–[5], also known as approximate dy-
namic programming [6]–[8] or neuro-dynamic programming
[9], has received significantly increasing attention, which has
been applied in many practical areas, such as call admission
control [10], engine control [11], and energy system control
[12], etc. Existing ADP approaches can be classified into sev-
eral main schemes [13], [14]: heuristic dynamic programming
(HDP), dual heuristic dynamic programming (DHP), global-
ized dual heuristic dynamic programming (GDHP), and their
action-dependent versions, ADHDP, ADDHP, and ADGDHP.
Fairbank et al. [15] presented a simple and fast calculation
of the second-order gradients for GDHP. Dierks et al. [16]
proposed a time-based ADP algorithm to solve the HJB
equation forward-in-time without using value iteration and
policy iteration.

Al-Tamimi et al. [17] proved the convergence of the value-
iteration-based HDP algorithm for solving the discrete-time
HJB equation. Dierks et al. [18] relaxed the need of partial
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knowledge of the system dynamics by online system identifi-
cation. Zhang et al. [19] derived an iterative DHP algorithm
to solve the approximate optimal control problem of discrete-
time affine nonlinear systems with control constraints. Liu
et al. [20]–[22] presented an iterative GDHP algorithm to
solve the optimal control of unknown nonaffine nonlinear
discrete-time systems with discount factor in the cost function.
Wang et al. [23] solved the finite-horizon optimal control
problem for discrete-time nonlinear systems with unspecified
terminal time. Heydari and Balakrishnan [24] derived a value-
iteration-based ADP algorithm to solve the fixed-final-time
finite-horizon optimal control problem. In [25] and [26], a
greedy HDP algorithm was presented to solve the optimal
tracking control problem for a class of discrete-time nonlinear
systems. Zhang et al. [27] proposed an iterative HDP algorithm
to solve the optimal tracking control problem for nonlinear
discrete-time systems with time delays. It should be mentioned
that all the algorithms above assume that the update equations
of both value function and control policy can be exactly solved
at each iteration.

Leake and Liu [28] derived an inequality version of the
HJB equation to derive bounds on the optimal cost function.
Rantzer [29] introduced a relaxed value iteration scheme to
simplify computation based on upper and lower bounds of
the optimal cost function. In [30], the relaxed value iteration
scheme was used to solve the optimal switching between linear
systems and the optimal control of a linear system with piece-
wise linear cost. Liu and Wei [31] presented a convergence
analysis for the approximate value iteration algorithm by using
a novel expression of approximation errors.

Existing iterative ADP algorithms [17]–[27] either require
the exact knowledge of the system dynamics or need a model
network to identify the unknown dynamical system. In this
paper, we develop a data-driven iterative ADP algorithm to
learn offline the approximate optimal control of unknown
discrete-time nonlinear systems. Our proposed algorithm in
this paper is closely related to fitted Q iteration [32], [33].
One major difference is that we consider the undiscounted
optimal control problems of nonlinear systems with continuous
state space and action space. Another is that we analyze the
convergence and provide the error bounds considering the
approximation errors by a novel method. We do not use a
model network to identify the unknown system, but utilize the
available offline data to learn the approximate optimal control
directly. The advantage is that it can avoid the modeling errors
of the model network in the HDP and DHP. We use a model-
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free ADHDP structure with two neural networks to implement
the developed algorithm. Two simulation examples are given
to demonstrate the effectiveness of the developed algorithm.

The remainder of this paper is organized as follows. Section
II provides the problem statement of undiscounted infinite-
horizon optimal control problems of discrete-time nonlinear
systems. Section III presents the data-driven iterative ADP
algorithm, establishes the error bounds, and gives the neural
network implementation. Section IV presents two simulation
examples to demonstrate the effectiveness of the developed
algorithm and is followed by conclusions in Section V.

