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Abstract— For low-rank recovery and error correction, Low-

Rank Representation (LRR) row-reconstructs given data matrix 
X by seeking a low-rank representation, while Inductive Robust 
Principal Component Analysis (IRPCA) aims to calculate a low-
rank projection to column-reconstruct X. But either column or 
row information of X is lost by LRR and IRPCA. In addition, the 
matrix X itself is chosen as the dictionary by LRR, but (grossly) 
corrupted entries may greatly depress its performance. To solve 
these issues, we propose a simultaneous low-rank representation 
and dictionary learning framework termed Tensor LRR (TLRR) 
for robust bilinear recovery. TLRR reconstructs given matrix X 
along both row and column directions by computing a pair of 
low-rank matrices alternately from a nuclear norm minimization 
problem for constructing a low-rank tensor subspace. As a result, 
TLRR in the optimizations can be regarded as enhanced IRPCA 
with noises removed by low-rank representation, and can also be 
considered as enhanced LRR with a clean informative dictionary 
using a low-rank projection. The comparison with other criteria 
shows that TLRR exhibits certain advantages, for instance strong 
generalization power and robustness enhancement to the missing 
values. Simulations verified the validity of TLRR for recovery.   

Keywords— Low-rank representation; tensor representation; 
bilinear recovery; dictionary learning; error correction1 

I. INTRODUCTION 
High-dimensional observations can be encountered in various 
emerging real applications attributed to the rapid development 
of science and technology, such as face recognition [13], [21], 
and gene selection, leading to the research topics of recovering 
low-dimensional structures from high-dimensional data. Note 
that plenty of real data (such as images, videos and documents) 
can often be characterized by low-rank subspaces [1][2][3][6], 
thus investigating the low-rank structures of high-dimensional 
data have attracted explosively increasing attention in the last 
years. Representative works dedicated to this topic consist of 
[1-11], [15], [18], [26-27], [29-39], etc.   
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One most representative low-rank recovery criterion is called 
Robust Principal Component Analysis (RPCA) [3], [8], [9], 
[16]. For a given observed data matrix  1 2, ,..., n N

NX x x x    
corrupted by certain sparse errors 0E , RPCA is able to recover 

0X ( 0 0X X E  ) from the following nuclear norm problem:   
*,

, Subj
Y E

Min Y E X Y E  


,                    (1) 

where 
*
  is the nuclear norm of a matrix, i.e., the sum of the 

singular values of a matrix, 

  is 1l -norm (

1
 ) or 2,1l -norm 

(
2,1
 ) for characterizing the error term E , and   is a positive 

parameter. Note that under much broader conditions, as long 
as the given observations are corrupted by sufficiently sparse 
errors, RPCA can exactly recover 0X  from the above convex 
optimization problem [3]. The minimizer *Y (with respect to 
the variable Y ) corresponds to the principal components of X 
and is also the low-rank recovery to 0X . It is also worth noting 
that RPCA can well address the gross corruptions with large 
magnitude [3] if only a fraction of entries are corrupted [6]. 
But RPCA is a transductive algorithm, so it cannot embed new 
data [6]. Besides, the formulation of RPCA implicitly assumes 
that the underlying data structures lie in or near a single low-
rank subspace. But most real-world data are described using a 
union of multiple subspaces [1], [2], so the recovery of RPCA 
may be inaccurate in practice. To address these problems, an 
effective extension to RPCA, referred to as Inductive Robust 
Principal Component Analysis (IRPCA) [6] was proposed to 
improve RPCA recently via calculating a low-rank projection 

 1 2, ,..., n n
nU u u u    to remove the possible corruptions and 

recover the original data. Given an observed data matrix X , 
IRPCA calculates the underlying low-rank projection U  and 
the principal components  1 2, ,..., NY y y y  from the following 
convex nuclear norm problem:    

*,
, Subj ,

U E
Min U E X Y E Y UX   


.            (2) 

 
After the minimizer *U  is achieved, the original data can be 

recovered through *U X  (or *X E ). Based on the learnt low-
rank projection *U , the given data can be mapped onto the 
underlying subspaces and the possible corruptions can also be 
efficiently removed [6]. But note that IRPCA performs error 
correction along column direction of given matrix. As a result, 
row information of data is lost in the IRPCA formulation.  
To well cope with mixed data with corrupted observations, 

another effective low-rank criterion, Low-Rank Representation 
(LRR) [1], [2], was also proposed for subspace recovery and 
segmentation. For subspace recovery, LRR seeks a low-rank 
representation  1 2, ,..., N N

