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Abstract—This paper considers the coordinated pattern track-
ing of multiple marine surface vehicles in the presence of
uncertain kinematics and kinetics. Distributed pattern tracking
controllers depending on the information of neighboring vehicles
are derived based on a backstepping technique, neural networks
and an identifier. Specifically, the identifier is devised to precisely
estimate the time-varying ocean currents at the kinematic level.
Neural networks together with adaptive filtering methods are
employed to extract the low frequency content of the model
uncertainty and ocean disturbances at the kinetic level. The
benefit of the proposed design results in adaptive pattern tracking
controllers over any undirected connected graphs with guaran-
teed low frequency control signals, which facilitates practical
implementations. The stability properties of the multi-vehicle
systems are established via Lyapunov analysis, and the pattern
tracking errors converge to an adjustable neighborhood of origin.
An example is given to show the performance of the proposed
approach.

I. INTRODUCTION

In recent years, cooperative control of multi-vehicle sys-
tems has drawn significant attention from control communities
[1], [2]. Applications of multi-vehicle systems can be found
everywhere; in space, in the air, on land and at sea. Examples
include formation flight of satellites, coordinated control of
aerial vehicles, formation control of mobile robots, coopera-
tive control of marine vehicles. In particular, there has been
considerable attention drawn to formation control of multiple
marine surface vehicles (MSVs). Various approaches have
been reported, ranging from virtual structure framework [3],
behavioral approach [4], leader-follower mechanisms [5], [6],
[7], to synchronized path following framework [8]. Apparently,
these control strategies only result in low-level cooperative
behaviors. However, to execute more challenging missions,
it requires the use of multiple vehicles working together to
achieve a collective objective [1], [2], [9], [10], [11]. For
example, a group of MSVs are required to achieve coverage
in a sensor network, where the coverage center can be only
known by a portion of vehicles for security reasons. They
exchange their knowledge by communicating with a subset of
nearby vehicles, in order to achieve the coverage. Obviously,
such motion control scenario cannot be completed by those
formation control strategies mentioned above.

A major constraint in a networked system is that the
information flow can be severely restricted. This situation is

getting worse when a large lumber of vehicles are involved.
Consequently, centralized controllers based on the information
gathered by all agents are generally impractically to imple-
ment. Therefore, distributed control strategies based on local
information have been widely explored in literature [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23]. These results correspond to first-order systems [10],
[11], [12], [13], second-order systems [14], [15], [16], [17],
high-order systems [18] and general linear systems [19], [20],
[21], [22], [23], which may be not adequate to describe the
practical dynamics of MSVs as they undergo maneuvers at
sea. Hopefully, the results shed some light onto the formation
control of multiple MSVs discussed in this paper.

MSV possesses many uncertainties in its dynamics such
as payload variations, unmodeled hydrodynamics, and time-
varying ocean disturbances [24]. To overcome such problem,
adaptive control methods have been suggested [25], [26], [27],
[28], [29], [30], [31]. In [25], a projection-based adaptive
controller is developed for ship with parametric uncertainty
and unknown ocean disturbances. In [26], adaptive update
laws are devised to estimate the unknown model parameters
and bounded disturbances. In [25], [26], the uncertainty is
assumed to be parametric. By designing the neural adaptive
controllers, references [27], [28], [29], [30], [31] investigated
the control problem of surface vehicles with unmodeled dy-
namics and ocean disturbances. It is well known that the ocean
disturbances including wind, waves and ocean currents not
only contain low frequency content, but also high frequency
content. In particular, the adaptive methods given in [25], [26],
[27], [28], [29], [30], [31] try to learn the vehicle uncertainty
at arbitrary accuracy. However, from a practical perspective,
only low frequency content can be compensated because the
high frequency content is surely outside the bandwidth of
actuators [32]. Therefore, it is of practical importance to derive
an adaptive controller capable of extracting the low frequency
content of vehicle uncertainties.

This paper considers the coordinated pattern tracking of
networked MSVs in the presence of uncertain kinematics
and kinetics induced by wind, waves and ocean currents.
Distributed pattern tracking controllers depending on the in-
formation of neighboring vehicles are derived based on a
backstepping technique, neural networks and an identifier.
Specifically, the identifier is proposed to estimate the time-
varying ocean currents at the kinematic level. Neural networks

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1842



together with adaptive filtering methods are employed to
extract the low frequency content of the model uncertainty
and ocean disturbances at the kinetic level. Lyapunov analysis
demonstrate that all signals in the closed-loop network are
uniformly ultimately bounded (UUB), and the pattern tracking
errors converge to an adjustable neighborhood of origin. An
illustrative example is given to show the effectiveness and
performance of proposed scheme.