II. PROBLEM STATEMENT

We consider the following deterministic discrete-time non-
linear dynamical system given by

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), 𝑘 = 0, 1, 2, . . . (1)

where 𝑥𝑘 ∈ ℝ
𝑛 is the system state, and 𝑢𝑘 ∈ ℝ

𝑚 is the control
signal input. We assume that the system (1) is controllable in
the sense that there exists a continuous control policy on a
compact set Ω ⊆ ℝ

𝑛 that asymptotically stabilizes the system,
and assume that 𝑥𝑘 = 0 is an equilibrium state of the system
(1). The system function 𝑓(𝑥𝑘, 𝑢𝑘) is Lipschitz continuous on
Ω containing the origin, and 𝑓(0, 0) = 0.

Our goal is to find a state feedback control policy 𝑢(𝑥𝑘)
which can minimize the following undiscounted infinite-
horizon cost function for any initial state 𝑥0

𝐽(𝑥0, 𝑢) =

∞∑

𝑘=0

𝑈(𝑥𝑘, 𝑢𝑘) (2)

where 𝑈 is a positive definite utility function, 𝑈(0, 0) = 0 and
𝑈(𝑥𝑘, 𝑢𝑘) ≥ 0, ∀𝑥𝑘, 𝑢𝑘. For any admissible control policy
𝜇(𝑥), the map from any state 𝑥 to the value of (2) is called a
state value function 𝑉 𝜇(𝑥). Then, we define the optimal state
value function as

𝑉 ∗(𝑥) = min
𝜇

{
𝑉 𝜇(𝑥)

}
.

According to Bellman’s principle of optimality [2], the optimal
state value function 𝑉 ∗(𝑥) satisfies the discrete-time HJB
equation

𝑉 ∗(𝑥) = min
𝑢

{
𝑈(𝑥, 𝑢) + 𝑉 ∗

(
𝑓(𝑥, 𝑢)

)}
.

If it can be solved for 𝑉 ∗, the optimal control policy 𝜇∗(𝑥)
can be obtained by

𝜇∗(𝑥) = argmin
𝑢

{
𝑈(𝑥, 𝑢) + 𝑉 ∗

(
𝑓(𝑥, 𝑢)

)}
.

Similar to the state value function, the state-action value
function (also known Q-function) is defined as

𝑄𝜇(𝑥, 𝑢) = 𝑈(𝑥, 𝑢) + 𝑉 𝜇
(
𝑓(𝑥, 𝑢)

)
. (3)

The connection between the state value function and the state-
action value function is

𝑉 𝜇(𝑥) = 𝑄𝜇
(
𝑥, 𝜇(𝑥)

)
.

The optimal state-action value function is defined as

𝑄∗(𝑥, 𝑢) = min
𝜇
𝑄𝜇(𝑥, 𝑢).

The optimal control policy 𝜇∗(𝑥) can be obtained by

𝜇∗(𝑥) = argmin
𝑢
𝑄∗(𝑥, 𝑢). (4)

The optimal state-action value function satisfies the following
Bellman optimality equation

𝑄∗(𝑥, 𝑢) = 𝑈(𝑥, 𝑢) + min
𝑢′

𝑄∗
(
𝑓(𝑥, 𝑢), 𝑢′

)
. (5)

The connection between the optimal state value function and
the optimal state-action value function is

𝑉 ∗(𝑥) = min
𝑢
𝑄∗(𝑥, 𝑢).

Since the state-action value function depends on the state and
action, we can develop a data-driven iterative ADP algorithm
by using the state-action value function.

The contraction assumption is often required for the dis-
counted optimal control problem. However, in the undis-
counted case, we utilize the following assumption instead of
the contraction assumption.

Assumption 1: There exists finite positive constant 𝜆 that
makes the condition 0 ≤ min𝑢′ 𝑄

∗(𝑥′, 𝑢′
) ≤ 𝜆𝑈(𝑥, 𝑢) holds

uniformly on Ω, where 𝑥′ = 𝑓(𝑥, 𝑢).
For the nonlinear systems with continuous state space and

action space, the optimal control problems cannot be solved
exactly. Most ADP methods use function approximation struc-
tures to approximate the value function and the control pol-
icy. However, iterating on these approximate structures will
inevitably give rise to approximation errors. Therefore, it
is necessary to establish the error bounds considering the
function approximation errors.