NV v v v    among all candidates that 
represent all data vectors as the linear combination of bases in 
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a given dictionary D. By setting X itself as the dictionary (i.e., 
D=X), the convex criterion of LRR is given as 

*,
, Subj ,

V E
Min V E X DV E D X   


.           (3) 

After calculating the optimal solution  * *,V E , the original 
data is recovered as *X E (or *XV ). Different from IRPCA, 
LRR recovers or segments given data along row direction, but 
in contrast column information of the given data matrix is lost 
in the LRR problem. Note that LRR can also be used to handle 
the issue of error correction, but LRR is also a transductive 
method as RPCA, so it also cannot handle new data efficiently. 
As a result, both LRR and RPCA will be inappropriate for the 
practical applications requiring fast online computation [6]. It 
is also noted that, for robust subspace recovery, LRR requires 
that sufficient noiseless data is available in the dictionary (i.e., 
only a part of D is corrupted). But note that most real data are 
contaminated by various errors such as outliers, corruptions 
and noise, so setting X itself as the dictionary directly may be 
invalid and may depress the robustness performance of LRR 
greatly for subspace recovery and segmentation [11], [23].   
  To enhance the robustness of the low-rank recovery to noises, 
(grossly) corruptions or missing values in data, we propose to 
incorporate the concept of tensor representation into the low-
rank representation and present a bilinear recovery criterion 
called Tensor Low-Rank Representation (TLRR) for enhanced 
subspace representation and error correction. Compared with 
RPCA, IRPCA and LRR, the proposed TLRR exhibits certain 
attractive advantages. First, to enhance the robustness against 
noise or corruptions, and to well handle the data with missing 
values, TLRR aims to reconstructs given data along both row 
and column directions at the same time by embedding the data 
onto a low-rank tensor subspace U V  spanned applying two 
low-rank matrices U  and V  calculated alternately from a 
nuclear norm minimization problem. Second, TLRR exhibits a 
strong generalization capability. Note that the formulation of 
TLRR seamlessly integrates the low-rank representation and 
dictionary learning into a unified framework, that is, it can 
perform simultaneous subspace recovery, error correction and 
dictionary learning. Specifically, when learning a low-rank 
projection to construct a clean informative dictionary, TLRR 
is considered as an “enhanced” version of IRPCA based on the 
noises and corruptions removed data. Similarly, when learning 
the low-rank representation for subspace recovery, TLRR is 
regarded as an “enhanced” version of LRR learning with the 
trained informative dictionary. Thus, the subspace recovery 
performance and the robustness against noise, corruptions and 
missing values can be greatly boosted by our TLRR algorithm, 
compared with other related criteria.   

The paper is outlined as follows. Section II briefly reviews 
other related works. Section III proposes the TLRR algorithm 
mathematically. Subsequently, we in Section IV describe the 
simulation settings and evaluate our algorithm. Finally, the 
paper is concluded in Section V.  

II. RELATED WORK 
Recent years have witnessed a lot of efforts and increasing 
interests on the low-rank recovery in the literature. The most 

related nuclear norm minimization based recovery criteria to 
ours are RPCA, IRPCA, LRR and Latent LRR (LatLRR) [1], 
[11]. The principles of IRPCA and LRR are illustrated in the 
top left and top right of Figure 1, respectively. Obviously, 
IRPCA and LRR perform recovery and error correction along 
either column or row direction of the data matrix, thus row or 
column information of the data matrix is lost by them.  
 

1,1 1, 1, 1,1 1, 1,

,1 , , ,1 , ,

,1 , , ,1 , ,

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...

k n k N

k k k k n k k k k N

n n k n n n n k n N

u u u x x x

u u u x x x

u u u x x x

   
   
   
   
   
   
   
   

1,1 1, 1,

,1 , ,

,1 , ,

... ...
... ... ... ... ...

... ...
... ... ... ... ...

... ...

k N

k k k k N

N N k N N

v v v

v v v

v v v

 
 
 
 
 
 
 
 

1,1 1, 1, 1,1 1, 1,

,1 , , ,1 , ,

,1 , , ,1 , ,

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...

k n k N

k k k k n k k k k N

n n k n n n n k n N

u u u x x x

u u u x x x

u u u x x x

   
   
   
   
   
   
   
   

1,1 1, 1, 1,1 1, 1,

,1 , , ,1 , ,

,1 , , ,1 , ,

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...
... ... ... ... ... ... ... ... ... ...