Throughout the paper, ℝ𝑛 denotes the n-dimensional Eu-
clidean Space. ∣∣ ⋅ ∣∣ denotes the Euclidean norm. 𝜆(⋅), 𝜆𝑚𝑖𝑛(⋅)
and 𝜆𝑚𝑎𝑥(⋅) denote the eigenvalue, the smallest eigenvalue
and the largest eigenvalue of a square matrix (⋅), respectively.
𝜎(⋅) denotes the smallest singular value of a given matrix.
𝑑𝑖𝑎𝑔{Λ1, ...,Λ𝑁} represents a block-diagonal matrix with
matrixes Λ𝑖, 𝑖 = 1, ..., 𝑁, on its diagonal.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Consider a system consisting of 𝑁 vehicles and a leader.
Each vehicle is assumed to know its own state and have access
to the state information from a subset of the vehicle group
called the neighbor set denoted by 𝒩𝑖 ⊆ {1, ..., 𝑁} ∖ {𝑖}. If
each vehicle is considered as a node, the neighbor relation can
be described by a graph 𝒢 = {𝒱, ℰ}, where 𝒱 = {𝑛1, ..., 𝑛𝑁}
is a node set and ℰ = {(𝑛𝑖, 𝑛𝑗) ∈ 𝒱×𝒱} is an edge set with the
element (𝑛𝑖, 𝑛𝑗) that describes the communication from node
𝑖 to node 𝑗. Further, define the adjacency matrix 𝒜 = [𝑎𝑖𝑗 ] ∈
ℝ
𝑁×𝑁 with the diagonal entries 𝑎𝑖𝑖 = 0, and the non-diagonal

entries 𝑎𝑖𝑗 = 1, if (𝑛𝑗 , 𝑛𝑖) ∈ ℰ ; 𝑎𝑖𝑗 = 0, otherwise. Define
the Laplacian matrix 𝐿 = [𝑙𝑖𝑗 ] with 𝑙𝑖𝑗 = −𝑎𝑖𝑗 , if 𝑗 ∕= 𝑖, and
𝑙𝑖𝑗 =

∑𝑁
𝑘=1 𝑎𝑖𝑘, otherwise. If 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∀𝑖, 𝑗; then the graph

𝒢 is undirected. If there is a path between any two nodes of
an undirected network, then the graph 𝒢 is connected. Finally,
define a diagonal matrix 𝐵 = 𝑑𝑖𝑎𝑔{𝑏1, ..., 𝑏𝑁} to be a leader
adjacency matrix, where 𝑏𝑖 > 0 if and only if the 𝑖th vehicle
is a neighbor of the leader; otherwise 𝑏𝑖 = 0. For convenience,
let 𝐻 = 𝐿+𝐵. The following lemmas play an important role
in design and analysis of the proposed formation controllers.

Lemma 1 [10]. Let the graph 𝒢 be undirected and con-
nected, and at least one vehicle has access to the leader. Then
the matrix 𝐻 is positive definite.

Definition 1 [36]. Assume that an unknown 𝜃∗ ∈ ℝ
𝑛 exists

∥𝜃∗∥ ≤ 𝜃∗𝑀 with 𝜃∗𝑀 > 0 and let 𝜃 be dented by its estimation.
Then, the projection operator Proj : ℝ𝑛 → ℝ

𝑛 is defined as

Proj(𝑦) ≜
{

𝑦 − 𝜙′(𝜃)𝜙′𝑇 (𝜃)𝑦
∥𝜙′(𝜃)∥2 𝜙(𝜃), if 𝜙(𝜃) ≥ 0 and 𝜙′(𝜃)𝑦 < 0,

𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(1)

where 𝜙 : ℝ𝑛 → ℝ is a continuously differentiable convex
function

𝜙(𝜃) =
𝜃𝑇 𝜃 − 𝜗2

2𝜀𝜃𝜗+ 𝜀2𝜃
, (2)

where 𝜗 and 𝜀𝜃 are positive constants with 𝜗 = 𝜃∗𝑀 . 𝜙′(𝜃) =
∂𝜙/∂𝜃.