III. DATA-DRIVEN ITERATIVE ADP

In this section, we first present a data-driven iterative ADP
algorithm with a convergence analysis, then establish the
error bounds for this algorithm considering the approximation
errors, and finally give the neural network implementation.

A. Derivation of the Data-Driven Iterative ADP

To develop a data-driven iterative ADP algorithm, we use
the state-action value function (3), which is different from
the state value function used in the previous iterative ADP
algorithms [18]–[23]. We assume that the system dynamics
(1) is unknown, and only an offline data set {𝑥𝑙, 𝑢𝑙, 𝑥′𝑙}𝑁 is
available, where 𝑥′𝑙 is the next state of 𝑥𝑙 and 𝑢𝑙, and 𝑁 is
the number of samples in the data set. These samples may be
recorded from a single trajectory or from different trajectories,
and they must reflect the system sufficiently.

For the data-driven iterative ADP algorithm, it starts with
any initial positive definite state-action value function 𝑄0 or
𝑄0(⋅, ⋅) = 0. For 𝑖 = 1, 2, . . . , the algorithm iterates between
the control policy update

𝜇𝑖−1(𝑥′𝑙) = argmin
𝑢
𝑄𝑖−1(𝑥′𝑙, 𝑢), (6)

and the value function update

𝑄𝑖(𝑥𝑙, 𝑢𝑙) = 𝑈
(
𝑥𝑙, 𝑢𝑙

)
+𝑄𝑖−1

(
𝑥′𝑙, 𝜇𝑖−1(𝑥

′
𝑙)
)
. (7)
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Note that 𝑖 is the iteration index and 𝑙 is the sample index in
the data set. Combing (6) and (7), we can obtain

𝑄𝑖(𝑥𝑙, 𝑢𝑙) = 𝑈(𝑥𝑙, 𝑢𝑙) + min
𝑢
𝑄𝑖−1(𝑥′𝑙, 𝑢). (8)

The data-driven iterative ADP is a value iteration algorithm
which can solve the optimal control problems without requir-
ing an initial stabilizing control policy. It iterates between the
control policy update (6) and the state-action value function
update (7) until the iterative state-action value function con-
verges to the optimal one. We can show that the state-action
value function sequence {𝑄𝑖} asymptotically converges to the
optimal one 𝑄∗ by the following theorem.

Theorem 1: Let Assumption 1 hold. Suppose that 0 ≤
𝛼𝑄∗ ≤ 𝑄0 ≤ 𝛽𝑄∗, 0 ≤ 𝛼 ≤ 1 and 1 ≤ 𝛽 < ∞. The control
policy 𝜇𝑖 and the state-action value function 𝑄𝑖 are iteratively
updated by (6) and (7). Then, the state-action value function
sequence {𝑄𝑖} approaches 𝑄∗ according to the inequalities
[
1− 1− 𝛼

(1 + 𝜆−1)𝑖

]
𝑄∗≤𝑄𝑖≤

[
1 +

𝛽 − 1

(1 + 𝜆−1)𝑖

]
𝑄∗, ∀𝑖 ≥ 1.

(9)

Moreover, 𝑄𝑖 and 𝜇𝑖 converge to 𝑄∗ and 𝜇∗ uniformly on Ω
as 𝑖→∞.

Proof: When 𝑖 = 1, according to Assumption 1, we can
obtain

𝑄1(𝑥𝑙, 𝑢𝑙) = 𝑈(𝑥𝑙, 𝑢𝑙) + min
𝑢
𝑄0(𝑥

′
𝑙, 𝑢)

≥ 𝑈(𝑥𝑙, 𝑢𝑙) + 𝛼min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

≥
(
1− 𝜆1− 𝛼

𝜆+ 1

)
𝑈(𝑥𝑙, 𝑢𝑙)

+

(
𝛼+

1− 𝛼
𝜆+ 1

)
min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

=

(
1− 1− 𝛼

1 + 𝜆−1

)
𝑄∗(𝑥𝑙, 𝑢𝑙).