... ... ... ...

k N k N

k k k k N k k k k N

n n k n N N N k N N

x x x v v v

x x x v v v

x x x v v v

   
   
   
   
   
   
  
   



 
Figure 1: The principles of IRPCA (top left), LRR (top right), TLRR 

(top) and LatLRR (bottom).  
 

Another related recovery criterion to TLRR is LatLRR that 
reconstructs the data matrix X from two directions as well. To 
well deal with the issue of insufficient sampling and improve 
the robustness to noise, LatLRR constructs the dictionary by 
using both observed and unobserved hidden data, and solves 
the following convex problem:    

 *
, Subj , , HV

Min V X DV D X X  ,                      (4) 

where HX  is the hidden data, and the concatenation (along 
column) of X  and HX  is applied as the dictionary D . Finally, 
the optimization problem of LatLRR is formulated as  

* *, ,
, Subj

U V E
Min U V E X UX XV E    


               (5) 

when corrupted data is included. LatLRR resolves the problem 
of insufficient sampling and is shown to be more robust than 
LRR [11], but note that observed and hidden data are sampled 
from the same collection of low-rank subspaces [11]. Thus, 
LatLRR may suffer from the same problem as LRR, since one 
still cannot ensure there are sufficient noiseless data available 
in  , HD X X . The principle of LatLRR is illustrated in the 
bottom of Figure 1. Intuitively, LatLRR is a combination of 
LRR and IRPCA. After the solution  * * *, ,U V E  is calculated, 
LatLRR decomposes X into a low-rank *XV , a low-rank *U X , 
and a sparse part *E  fitting noise.  

Although column and row information of the data matrix X 
are reflected in the final reconstructive procedure of LatLRR, 
i.e., * *U X XV , note that the low-rank matrices U  and V  can 
be alternately calculated from the following two equivalent 
convex problems at each iteration:   

*,
, Subj ,

U
U U UV E

Min V E X XV E E UX E    
,          6(a) 

*,
, Subj ,

V
V V VU E

Min U E X UX E E XV E    
.          6(b) 

Note that when solving V  for low-rank representation at 
each iteration, UE  is fixed and the optimization in Eq.6 (a) is 
equivalent to the LRR formulation by setting the matrix X  as 
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the dictionary if UE  is considered as the error matrix E  in 
LRR. Similarly, when solving U  for low-rank projection, VE  
is fixed and the problem in Eq.6 (b) is equivalent to IRPCA 
for seeking principal components of X  if VE  is regarded as 
the error matrix E  in IRPCA. It is also worth noting that the 
so-called hidden effects that HX  bring to the problem is still 
unclear. To boost the robustness to noise and well handle data 
with missing values, this paper introduces a new mechanism 
to recover the original data from two directions, as illustrated 
in the top of Figure 1. Based on this strategy, the proposed 
TLRR can exhibit certain properties over existing criteria, e.g., 
strong generalization power and robustness enhancement.  

III. BILINEAR LOW-RANK RECOVERY FRAMEWORK 
We address the bilinear matrix recovery problem by learning 
two low-rank factors U  and V  at the same time to recover the 
given matrix X  from row and column directions in the form 
of tensor representation (i.e. UXV ) of X . In tensor scenarios, 
X  can be regarded as the second-order tensor in tensor space 

n N  [12], [28]. Denote by  
1

1
1 2, ,..., d

d nU u u u    1d n  
and  

2

2
1 2, ,..., d

N dV v v v    2d N  to represent data X , then 
the tensor product U V  is a subspace of n N   and the 
projection of X  onto the subspace U V  is 1 2d dUXV  . This 
paper considers 1d n  and 2d N . We will also elaborate the 
proposed bilinear recovery criterion can perform simultaneous 
dictionary learning and low-rank representation.   