Given 𝜃(0) ≤ 𝜗, the projection operator takes the following
properties

∥𝜃(𝑡)∥ ≤ 𝜃𝑀 , ∀ 𝑡 ≥ 0,

∥𝜃∥ ≤ 𝜃𝑀 , ∀ 𝑡 ≥ 0,

𝜃𝑇 [Proj(𝑦)− 𝑦] ≤ 0, (3)

where 𝜃 = 𝜃 − 𝜃∗, 𝜃𝑀 = 𝜗+ 𝜀𝜃, 𝜃𝑀 = 2𝜗+ 𝜀𝜃,

Moreover, the definition of the projection operator can be
generalized to matrices as Proj(𝑌 ), where Θ ∈ ℝ

𝑛×𝑚 and
𝑌 ∈ ℝ

𝑛×𝑚. In this case, it follows from the property (3) that

𝑡𝑟[(Θ−Θ∗)𝑇 (Proj(𝑌 )− 𝑌 )] ≤ 0,Θ∗ ∈ ℝ
𝑛×𝑚, (4)

where Θ∗ denotes the true value of Θ.

B. Problem formulation

Two reference frames are used to describe the motion
of MSV, namely, a local earth-fixed frame and a body-fixed
frame. The components 𝜂𝑖 = [𝑥𝑖, 𝑦𝑖, 𝜓𝑖] are the north-east
positions (𝑥𝑖, 𝑦𝑖) of the vehicle relative to the earth-fixed frame
and the yaw angle 𝜓𝑖 relative to the north. The components of
the velocity vector 𝜈𝑖𝑟 = [𝑢𝑖𝑟, 𝑣𝑖𝑟, 𝑟𝑖]

𝑇 are the surge and sway
velocities relative to ocean currents (𝑢𝑖𝑟, 𝑣𝑖𝑟) and the yaw rate
𝑟𝑖. Here, the fluid is assumed to be irrotational. Consider a
group of 𝑁 MSVs governed by the following model [24] with
kinematics

𝜂̇𝑖 = 𝑅(𝜓𝑖)𝜈𝑖𝑟 + 𝑉𝑖𝑐(𝑡), (5)

and kinetics

𝑀𝑖𝜈̇𝑖𝑟 + 𝐶𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 +𝐷𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 + 𝑔𝑖(𝜈𝑖𝑟) = 𝜏𝑖 + 𝜏𝑖𝑒𝑛(𝑡),
(6)

where

𝑅(𝜓𝑖) =

[
cos𝜓𝑖 − sin𝜓𝑖 0
sin𝜓𝑖 cos𝜓𝑖 0
0 0 1

]

; (7)

where 𝑀𝑖 = 𝑀𝑇
𝑖 ∈ ℝ

3×3, 𝐶𝑖(𝜈𝑖𝑟) ∈ ℝ
3×3, 𝐷𝑖(𝜈𝑖𝑟) ∈ ℝ

3×3
denote the inertia matrix, coriolis/centripetal matrix, and damp-
ing matrix, respectively; 𝑔𝑖(𝜈𝑖𝑟) = [𝑔𝑖𝑢, 𝑔𝑖𝑣, 𝑔𝑖𝑟]

𝑇 ∈ ℝ
3 is

unknown term including the restoring forces due to gravity
and buoyancy forces, and other unmodeled dynamics; 𝜏𝑖 =
[𝜏𝑖𝑢, 𝜏𝑖𝑣, 𝜏𝑖𝑟]

𝑇 ∈ ℝ
3 denotes the control input; 𝜏𝑖𝑒𝑛(𝑡) =

[𝜏𝑖𝑒𝑛𝑢(𝑡), 𝜏𝑖𝑒𝑛𝑣(𝑡), 𝜏𝑖𝑒𝑛𝑟(𝑡)]
𝑇 ∈ ℝ

3 is the resulting environ-
mental force and moment vector due to wind and waves.
𝑉𝑖𝑐(𝑡) = [𝜐𝑖𝑥(𝑡), 𝜐𝑖𝑦(𝑡), 0]

𝑇 ∈ ℝ
3 is the vector representing

the time-varying ocean currents.

Definition 2. A desired geometric formation pattern is
defined as 𝒫 = {𝒫𝑖} where 𝒫𝑖 = [𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝜓]

𝑇 , 𝑖 = 1, ..., 𝑁 ,
and 𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝜓 are constants.