Thus, the lower bound of 𝑄𝑖 holds for 𝑖 = 1. When 𝑖 = 2,
according to Assumption 1, we can get

𝑄2(𝑥𝑙, 𝑢𝑙) = 𝑈(𝑥𝑙, 𝑢𝑙) + min
𝑢
𝑄1(𝑥

′
𝑙, 𝑢)

≥ 𝑈(𝑥𝑙, 𝑢𝑙) +

(
1− 1− 𝛼

1 + 𝜆−1

)
min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

≥
[
1− 1− 𝛼

(1 + 𝜆−1)2

]
𝑈(𝑥𝑙, 𝑢𝑙)

+

[
1− 1− 𝛼

1 + 𝜆−1
+
𝜆(1− 𝛼)
(1 + 𝜆)2

]
min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

=

[
1− 1− 𝛼

(1 + 𝜆−1)2

]
𝑄∗(𝑥𝑙, 𝑢𝑙).

Thus, the lower bound of 𝑄𝑖 holds for 𝑖 = 2. Then, we can
prove the left hand side of the inequality (9) by repeating the
argument 𝑖 times. The right hand side can be shown by the
same way.

According to the inequalities (9), for 0 < 𝜆 <∞, the state-
action value function 𝑄𝑖 converges to 𝑄∗ uniformly as 𝑖→∞.
The control policy 𝜇𝑖 also converges to 𝜇∗ according to (4).

B. Error Bounds for the Data-Driven Iterative ADP

In general, the control policy update (6) and state-action
value function update (7) cannot be solved accurately. Func-
tion approximation structures like neural networks are usually
used to approximate the state-action value function 𝑄𝑖 and
the control policy 𝜇𝑖. Here, we use 𝑄̂𝑖 and 𝜇̂𝑖 to stand for the
approximate expressions of 𝑄𝑖 and 𝜇𝑖, respectively. According
to (8), the approximation errors in the control policy update
(6) and state-action value function update (7) are expressed as

𝜖
[
𝑈(𝑥𝑙, 𝑢𝑙) + min

𝑢
𝑄̂𝑖−1(𝑥′𝑙, 𝑢)

] ≥ 𝑄̂𝑖(𝑥𝑙, 𝑢𝑙)
≥ 𝜖[𝑈(𝑥𝑙, 𝑢𝑙) + min

𝑢
𝑄̂𝑖−1(𝑥′𝑙, 𝑢)

]

(10)

where 𝜖 ≥ 1 and 𝜖 ≤ 1 are finite positive constants.

Based on Assumption 1, we can establish the error bounds
for the data-driven iterative ADP algorithm by the following
theorem.

Theorem 2: Let Assumption 1 hold. Suppose that 0 ≤
𝛼𝑄∗ ≤ 𝑄0 ≤ 𝛽𝑄∗, 0 ≤ 𝛼 ≤ 1 and 1 ≤ 𝛽 < ∞.
The approximate state-action value function 𝑄̂𝑖 satisfy the
iterative error condition (10). Then, the approximate state-
action value function sequence

{
𝑄̂𝑖
}

approaches 𝑄∗ according
to the following inequalities

𝜖

[
1−

𝑖∑

𝑗=1

𝜖𝑗−1(1− 𝜖)
(1 + 𝜆−1)𝑗

− 𝜖𝑖(1− 𝛼)
(1 + 𝜆−1)𝑖+1

]
𝑄∗≤𝑄̂𝑖+1 (11)

≤ 𝜖
[
1 +

𝑖∑

𝑗=1

𝜖𝑗−1(𝜖− 1)

(1 + 𝜆−1)𝑗
+

𝜖𝑖(𝛽 − 1)

(1 + 𝜆−1)𝑖+1

]
𝑄∗, ∀𝑖 ≥ 0.

Moreover, the approximate state-action value function se-
quence

{
𝑄̂𝑖
}

converges to a finite neighborhood of 𝑄∗ uni-
formly on Ω as 𝑖→∞, i.e.,

𝜖

1 + 𝜆− 𝜖𝜆𝑄
∗ ≤ lim

𝑖→∞
𝑄̂𝑖 ≤ 𝜖

1 + 𝜆− 𝜖𝜆𝑄
∗, (12)

under the condition 𝜖 < 𝜆−1 + 1.