A. Problem Formulation 
For a given data matrix n NX   corrupted by certain sparse 
errors or missing values 0E , we propose to recover the original 
data 0X ( 0 0X X E  ) along both row and column directions 
simultaneously. Specifically, we aim at calculating a low-rank 
representation matrix N NV   and a low-rank projection 
matrix n nU   such that ,X DV D UX   from the following 
rank minimization problem:   

     
,

rank rank , Subj ,
U V
Min U V X Y Y DV D UX    


,    (7) 

 
where 

*  is the nuclear norm of a matrix, X Y   identifies the 
sparse errors, 


 (either 1l -norm 

1
  or 2,1l -norm 2,1 ) is for 

characterizing the errors E,   is a positive parameter, and an 
informative dictionary D UX is defined by computing a low-
rank projection U  to project given points onto the underlying 
subspaces and the entries will be updated at each iteration. 
Specifically, ,1 , i ji j

E E  is designed for handling random 
corruptions, and  2,1 ,1 1

n n

i jj i
E E

 
   can model the sample-

specific corruptions and outliers well. If 2,1l -norm is imposed 
on E , we can rewrite the above problem as  

     
2,1, ,

rank rank , Subj , ,
U V E
Min U V E X Y E Y DV D UX      .  (8) 

 
As a common practice in rank minimization problems [1], 

[2], [3], [4], we can replace the rank function with the nuclear 
norm

* . Then the above problem further becomes  
* * 2,1, ,

, Subj ,
U V E
Min U V E X DV E D UX     ,         (9) 

 
from which the optimal solution  * * *, ,U V E  can be achieved. 
Therefore, the original data can be reconstructed or recovered 

as * *U XV (or *X E ). Note that both *U  and *V  are required to 
recover 0X  from two directions, but it is difficult to compute 
U  and V  simultaneously. In this paper, we solve U  and V  
alternately and independently, that is, other variables are fixed 
when optimizing U  or V  at each iteration. More specifically, 
one can calculate U  and V  alternately from the following two 
equivalent convex problems to Eq.9:   

 
* 2,1,

, Subj ,
U E
Min U E X U E XV      ,            10(a) 

 
* 2,1,

, Subj ,
V E
Min V E X DV E D UX    ,            10(b) 

 
where  XV   denotes the errors corrected and noise removed 
data by the low-rank representation V , and D UX  is a clean 
informative dictionary defined by projecting given data onto 
the underlying subspaces using the low-rank projection U  as 
IRPCA. In other words, the proposed TLRR framework can 
perform simultaneous subspace recovery, error correction and 
dictionary learning. Although the recovery problem in Eq.6 
can also learn a low-rank projection, our approach is different 
from theirs in two main aspects. First, the formulation of Eq.6 
is directly built on the LRR criterion by involving the low-
rank projection and low-rank representation to estimate for 
low-rank subspace recovery and projection, while our TLRR 
criterion is based on a new bilinear model that aims to recover 
given data matrix from two directions (i.e. row and column) 
by calculating a pair of low-rank matrix factors to well handle 
the cases corrupted by noises and missing values in addition to 
recovering low-rank subspaces. That is, the projection in Eq.6 
is updated directly at each iteration, but we instead calculate a 
low-rank projection U to update the dictionary in TLRR by 
projecting the given data into the underlying subspaces at each 
iteration. Second, TLRR is more general than Eq.6, since our 
TLRR formulation is considered as an enhanced version of 
LRR in the optimizations.   

Note that the above two convex problems can be solved by 
using various methods, e.g., Augmented Lagrange Multiplier 
(ALM) [8], [9]. When calculating the low-rank coefficients U  
to column-reconstruct  , we firstly set U  to be an identity 
matrix, that is, the dictionary is initialized with the given 
matrix X. After obtaining V  from Eq.10 (b), we can update 
the low-rank projection matrix U  from Eq.10 (a) to column-
reconstruct  . With U  and V  obtained alternately, the sparse 
error matrix E  can be obtained from Eq.9. Note that, in the 
alternating optimizations, the convex problem in Eq.10(a) can 
be considered as the enhanced IRPCA using errors corrected 
and noise removed data matrix   byV . Recall that IRPCA 
aims at learning a low-rank projection to remove the possible 
corruptions in given data efficiently through projecting given 
data onto the underlying subspaces [6]. It is worth noting that 
the data structures represented by  XV   will be easier to be 
projected onto the underlying subspaces than X , because the 
process of optimizing XV  has already corrected the errors in 
data and segmented points into their respective subspaces by 
the low-rank representation V. Similarly, the problem in Eq.10 
(b) can be considered as enhanced LRR criterion with a clean 
informative dictionary D  learnt from Eq.10 (a). Therefore, 
TLRR has the potential to improve the robustness against the 
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noises and missing values, compared with LRR and IRPCA. 
Based on the relationships among LRR, IRPCA and LatLRR 
described in Section 2, TLRR can also be considered as the 
enhanced version of LatLRR.  

