
A Google Approach for Computational Intelligence in Big
Data

Andreas Antoniades
Department of Computing, University of Surrey

United Kingdom
Email: aa00542@surrey.ac.uk

Clive Cheong Took
Department of Computing, University of Surrey

United Kingdom
Email: c.cheongtook@surrey.ac.uk

Abstract—With the advent of the emerging field of
big data, it is becoming increasingly important to equip
machine learning algorithms to cope with volume, variety,
and velocity of data. In this work, we employ the MapRe-
duce paradigm to address these issues as an enabling
technology for the well-known support vector machine
to perform distributed classification of skin segmentation.
An open source implementation of MapReduce called
Hadoop offers a streaming facility, which allows us to
focus on the computational intelligence problem at hand,
instead of focusing on the implementation of the learning
algorithm. This is the first time that support vector
machine has been proposed to operate in a distributed
fashion as it is, circumventing the need for long and
tedious mathematical derivations. This highlights the main
advantages of MapReduce - its generality and distributed
computation for machine learning with minimum effort.
Simulation results demonstrate the efficacy of MapReduce
when distributed classification is performed even when
only two machines are involved, and we highlight some of
the intricacies of MapReduce in the context of big data.

I. INTRODUCTION

Over 2.5 quintillion (2.5 × 1018) bytes are produced
everyday and 90% of the data that exists today were
created over the last two years [1]. It is therefore not a
surprise that big data has garnered the attention of the
IEEE Computational Intelligence Society. In this year’s
World Congress of Computational Intelligence (WCCI),
there are three special sessions dedicated to big data
addressing themes such as evolutionary computation,
handling uncertainties and its application in e-Health;
this event is followed by another IEEE Symposium
on Computational Intelligence on big data later in the
year. Machine Learning algorithms have already been
deployed on an open source scheme to address big
data, see for instance [2]. However, many classical
machine learning algorithms for big data are still sorely
lacking such as the well-known classifier support vector
machine (SVM), as it is only now that the community
of IEEE Computational Intelligence is starting to realise
the potential of this research area. Moreover, there is a
tendency for researchers to adapt the problem (in this

case big data) to their expertise, instead of adapting
to the realities of problem. As a result, the impact of
these research is likely to take longer. The main issue
in big data remains, however, on the computation of the
data or on handling the ‘scalability’ of the big data. A
straightforward answer is distributed computing, yet it
is hard to adapt machine learning algorithms to operate
on distributed computing.
It is in this motivational context that we provide a
comprehensive overview of a powerful computational
framework proposed by Google to enhance the scal-
ability ability of machine learning techniques - the
Map Reduce approach. This Map Reduce approach
has already been used in k-means clustering tasks [2]
and its performance has been analysed in the context
of intelligent systems [3]. Other algorithms that have
exploited the Map Reduce paradigm for distributed
learning include the random forest decision tree based
classifier, the Naive Bayes classifier, amongst others,
which are freely available in the project Apache Ma-
hout [2]. However, this open source project has one
major drawback: it is implemented in the programming
language Java. This may restrict its use, since it may
pose a problem to researchers who are used to other
programming languages in particular MATLAB. In light
of all these issues, we therefore introduce the Map
Reduce paradigm (i) to demonstrate how it can be
used to facilitate the deployment of a machine learning
technique for distributed computing; (ii) to illustrate
its generality, as Map Reduce offers a facility called
streaming to overcome the barrier of programming
language; (iii) to show its relevance for the well-known
support vector machine (SVM) classifier1.

1The main focus of this work is not on SVM per se, but to introduce
the powerful and flexible Map Reduce paradigm which can be used to
make any machine learning algorithm distributed. Distributed SVMs
have already been proposed in [7][8].

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1050

II. HADOOP

Hadoop is an open source computational framework
that operates on the Map Reduce paradigm and is able
to perform data intensive processing on commodity
machines while being cost effective at any size and
ensuring redundancy and load balance [4]. It makes
use of two powerful technologies - the MapReduce pro-
gramming model [5] and the Hadoop Distributed File
System (HDFS), and runs on a Java Virtual Machine
(JVM).