Proof: First, we prove the lower bound of the approximate
state-action value function 𝑄̂𝑖+1 by mathematical induction.
When 𝑖 = 0, according to Assumption 1, we can obtain

𝑄̂1(𝑥𝑙, 𝑢𝑙) ≥ 𝜖
[
𝑈(𝑥𝑙, 𝑢𝑙) + min

𝑢
𝑄̂0(𝑥

′
𝑙, 𝑢)

]

≥ 𝜖[𝑈(𝑥𝑙, 𝑢𝑙) + 𝛼min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

]

≥ 𝜖
(
1− 1− 𝛼

1 + 𝜆−1

)
𝑄∗(𝑥𝑙, 𝑢𝑙).

Thus, the lower bound of 𝑄̂𝑖+1 holds for 𝑖 = 0. When 𝑖 = 1,
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according to Assumption 1, we can get

𝑄̂2(𝑥𝑙, 𝑢𝑙)

≥ 𝜖[𝑈(𝑥𝑙, 𝑢𝑙) + min
𝑢
𝑄̂1(𝑥

′
𝑙, 𝑢)

]

≥ 𝜖
[
𝑈(𝑥𝑙, 𝑢𝑙) + 𝜖

(
1− 1− 𝛼

1 + 𝜆−1

)
min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

]

≥ 𝜖
{[

1− 1− 𝜖
1 + 𝜆−1

− 𝜖(1− 𝛼)
(1 + 𝜆−1)2

]
𝑈(𝑥𝑙, 𝑢𝑙)

+

[
𝜖

(
1− 1− 𝛼

1 + 𝜆−1

)
+

1− 𝜖
1 + 𝜆

+
𝜆𝜖(1− 𝛼)
(1 + 𝜆)2

]
min
𝑢
𝑄∗(𝑥′𝑙, 𝑢)

}

≥ 𝜖
[
1− 1− 𝜖

1 + 𝜆−1
− 𝜖(1− 𝛼)

(1 + 𝜆−1)2

]
𝑄∗(𝑥𝑙, 𝑢𝑙).

Hence, the lower bound of 𝑄̂𝑖+1 holds for 𝑖 = 1. The
lower bound of 𝑄̂𝑖+1 in (11) can be proved by repeating the
argument 𝑖+ 1 times.

Also, the upper bound of 𝑄̂𝑖+1 can be proved similarly.
Therefore, the lower and upper bounds of 𝑄̂𝑖+1 in (11) have
been proved.

At last, we prove that the approximate state-action value
function sequence

{
𝑄̂𝑖
}

converges to a finite neighborhood of
𝑄∗ uniformly on Ω as 𝑖→∞. Since the sequence

{
𝜖𝑗−1(1−

𝜖)/(1 + 𝜆−1)𝑗
}

is a geometric series, we have

𝑖∑

𝑗=1

𝜖𝑗−1(1− 𝜖)
(1 + 𝜆−1)𝑗

=

(1−𝜖)
1+𝜆−1

(
1− ( 𝜖

1+𝜆−1

)𝑖)

1− 𝜖
1+𝜆−1

.

Considering 𝜖/(1 + 𝜆−1) < 1, we have

lim
𝑖→∞

𝑄̂𝑖 ≥ 𝜖

1 + 𝜆− 𝜖𝜆𝑄
∗.

For the other part, if 𝜖/(1 + 𝜆−1) < 1, i.e., 𝜖 < 𝜆−1 + 1, we
can show that

lim
𝑖→∞

𝑄̂𝑖 ≤ 𝜖

1 + 𝜆− 𝜖𝜆𝑄
∗.

Thus, we complete the proof.
Remark 1: Inequalities (12) gives the suboptimality bound

of the approximate optimal state-action value function. The
condition 𝜖 < 1/𝜆+1 should satisfy to make the upper bound
in (12) be finite and positive. The lower bound in (12) is always
positive for 𝜖 ≤ 1. A larger 𝜆 will lead to a slower convergence
rate and a larger error bound. When 𝜖 = 𝜖 = 1, the inequalities
(11) are the same as the inequalities (9), and the state-action
value function sequence

{
𝑄̂𝑖
}

converges to 𝑄∗ uniformly on
Ω as 𝑖→∞.