Without lose of generality, assume that
∑𝑁
𝑖=1 𝒫𝑖 =

[0, 0, 0]𝑇 , i.e., the center of the geometric pattern 𝒫 is at the
origin of the earth-fixed frame.

Given a reference point 𝜂𝑟 ∈ ℝ
3, the coordinated pattern

tracking problem is to achieve the formation pattern 𝒫 with a
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desired reference point 𝜂𝑟, i.e.,

lim
𝑡→∞ ∥𝜂𝑖 − 𝜂𝑗 − 𝒫𝑖𝑗∥ ≤ 𝛿1, 𝑖 ∕= 𝑗, (8)

lim
𝑡→∞ ∥

𝑁∑

𝑖=1

𝜂𝑖 − 𝜂𝑟∥ ≤ 𝛿2, (9)

where 𝑃𝑖𝑗 = 𝒫𝑖 − 𝒫𝑗 ; 𝛿1 and 𝛿2 are small positive constants.

The following assumptions are made in the following
controller design.

Assumption 1. The network 𝒢 is undirected and connected.

Assumption 2 [32]. A nonlinear function 𝑓𝑖(𝜒𝑖, 𝑡) can be
approximated by a neural network as

𝑓𝑖(𝜒𝑖, 𝑡) = 𝑊𝑇
𝑖 (𝑡)𝜑𝑖(𝜒𝑖) + 𝜀𝑖(𝜒𝑖), ∀𝜒𝑖 ∈ 𝒟, (10)

where 𝑊𝑖(𝑡) is an unknown time-varying matrix satis-
fying ∥𝑊𝑖(𝑡)∥𝐹 ≤ 𝑊𝑖𝑀 and ∥𝑊̇𝑖∥𝐹 ≤ 𝑊 𝑑

𝑖𝑀 with
𝑊𝑖𝑀 ∈ ℝ,𝑊 𝑑

𝑖𝑀 ∈ ℝ positive constants; 𝜑𝑖(𝜒𝑖) : 𝒟 →
ℝ
𝑠 is a known vector function of the form 𝜑𝑖(𝜒𝑖) =

[𝜑𝑖1(𝜒𝑖), 𝜑𝑖2(𝜒𝑖), ..., 𝜑𝑖𝑠(𝜒𝑖)]
𝑇 satisfying ∥𝜑𝑖∥ ≤ 𝜑𝑖𝑀 with

𝜑𝑖𝑀 a positive constant, and 𝒟 is compact set; 𝜀𝑖(𝜒𝑖) is the
approximation error satisfying ∥𝜀𝑖(𝜒𝑖)∥ ≤ 𝜀𝑖𝑀 with 𝜀𝑖𝑀 a
positive constant.

III. COORDINATED PATTERN TRACKING UNDER
TIME-VARYING OCEAN CURRENTS

This section addresses the pattern stability under the time-
varying ocean currents. At first, an identifier is developed to
precisely identify the unknown time-varying ocean currents.
The identifier is designed at the kinematic level and has a
simple structure. However, extra effort should be made to
derive the stability of the entire system by putting together
the identifier and kinetic control law.

A. Identifier design

From (5), the position dynamics can be described by
{

𝑥̇𝑖 = 𝑢𝑖 cos(𝜓𝑖)− 𝑣𝑖 sin(𝜓𝑖) + 𝜐𝑖𝑥(𝑡),
𝑦̇𝑖 = 𝑢𝑖 sin(𝜓𝑖) + 𝑣𝑖 cos(𝜓𝑖) + 𝜐𝑖𝑦(𝑡).

(11)

Let 𝜐𝑖𝑥(𝑡) and 𝜐𝑖𝑦(𝑡) be the estimate of 𝜐𝑖𝑥(𝑡) and 𝜐𝑖𝑦(𝑡),
respectively, and then a local identifier is constructed as follows
{

˙̂𝑥𝑖 = 𝑢𝑖 cos(𝜓𝑖)− 𝑣𝑖 sin(𝜓𝑖) + 𝜐𝑖𝑥(𝑡)− 𝜅𝑖1𝑥̃𝑖,
˙̂𝑦𝑖 = 𝑢𝑖 sin(𝜓𝑖) + 𝑣𝑖 cos(𝜓𝑖) + 𝜐𝑖𝑦(𝑡)− 𝜅𝑖2𝑦𝑖,