TABLE I
ILLUSTRATION OF MAP REDUCE IN A WORD COUNT TASK.

KEY VALUE
This 1
room 1
is 1
rather 1
big 1
however 1
it 1
is 1
not 1
as 1
big 1
as 1
Tom’s 1
room 1

(a) Map results

⇒

KEY VALUE
This 1
room 2
is 2
rather 1
big 2
however 1
it 1
not 1
as 2
Tom’s 1
(b) Reduce results

A. MapReduce

As its name suggests, the programming model consists
mainly of two steps - Map and Reduce. Map enables
users to specify a mapping function which creates
key/value pairs from the input data, whereas the reduce
function aggregates the results from the Mapper. For
example, in a word count task the MapReduce will
break down a sentence as shown in Table I.

The sentence “This room is rather big however it
is not as big as Tom’s room.” is broken down by the
Mapper as illustrated in the leftmost table, after which
the Reduce component takes all of the intermediate
key/value pairs created by the mapping function and
produces a collective result according to the keys,
shown in the rightmost table.

B. Hadoop Streaming

This component of Hadoop allows learning algorithms
implemented in any programming language (such as
MATLAB or C++) to be used by the mapper or reducer
components of Hadoop. In other words, a MapReduce
job is created in Hadoop as if the learning algorithms
were implemented in Java programming, when they

are actually implemented in another programming lan-
guage. Java is the default implementation of Hadoop.
This highlights the main advantage of Map Reduce
Paradigm in the form of Hadoop, compared to any other
distributed implementation such as in [8].

The Hadoop Distributed File System (HDFS). It is
an architecture to store files on a distributed file system
shown in Fig. 1. The files are broken by default in data
size of 64MB blocks and are then distributed across
the file system. Furthermore, the HDFS replicates those
blocks to ensure duplication. This distribution is optimal
for data intensive processing over a number of machines
when the order of processing is not important. The
architecture has a number of different components as
described below.

• NameNode: Considered to be the master; it di-
rects DataNodes to perform low level Input/Output
tasks. It also keeps track of all the files on the
HDFS and the health of each of the DataNodes.
This is where the bottleneck of the system is likely
to happen.

• DataNode: Slave daemon to perform low level
Input/Output tasks on the HDFS; any files on
the HDFS are distributed between the DataNodes.
DataNodes must constantly report to the NameN-
ode and request instructions after a task is com-
pleted.

• SecondaryNameNode: Assistant to the NameNode
for monitoring the state of HDFS, it communicates
with the NameNode to take snapshots at regular
intervals. It mitigates downtime and data loss in
case the NameNode goes offline.

• JobTracker: Usually runs on the same machine as
the NameNode and it determines the execution
plan of submitted code. Breaks the job into tasks
and then divides them to the different DataNodes.
Furthermore, it monitors the tasks during runtime.

• TaskTracker: Resides within every DataNode, it is
responsible to receive and manage tasks by the
JobTracker.

Fig. 1. HDFS model with three DataNodes

1051

III. MAPREDUCE FOR SUPPORT VECTOR MACHINES

Distributed support vector machine training mecha-
nisms have already been proposed in [7][8]; this is
not the main focus of this work. Our ultimate aim
to provide an illustrative example of the Map Reduce
paradigm by considering the support vector machine
as the learning algorithm. In the context of Hadoop,
Cascade SVM has been implemented [7], however, it
is not clear how it was adapted to the Map Reduce
computation and moreover, it did not make use of the
streaming hadoop facility, which allows implementation
of the machine learning algorithm in any programming
language. Thanks to the generality of Map Reduce
paradigm, any machine learning technique can operate
in a distributed fashion, thereby addressing the problem
of big data.
Support vector machine (SVM) remains, perhaps, one
of the most popular classification algorithm [6]. It is a
form of supervised learning used to analyze and match
patterns. To train SVM, two sets of information are
needed, raw data and class labels. By associating the
data with the labels, SVM matches the patterns found in
the data and classifies them accordingly by minimising
the so-called ‘structural’ error. This model has proven
to perform exquisitely in high dimensional problems.
During training, the data set is placed on a space map
and the different classes are distinguished by (linear or
nonlinear) decision boundaries (defined by the support
vectors), as shown in Fig. 2. Similarly, during testing the