B. Optimization for Recovering Low-Rank Matrices 
In this paper, we use the inexact ALM method [9] to solve our 
TLRR problem due to efficiency. We first convert the problem 
in Eq.9 to the following equivalent one:   

* * 2,1, , , ,
, Subj , ,

J F U V E
Min J F E X UXV E U J V F      ,  (11) 

 
from which the variables can be obtained. Note that if 1l -norm 
is imposed on the sparse error term E, that is to solve E from 

, , * * 1U V EMin U V E   with respect to ,X DV E D UX   , the 
term 1kE   can be obtained from    1 1

/ 1 / 2arg mink kEE E     
    2

11 /E k
k k

F
E Y    that can be solved using the shrinkage 

operator [1], [9]. Motivated by [1],[6], we instead compute *U  
and *V  by converting Eq.9 to a simpler problem. With similar 
argument, the solution *U  to Eq.9 can be factorized into 

  T
U U R


   with R  obtained by orthogonalizing the columns 

of XV . Similarly, the solution *V  to Eq.9 can be factorized 
into V Q V


   , where Q  is obtained through orthogonalizing 

the columns of T TX U . As a result, the problem in Eq.9 can be 
equivalent to the following formulation by replacing V  and U  
with Q V  and   T

U R  respectively:   

     
* * 2,1

, , , ,

Subj , , ,

J F U V E
Min J F E

X DV E U J V F D U

 

     

  ,         (12) 

 
where  T

R XQ   . Based on such strategy, the computational 
burden can be greatly reduced, especially for low-dimensional 
large-scale problems, that is, N  is larger and  n n N  is 
relatively smaller, because the above problem is solved with a 
complexity of  2 3O n N n . Note that when orthogonalizing R  
and Q , U  and V  are defined as the identity matrices. The 
convergence properties of the inexact ALM are well studied if 
the number of blocks is at most two and it is able to generally 
perform well in practice [1], [24]. Since there are more than 
two blocks in our TLRR, which is similar to IRPCA, LRR and 
LatLRR, and the objective function is non-convex, it will be 
hard to prove that the solution of our TLRR converges to the 
global optimal solution, which is actually a common situation 
when handling non-convex problems [19], [23], [27]. So, the 
theoretical study for the convergence analysis of our TLRR 
method needs to be explored in future. The optimizations of 
TLRR alternately solve the five blocks at each iteration, which 
are easily solvable. This paper observes that 1.2   is a good 
choice for our TLRR. Under this setting, we experimentally 
observe that TLRR can usually converge with the iteration 
number k within the range of 30~250.   

IV. SIMULATION RESULTS AND ANALYSIS 
We evaluate the effectiveness of our TLRR algorithm, along 
with illustrating the comparison results. One benchmark face 
dataset and one synthetic dataset are involved in this study. 
The real face database is ORL database [17], and the synthetic 

dataset is a “Swiss roll” dataset which follows a Swiss-roll 
distribution. As a common practice, the images of ORL are 
resized to 32×32 pixels for computational consideration.  

A. Baselines and Simulation Settings 
In this paper, we mainly examine TLRR for low-rank recovery 
and error correction. The performance is compared with five 
most related methods, that is, LRR, LatLRR, RPCA, IRPCA, 
and Sparse Representation (SR) [13], [14], [20], [21]. For fair 
comparison, 1l -norm or 2,1l -norm is regularized on the sparse 
error term E of the formulations of SR, RPCA, IRPCA, LRR, 
LatLRR and TLRR for each simulation.   

(a) SR has similar appearance and applications as LRR, e.g., 
recovery, reconstruction and noise removal. For recovery, SR 
computes a sparse representation S  by solving the following 
l1-norm minimization based problem [13], [21]:    

 1,
, Subj , , 0

S E
Min S E X DS E D X Diag S    

,     (13) 
 

where SR enforces   0Diag S   to avoid the trivial solution 
S I , and the given matrix X is usually set as the dictionary 
for learning the sparse representations. After the minimizer 

* * * *
1 2, ,..., N N

NS s s s       (with respect to the variable S) to the 
above problem is achieved, the original data can be similarly 
reconstructed as *XS (or *X E ), which is analogous to the 
recovery of LRR, where each column vector *

is  represents the 
coefficients for reconstructing the data point ix  and each entry 

*
,i js  represents the contribution of jx  for reconstructing ix .   
(b) Parameter Settings. For the problems of RPCA, IRPCA, 

LRR, LatLRR and SR, there is a common parameter   that 
depends on the actual noise level of datasets to estimate [1]. 
According to [1], a relatively large   should be used when the 
included errors are slight and otherwise one should tune   to 
be relatively small. Besides, LPP and NPE need to estimate 
the neighborhood size k . In this study, the parameters of each 
criterion are carefully chosen and the best results over tuned 
parameters are reported for comparing the performance.  