(12)

where 𝑥̃𝑖 = 𝑥̂𝑖 − 𝑥𝑖 and 𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖 are observing errors;
𝜅𝑖1 ∈ ℝ and 𝜅𝑖2 ∈ ℝ are positive constants; 𝜐𝑖𝑥(𝑡) and 𝜐𝑖𝑦(𝑡)
are updated as
{

˙̂𝜐𝑖𝑥(𝑡) = Γ𝑖𝑥Proj{−𝑥̃𝑖 + 𝑘𝑥(𝜐𝑖𝑥𝑓 (𝑡)− 𝜐𝑖𝑥(𝑡))},
˙̂𝜐𝑖𝑦(𝑡) = Γ𝑖𝑦Proj{−𝑦𝑖 + 𝑘𝑦(𝜐𝑖𝑦𝑓 (𝑡)− 𝜐𝑖𝑦(𝑡))}, (13)

where 𝜐𝑖𝑥𝑓 (𝑡) and 𝜐𝑖𝑦𝑓 (𝑡) are low-pass filter weight estimates
of 𝜐𝑖𝑥(𝑡) and 𝜐𝑖𝑦(𝑡) given by

{
˙̂𝜐𝑖𝑥𝑓 (𝑡) = Γ𝑖𝑥𝑓Proj{𝜐𝑖𝑥(𝑡)− 𝜐𝑖𝑥𝑓 (𝑡)},
˙̂𝜐𝑖𝑦𝑓 (𝑡) = Γ𝑖𝑦𝑓Proj{𝜐𝑖𝑦(𝑡)− 𝜐𝑖𝑦𝑓 (𝑡)}, (14)

where 𝑘𝑥 ∈ ℝ, 𝑘𝑦 ∈ ℝ,Γ𝑖𝑥 ∈ ℝ,Γ𝑖𝑦 ∈ ℝ,Γ𝑖𝑥𝑓 ∈ ℝ,Γ𝑖𝑦𝑓 ∈ ℝ

are positive constants. The resulting errors dynamics of 𝑥̃𝑖 and
𝑦𝑖 can be described by

{
˙̃𝑥𝑖 = −𝜅𝑖1𝑥̃𝑖 + 𝜐𝑖𝑥,
˙̃𝑦𝑖 = −𝜅𝑖2𝑦𝑖 + 𝜐𝑖𝑦.

(15)

where 𝜐𝑖𝑥 = 𝜐𝑖𝑥 − 𝜐𝑖𝑥, and 𝜐𝑖𝑦 = 𝜐𝑖𝑦 − 𝜐𝑖𝑦.

The following lemma plays an important role in establish-
ing the stability of the closed-loop system.

Lemma 2. For kinematic dynamics (11) with the identifier
(12) and the adaptive laws (13) (14) guarantee that the error
signals 𝑥̃𝑖, 𝑦𝑖, 𝜐𝑖𝑥, 𝜐𝑖𝑦 are UUB.

Proof. Consider the following Lyapunov function candidate

𝒱𝑜 =
𝑁∑

𝑖=1

{
𝑥̃2
𝑖 + 𝑦2𝑖 + Γ−1𝑖𝑥 𝜐

2
𝑖𝑥 + Γ−1𝑖𝑦 𝜐

2
𝑖𝑦

+ 𝑘𝑥Γ
−1
𝑖𝑥𝑓𝜐

2
𝑖𝑥𝑓 + 𝑘𝑦Γ

−1
𝑖𝑦𝑓𝜐

2
𝑖𝑦𝑓

}
, (16)

where 𝜐𝑖𝑥𝑓 = 𝜐𝑖𝑥𝑓 − 𝜐𝑖𝑥, and 𝜐𝑖𝑦𝑓 = 𝜐𝑖𝑦𝑓 − 𝜐𝑖𝑦. Its time
derivative of which along (15) can be described by

𝒱̇𝑜 =
𝑁∑

𝑖=1

{
− 𝜅𝑖1𝑥̃

2
𝑖 − 𝜅𝑖2𝑦

2
𝑖 + 𝜐𝑖𝑥(𝑥̃𝑖 + Γ−1𝑖𝑥 ˙̂𝜐𝑖𝑥)