Fig. 2. Two class classification problem during training - rectangle
and triangle classes.

data given are placed on the space map and according
to the position of the data, its class is predicted by the
SVM (illustrated in Fig. 3). The key feature of Hadoop
is that it circumvents the need to break the classification
problem into many sub-problems for distributed com-
puting. This problem is addressed by Hadoop, which

Fig. 3. Classification during testing - the circle (new data) is classified
as a triangle.

ensures the load of processing are equally distributed
across all DataNodes.

A. Classification of Skin Segmentation

Skin segmentation was considered as the classification
problem to demonstrate MapReduce paradigm for the
SVM classifier. The dataset2 is a collection of red-blue-
green (RGB) images, which need to be categorised into
two classes: Class 1 (skin) and Class 2 (non-skin). The
attributes of the dataset are summarised in Table II.

TABLE II
ATTRIBUTES OF THE SKIN SEGMENTATION DATASET

Attribute Range Description
Min Max

Blue 0 255 Colour intensity at pixel
Green 0 255 Colour intensity at pixel
Red 0 255 Colour intensity at pixel
Class 1 2 1 for skin pixel

2 for non-skin pixel

B. Distributed SVMs

Our Hadoop implementation invokes a traditional SVM
algorithm written in Python and distributes its different
processes across several DataNodes. Owing to the su-
pervised nature of SVM, it requires a set of data and
a set of labels associated with that data, and it is the
NameNode that is responsible to distribute an instance
of the SVM algorithm in each DataNode. Prior to that,
the skin segmentation dataset must be uploaded on the
HDFS. The large file is then be split into sub-blocks
to be distributed evenly across all the DataNodes. An
example of how the labelled RGB skin segmentation
dataset is split into sub-blocks is illustrated in Fig. 4.

2Available at http://archive.ics.uci.edu/ml/datasets/Skin+Segmentation.

1052

Fig. 4. The labelled skin segmentation dataset is split into sub-blocks
by the NameNode.

Fig. 5. The NameNode allocates the sub-blocks to the DataNodes,
whereas the JobTracker monitors the classification task run on each
DataNode.

C. Hadoop Setup

In our simulation, the number of DataNodes employed
was varied from one to three. The NameNode and the
JobTracker was set up on the same machine, and the
NameNode acted as the server, issuing MapReduce jobs
[5], which the JobTracker monitored.
Remark#1: For robustness against errors, Hadoop
duplicates sub-blocks of data, e.g. in Fig. 5, Block 1
is forwarded to the leftmost and rightmost DataNodes.
Redundancy is part and parcel of Hadoop; it is therefore
likely that a Hadoop implementation running on one
DataNode is likely to take more time than if it was
implemented without MapReduce.

1) Training:
• Map: The primary task of the Mapper in each

DataNode is to create Key/Value pairs - for the
Key, the RGB values were separated by a comma,
whereas the class was assigned as the Value as
illustrated below.

Fig. 6. Convertion of the data in Key/Value pairs

Fig. 7. Training process of the SVM on Hadoop

These Key/Value pairs were then distributed to the
reducers for processing, as illustrated in Fig. 7.

• Reduce: This is where training of the SVM took
place. Each reducer took a list of Key/Value pairs
and first broke each Key to the original RGB
values, storing them in variables. These variables
were parsed as the data into the SVMs, and the
Value was used as the label of the class. Note
that the order that each data sample and label are
provided to an SVM in each node does not affect
the performance of the distributed SVMs.
Remark#2: Depending on the complexity of the
classification task, there may be several Reduce
steps in sequence for each DataNode. For simplic-
ity, only two sequential Reduce steps are shown in
Fig. 7, and only one Reduce step in Table I.
The accumulated knowledge from the training was
written in a file for later use. Thread safety and
multiple read/write operations are not an issue, for
Hadoop handles all of the scheduling.