C. Neural Network Implementation for Approximate Optimal
Control

We have shown that the approximate state-action value
iteration can converge to a finite neighborhood of the optimal
one. This makes it feasible to use neural networks as function
approximation structures. We present a detailed implementa-
tion of this algorithm using neural networks in this subsection.

Our proposed data-driven iterative ADP algorithm is most
relevant to the model-free ADHDP structure. The whole

structure diagram is shown in Fig. 1, where the critic and
action neural networks are used to approximate the state-action
value function and the control policy, respectively.

Action

Network

Critic

Network

Critic

Network

+

-

l
x

l
u

ˆ

i
Q

1

ˆ

i
Q − ( , )

l l
U x u

l
x′

1
ˆ

i
μ −

l
x′

Signal Line

Back-propagating  Path

Weight Transmission

Fig. 1. Structure diagram of data-driven iterative ADP

A neural network can be used to approximate some smooth
function on a prescribed compact set. The state-action value
function 𝑄̂𝑖(𝑥𝑙, 𝑢𝑙) is expressed by the critic neural network

𝑄̂𝑖(𝑥𝑙, 𝑢𝑙) =
(
𝑊𝑐(𝑖)

)T
𝜙
((
𝑌𝑐(𝑖)

)T
[𝑥𝑙;𝑢𝑙]

)
. (13)

where the activation functions are selected as tansig(⋅). The
target function of the critic neural network is given by

𝑄̂∗𝑖 (𝑥𝑙, 𝑢𝑙) = 𝑈(𝑥𝑙, 𝑢𝑙) + 𝑄̂𝑖−1
(
𝑥′𝑙, 𝜇̂𝑖−1(𝑥

′
𝑙)
)
.

Then, the error function for training the critic neural network
is defined by

𝑒𝑐(𝑖) = 𝑄̂𝑖(𝑥𝑙, 𝑢𝑙)− 𝑄̂∗𝑖 (𝑥𝑙, 𝑢𝑙),
and the performance function to be minimized is defined by

𝐸𝑐(𝑖) =
1

2
(𝑒𝑐(𝑖))

T𝑒𝑐(𝑖). (14)

The control policy 𝜇̂𝑖−1(𝑥′𝑙) is expressed by the action
neural network

𝜇̂𝑖−1(𝑥′𝑙) =𝑊T
𝑎(𝑖−1)𝜙

(
𝑌 T
𝑎(𝑖−1)𝑥

′
𝑙

)
. (15)

The target function of the action neural network is defined by

𝜇̂∗𝑖−1(𝑥
′
𝑙) = argmin

𝑢
𝑄̂𝑖−1(𝑥′𝑙, 𝑢).

Then, the error function for training the action neural network
is given by

𝑒𝑎(𝑖−1) = 𝜇̂𝑖−1(𝑥′𝑙)− 𝜇̂∗𝑖−1(𝑥′𝑙).
The weights of the action neural network are updated to
minimize the following performance function

𝐸𝑎(𝑖−1) =
1

2
(𝑒𝑎(𝑖−1))T𝑒𝑎(𝑖−1). (16)

We use the gradient descent method to tune the weights of
critic and neural networks on a data set sampled from different
trajectories.

A detailed process of the data-driven iterative ADP algo-
rithm is given in Algorithm 1. It should be mentioned that
Algorithm 1 runs in an offline manner.
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Algorithm 1 Data-Driven Iterative ADP
Step 1. Collect samples to construct a data set {𝑥𝑙, 𝑢𝑙, 𝑥′𝑙}𝑁 .

Initialize critic and action neural networks. Set the maxi-
mum number of iteration steps 𝑖max, and set 𝑖 = 0.