+ 𝑘𝑥𝜐𝑖𝑥𝑓Γ
−1
𝑖𝑥𝑓

˙̂𝜐𝑖𝑥𝑓 + 𝜐𝑖𝑦(𝑦𝑖 + Γ−1𝑖𝑦 ˙̂𝜐𝑖𝑦)

+ 𝑘𝑦𝜐𝑖𝑦𝑓Γ
−1
𝑖𝑦𝑓

˙̂𝜐𝑖𝑦𝑓 − 𝜐𝑖𝑥(Γ
−1
𝑖𝑥 + 𝑘𝑥Γ

−1
𝑖𝑥𝑓 )𝜐𝑖𝑥

− 𝜐𝑖𝑦(Γ
−1
𝑖𝑦 + 𝑘𝑦Γ

−1
𝑖𝑦𝑓 )𝜐𝑖𝑦

}
. (17)

Substituting the adaptive laws into (17) yields

𝒱̇𝑜 =
𝑁∑

𝑖=1

{
− 𝜅𝑖1𝑥̃

2
𝑖 − 𝜅𝑖2𝑦

2
𝑖 − 𝜐𝑖𝑥(Γ

−1
𝑖𝑥 + 𝑘𝑥Γ

−1
𝑖𝑥𝑓 )𝜐̇𝑖𝑥

− 𝜐𝑖𝑦(Γ
−1
𝑖𝑦 + 𝑘𝑦Γ

−1
𝑖𝑦𝑓 )𝜐̇𝑖𝑦

}
. (18)

Let 𝜅1 = 𝑑𝑖𝑎𝑔{𝜅11, ..., 𝜅𝑁1}, 𝜅2 = 𝑑𝑖𝑎𝑔{𝜅12, ..., 𝜅𝑁2},
Γ𝑥 = 𝑑𝑖𝑎𝑔{Γ1𝑥, ...,Γ𝑁𝑥}, Γ𝑦 = 𝑑𝑖𝑎𝑔{Γ1𝑦, ...,Γ𝑁𝑦}, Γ𝑥𝑓 =
𝑑𝑖𝑎𝑔{Γ1𝑥𝑓 , ...,Γ𝑁𝑥𝑓}, Γ𝑦𝑓 = 𝑑𝑖𝑎𝑔{Γ1𝑦𝑓 , ...,Γ𝑁𝑦𝑓}, 𝑥̃ =
[𝑥̃1, ..., 𝑥̃𝑁 ]𝑇 , 𝑦 = [𝑦1, ..., 𝑦𝑁 ]𝑇 , 𝜐𝑥 = [𝜐1𝑥, ..., 𝜐𝑁𝑥]

𝑇 , 𝜐𝑦 =
[𝜐1𝑦, ..., 𝜐𝑁𝑦]

𝑇 , and it follows that

𝒱̇𝑜 ≤− 𝑥̃𝑇𝜅1𝑥̃− 𝑦𝑇𝜅2𝑦 − (𝜐𝑇𝑥 Γ
−1
𝑥 + 𝑘𝑥𝜐

𝑇
𝑓𝑥Γ

−1
𝑥𝑓 )𝜐̇𝑥

− (𝜐𝑇𝑦 Γ
−1
𝑦 + 𝑘𝑦𝜐

𝑇
𝑓𝑦Γ
−1
𝑦𝑓 )𝜐̇𝑦. (19)

The projection operation leads to the following bound

∣ − (𝜐𝑇𝑥 Γ
−1
𝑥 + 𝑘𝑥𝜐

𝑇
𝑓𝑥Γ

−1
𝑥𝑓 )𝜐̇𝑥∣ ≤ [𝜆𝑚𝑎𝑥(Γ

−1
𝑥 )

+ 𝑘𝑥𝜆𝑚𝑎𝑥(Γ
−1
𝑥𝑓 )]𝜐𝑥𝑀𝜐𝑑𝑥𝑀 (20)

∣ − (𝜐𝑇𝑦 Γ
−1
𝑦 + 𝑘𝑦𝜐

𝑇
𝑓𝑦Γ
−1
𝑦𝑓 )𝜐̇𝑦∣ ≤ [𝜆𝑚𝑎𝑥(Γ

−1
𝑦 )

+ 𝑘𝑦𝜆𝑚𝑎𝑥(Γ
−1
𝑦𝑓 )]𝜐𝑦𝑀𝜐𝑑𝑦𝑀 (21)

where 𝜐𝑥𝑀 ∈ ℝ, 𝜐𝑦𝑀 ∈ ℝ, 𝜐𝑑𝑥𝑀 ∈ ℝ, 𝜐𝑑𝑦𝑀 ∈ ℝ are positive
constants. Finally, one has