2) Testing:

• Map: The mapper for testing was similar to the one
used in training, as only the Key/Value pairs were
required. The only difference was that the class of
the new data was not known. In terms of Value, it
was assigned a value of 0.

• Reduce: As before each reducer received a list
of Key/Value pairs and broke each key into the
original RGB values. Then, the file with the accu-
mulated knowledge from the training was loaded
and parsed to an SVM instance. By parsing the
RGB values the SVM was able to predict the class
of these values. A new Key/Value pair was created
holding the RGB values in the key and the class in
the Value. The Key/Value pairs were outputted to a
file. The distributed SVM for testing is summarised
in Fig. 8.

1053

Fig. 8. Testing process of the SVM on Hadoop

Fig. 9. Run time of training and testing of SVM. ‘Single’ denotes
nondistributed implementation, whereas ‘1’, ‘2’ and ‘3’ denote the
pseudodistributed SVM, and distributed SVM running over two and
three machines respectively.

IV. SIMULATION

To show the efficacy of Hadoop, SVM was first run on
a single machine without Hadoop, and then compared
against a MapReduce-distributed SVM system with one,
two and three DataNodes. For all four simulations, the
accuracy was in the neighbourhood of 90% success
rate. More importantly, the runtime shown in Fig. 9
decreased, as the number of DataNodes was increased.
Remark#3: Observe that the redundancy introduced
by Hadoop in the classification task causes one DataN-
ode implementation to be slower than if the SVM was
implemented without MapReduce (labelled as single in
Fig. 9). This observation conforms with Remark 1.
Remark#4: There was no major difference between
the accuracy for each simulation (∼ 90% success rate).
This suggests that running the SVM on a distributed

framework does not hinder its accuracy, if implemented
appropriately.
Remark#5: Owing to the ‘knowledge file’ learned
from the training phase, the distributed SVM performed
faster during the testing phase. However, the difference
in running time between the training and testing was
not that significant, as only the Reduce step benefited
from the ‘knowledge file’.

V. CONCLUSIONS

We have introduced the MapReduce paradigm proposed
by Google in the context of support vector machines.
In particular, we have firstly empowered the classifier
support vector machine to operate in a distributed
fashion without deriving long and tedious mathematical
solutions, as in [7], [8]. Second, the generality of the
MapReduce allows us to use any machine learning
algorithms to operate in distributed fashion3, whereas
in [7], [8], these works were restricted to classification
problems. Nonetheless, these work provided valuable
initial insights into distributed SVMs. In the same spirit,
it is hoped that our work has shed light on this emerging
technology, which can be exploited in any machine
learning endeavour for big data.

REFERENCES

[1] IBM, What is big data?, http://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html.
Retrieved 26.08.2013.

[2] S. Owen, A. Robin, T. Dunning, E. Friedman, Mahout in Action,
Manning Publications, 2011.

[3] X. Yang and J. Sun, An analytical performace model of Map
Reduce, in Proceedings of the IEEE International Conference
on Cloud Computing and Intelligence Systems, pp. 306 - 310,
2011.

[4] C. Lam, Hadoop in Action, Manning Publications, MEAP
Edition, 2010.

[5] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing
on Large Clusters, In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, Dec. 2004.

[6] C. Cortes and V. Vapnik, Machine Learning, Support-Vector
Networks, Machine Learning, vol. 20, pp. 273-297, 1995.

[7] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik,
The cascade SVM, in Proceedings of the Conference on Neural
Information Processing Systems (NIPS), 2004.

[8] Y. Lu, V. Roychowdhury, and L. Vandenberghe, Distributed Par-
allel Support Vector Machines in Strongly Connected Networks,
IEEE Transactions on Neural Networks, vol. 19, no. 7, pp. 1167-
1178, 2008.

3An example implementation using the Hadoop Streaming API can
be requested from the authors.

1054