(c) Evaluation Metrics. For recovery and error correction, 
the result of each criterion is evaluated by the reconstruction 
error   /cl co cl

FF
X X X   , where clX  is the low-rank recovery 

to the given data matrix which is not corrupted and coX  is the 
recovered result over different percentages of corruptions. We 
perform all simulations on a PC with Intel (R) Core (TM) i5 
CPU 650 @ 3.20 GHz 3.19 GHz 4G.   

B. Face Image De-noising via Error Correction 
We evaluate the image de-noising capability of the proposed 
TLRR for handling face images under different levels of pixel 
corruptions. The recovery performance of our TLRR is mainly 
compared with those of RPCA, IRPCA, LRR and LatLRR. 
The images are selected from the ORL database that consists 
of variation in facial expression (smiling/non smiling), facial 
details (glasses/no glasses) and poses. In total, the database 
has 40 persons and consists of 10 images per person. Three 
faces are selected for the experiments and a data matrix of size 
32×96 is created. Note that the gray values of the face images 
are normalized to [0, 1] for this simulation. To investigate the 
robustness of various low-rank recovery criteria to corruptions, 
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two settings (i.e., faces are corrupted by random corruptions 
and sample-specific corruptions) are tested respectively.   

Recovery against random pixel corruptions. We firstly test 
the case that face images are corrupted by random pixel 
corruptions. In this simulation, we corrupt a percentage of 
randomly selected pixels from the face images by replacing 
the gray values with inverted values, i.e., each gray value g is 
replaced by 1-g. The corrupted pixels are randomly selected 
from the test faces and the locations are unknown to each 
method. In this study, we vary the percentage of corrupted 
pixels from 0 percent to 90 percent, and accordingly increase 
the values of   for each method. We apply  exp   as a 
quantitative evaluation criterion of the recovery performance 
of each algorithm, i.e., the closer clX  and coX  are, the bigger 
the value of  exp   is. Figure 2 shows the results of TLRR 
and its four competitors as a function of the level of pixel 
corruptions. Figures 2 (b), (c), (d) and (e) mainly evaluate 
TLRR for recovering the faces with 10 (or 20) percentage of 
corrupted pixels. Figures 2 (f) and (g) quantitatively evaluate 
each 1l -norm or 2,1l -norm based method for error correction. 
The results are averaged over 15 random pixel selections. 
From the results, we find that our proposed TLRR works 
better than other criteria in correcting corruptions, and the 
performance of TLRR degrades slower than the others with 

the increasing corruption percents. It is also observed that 1l -
norm based criteria are more appropriate choice for recovering 
the random corruptions than 2,1l -norm based criteria.    

Recovery against sample-specific corruptions. We corrupt 
a percentage of randomly chosen sample-specific corruptions, 
i.e., columns of the data matrix. In this study, we add Gaussian 
noise with zero mean and 0.02 variance to the columns. The 
corrupted columns are randomly chosen and the locations are 
also unknown to the users. We also vary the percentage of 
corrupted columns from 0 percent to 90 percent, and increase 
the values of   accordingly for each algorithm. Figure 3 
illustrates the result of each method as a function of the level 
of column corruptions. Figures 3 (b), (c), (d) and (e) examine 
our presented TLRR for recovering the face images with 20 
(or 50) percentage of column corruptions. Illustrations show 
that our TLRR is able to effectively detect the corruptions and 
correct them. Figures 3 (f) and (g) illustrate the quantitative 
evaluation of error correction for 1l -norm or 2,1l -norm based 
criterion. We average the results over 15 random column 
selections. Similar findings can be found here, that is, TLRR 
can outperform other methods in identifying and correcting 
the corruptions in most cases. It is also observed that the 2,1l -
norm based error terms are able to well model the sample-
specific corruptions than 1l -norm based criteria.  
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Figure 2: Recovery under random corruptions. (a) Original face images from ORL; (b) 10 percent of pixels are corrupted; (c) 20 percent of 

pixels are corrupted; (d) Recovered faces by 1l -norm based TLRR; (e) Estimated sparse errors; (f) Reconstruction accuracies across corrupted 
percents for each 1l -norm based method; (g) Reconstruction accuracies across corrupted percents for each 2,1l -norm based criterion. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Corrupted Columns