Step 2. Set 𝑖← 𝑖+ 1.
Step 3. Update the control policy 𝜇̂𝑖−1(𝑥′𝑙) by minimizing

(16) on the data set {𝑥𝑙, 𝑢𝑙, 𝑥′𝑙}𝑁 .
Step 4. Update the state-action value function 𝑄̂𝑖(𝑥𝑙, 𝑢𝑙) by

minimizing (14) on the data set {𝑥𝑙, 𝑢𝑙, 𝑥′𝑙}𝑁 .
Step 5. Repeat Steps 2–4 until the convergence conditions are

met.
Step 6. Obtain the approximate optimal control policy 𝜇̂𝑖−1.

IV. SIMULATION STUDY

In this section, two simulation examples are given to
demonstrate the effectiveness of the data-driven iterative ADP
algorithm.

Example 1: (Discrete-Time Linear System) Consider the
following discrete-time linear system 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘,
where

𝐴 =

[
0 0.4
0.3 1

]
, 𝐵 =

[
0
1

]
, (17)

𝑥𝑘 = [𝑥1𝑘 𝑥2𝑘]
T ∈ ℝ

2, and 𝑢𝑘 ∈ ℝ.
Define the cost function as

𝐽(𝑥0, 𝑢) =

∞∑

𝑘=0

(
𝑥21𝑘 + 𝑥22𝑘 + 𝑢2𝑘

)
.

The structures of the critic and action neural networks are
chosen as 3–6–1 and 2–6–1, respectively. The initial weights of
the action neural network are chosen randomly in [−0.1, 0.1],
and the initial weights of the critic neural network are all
chosen as zero. The maximum number of iteration steps is
selected as 𝑖max = 10. The data set is constructed by collecting
1000 samples from different trajectories of the system (17).

After running the algorithm for 10 iteration steps, we apply
the obtained approximate optimal control policy 𝜇̂9 to the
system (17) for the initial state 𝑥0 = [1,−1]T. From the state
trajectories in Fig. 2 and the control input in Fig. 3, we can
find that the obtained approximate optimal control policy is
quite near to the optimal one.

Example 2: (Discrete-Time Nonlinear System) Consider
the following discrete-time nonlinear system 𝑥𝑘+1 = ℎ(𝑥𝑘)+
𝑔(𝑥𝑘)𝑢𝑘, where

ℎ(𝑥𝑘)=

[
0.9𝑥1𝑘+0.1𝑥2𝑘

−0.05(𝑥1𝑘+𝑥2𝑘
(
1−( cos(2𝑥1𝑘)+2)2

))
+𝑥2𝑘

]

(18)

𝑔(𝑥𝑘)=

[
0

0.1 cos(2𝑥1𝑘) + 0.2

]
,

𝑥𝑘 = [𝑥1𝑘 𝑥2𝑘]
T ∈ ℝ

2, and 𝑢𝑘 ∈ ℝ.
Define the cost function as

𝐽(𝑥0, 𝑢) =

∞∑

𝑘=0

(
0.1𝑥21𝑘 + 0.1𝑥22𝑘 + 0.1𝑢2𝑘

)
.
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Fig. 2. The state trajectories of Example 1
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Fig. 3. The control input of Example 1

The structures and initialization methods of the critic and
action neural networks are the same as those in Example 1.
The maximum number of iteration steps is selected as 𝑖max =
20. The data set is constructed by collecting 1000 samples
from different trajectories of the system (18).

The convergence curve of 𝑄̂𝑖(−0.6533, 0.4715,−0.9875)
is given in Fig. 4. It can be seen that 𝑄̂𝑖 has converged after
20 iteration steps. Then, we apply the obtained approximate
optimal control policy 𝜇̂19 to the system (18) for 100 time
steps. The state trajectories and the control inputs are displayed
in Figs. 5 and 6, respectively. It is shown that the obtained
control obtains very good performance.

V. CONCLUSIONS

In this paper, a data-driven iterative ADP algorithm was
developed to learn the approximate optimal control by utilizing
the available offline data directly. The error bounds for this
algorithm were provided considering the approximation errors.
Two neural networks were used to approximate the state-action
value function and the control policy. The simulation examples
demonstrated the effectiveness of the developed algorithm.
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