R
ec

on
st

ru
ct

io
n 

A
cc

ur
ac

y

 

 
RPCA
IRPCA
LRR
LatLRR
TLRR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Corrupted Columns

R
ec

on
st

ru
ct

io
n 

Ac
cu

ra
cy

 

 
RPCA
IRPCA
LRR
LatLRR
TLRR

(b) (c)

(d)

(e)

(a)

(f) (g)

 
Figure 3: Reconstruction under sample-specific corruptions. (a) Original faces; (b) 20 percent of columns are corrupted; (c) 50 percent of 

columns are corrupted; (d) Reconstructed faces by the 2,1l -norm based TLRR; (e) Estimated sparse errors; (f) Reconstruction accuracies across 
corrupted percents for each 1l -norm based method; (g) Reconstruction accuracies across corrupted percents for each 2,1l -norm based criterion.   
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C. Error Correction on Synthetic Data 
In this simulation, we address another experiment to evaluate 
the proposed TLRR method for error correction in noisy case 
using the synthetic “Swiss roll” dataset. The sampled dataset X 
contains 2000 column vectors totally and each column vector 
corresponding to a sample point in a three-dimensional space. 
The subspace recovery result of our proposed TLRR method 
is compared with those of IRPCA, LRR, SR and LatLRR. We 
illustrate the recovery result of each approach in Figure 4. In 
our experiments, we add Gaussian noise (with zero mean and 
variance equaling to two) to the x-coordinates of 10 percent of 

the data vectors (denoted by square symbol) and also add the 
noise with the same density to the y-coordinates of another 10 
percent of vectors (denoted by circle symbol), respectively. 
The noised “Swiss roll” dataset is illustrated in Figure 4(a). 
Observing from the recovered data in Figure 4, we see clearly 
that our TLRR algorithm outperform other compared criteria, 
which is because of its capability of embedding the given data 
matrix X into a low-rank tensor representation subspace onto 
which the included errors can be automatically and effectively 
corrected by the proposed TLRR criterion from both row and 
column directions at the same time.   
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Figure 4: Corrected result of each algorithm on “Swiss roll”: (a) Noised dataset; (b) Recovery result ( *U X ) of IRPCA; (c) Recovery result 
( *XV ) of LRR; (d) Recovery result ( *XS ) of SR; (e) Recovery result ( * *U X XV ) of LatLRR; (f) Recovery result ( * *U XV ) of our TLRR.  

 

V. CONCLUDING REMARKS 
In this paper, we have proposed a bilinear subspace recovery 
framework called TLRR for effective error correction and data 
repairing. An attractive property of our TLRR criterion is its 
formulation seamlessly integrates low-rank representation and 
dictionary learning into a unified framework, which provides 
us with a new mechanism for recovering low-rank subspaces 
and simultaneously learning an informative dictionary from a 
nuclear norm problem. Specifically, TLRR proceeds low-rank 
recovery through enhancing the robustness against noise and 
missing values by simultaneously considering column and row 
information of the given data matrix, thus the shortcomings of 
LRR and IRPCA can be effectively overcome. In addition, we 
mathematically elaborate that our TLRR can be regarded as 
enhanced versions of other existing criteria.   

Image recovery and visualization simulations have verified 
the effectiveness of our TLRR in representing real images and 
boosting the robustness against to and corruptions. But there 
are certain future work that still requires to be explored. First, 

the parameter   for the error term controls the performance of 
virtually all low-rank recovery criteria, including our proposed 
TLRR. In this study, we experimentally observe that TLRR is 
capable of working well under a wider range of the parameter 
configurations, but it still remains unclear how to optimally 
determine the values of   theoretically for data contaminated 
by various errors. Second, to date it is still challenging to 
strictly prove the convergence of inexact ALM based recovery 
criteria, including IRPCA, LRR, LatLRR and our proposed 
TLRR, which include more than two blocks to optimize [1] 
[24]. In this paper, we observe from the experimental results 
that TLRR can converge with satisfactory iteration numbers, 
but the theoretical convergence proofs for the presented TLRR 
are still worth investigating in future.   
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