𝒱̇𝑜 ≤− 𝜆𝑚𝑖𝑛(𝜅1)𝑥̃
2 − 𝜆𝑚𝑖𝑛(𝜅2)𝑦

2 + 𝜖𝑜,

with 𝜖𝑜 = [𝜆𝑚𝑎𝑥(Γ
−1
𝑥 ) + 𝑘𝑥𝜆𝑚𝑎𝑥(Γ

−1
𝑥𝑓 )]𝜐𝑥𝑀𝜐𝑑𝑥𝑀 +

[𝜆𝑚𝑎𝑥(Γ
−1
𝑦 ) + 𝑘𝑥𝜆𝑚𝑎𝑥(Γ

−1
𝑦𝑓 )]𝜐𝑦𝑀𝜐𝑑𝑦𝑀 . Note that 𝑥̃ >
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√
𝜖𝑜/𝜆𝑚𝑖𝑛(𝜅1) and 𝑦 >

√
𝜖𝑜/𝜆𝑚𝑖𝑛(𝜅1) renders 𝒱̇𝑜 < 0. It

follows that 𝑥̃ and 𝑦 are UUB. The projection operator ensures
that the weights 𝜐𝑥 and 𝜐𝑦 are contained in compact sets for
all 𝑡, which implies that 𝜐𝑥 and 𝜐𝑦 are UUB. The proof is
complete. □

Remark 1. In [33], an observe is proposed to identify
constant ocean currents. In [34], a directed adaptive method is
employed to identify the constant ocean currents. This paper,
to our best knowledge, is the first to deal with time-varying
ocean currents.

B. Pattern tracking controller design

Step 1. Define two variables
{

𝑧𝑖1 = 𝜂𝑖 − 𝒫𝑖 − 𝜂𝑟,
𝑧𝑖2 = 𝜈𝑖𝑟 − 𝛼𝑖1,

(22)

where 𝛼𝑖1 ∈ ℝ
3 is a virtual control input. Take the time

derivative of 𝑧𝑖1, and it follows that

𝑧̇𝑖1 = 𝑅𝑖𝛼𝑖1 +𝑅𝑖𝑧𝑖2 + 𝑉𝑖𝑐(𝑡), (23)

where 𝑅𝑖 = 𝑅(𝜓𝑖).

Then, a distributed kinematic control law 𝛼𝑖1 based on the
local information is proposed as follows

𝛼𝑖1 =−𝐾𝑖1𝑅
𝑇
𝑖 𝑠𝑖 −𝑅𝑇𝑖 𝑉𝑖𝑐(𝑡). (24)

where 𝑉𝑖𝑐 = [𝜐𝑖𝑥, 𝜐𝑖𝑦, 0]
𝑇 ; 𝐾𝑖1 = 𝑑𝑖𝑎𝑔{𝑘𝑖11, 𝑘𝑖12, 𝑘𝑖13} is

a diagonal matrix with 𝑘𝑖11 ∈ ℝ, 𝑘𝑖12 ∈ ℝ, 𝑘𝑖13 ∈ ℝ being
positive constants; 𝑠𝑖 is defined as

𝑠𝑖 =
∑

𝑗∈𝒩𝑖
𝑎𝑖𝑗(𝜂𝑖 − 𝜂𝑗 − 𝒫𝑖𝑗) + 𝑏𝑖𝑧𝑖1. (25)

where 𝑎𝑖𝑗 and 𝑏𝑖 defined in Section 2.1.1.

Substituting (24) into (23) yields

𝑧̇𝑖1 = −𝐾𝑖1𝑠𝑖 +𝑅𝑖𝑧𝑖2 − 𝑉𝑖𝑐(𝑡), (26)

where 𝑉𝑖𝑐(𝑡) = 𝑉𝑖𝑐(𝑡)− 𝑉𝑖𝑐(𝑡).

Let 𝑧1 = [𝑧𝑇11, ..., 𝑧
𝑇
𝑁1]

𝑇 , 𝑧2 = [𝑧𝑇12, ..., 𝑧
𝑇
𝑁2]

𝑇 ,
𝑠 = [𝑠𝑇1 , ..., 𝑠

𝑇
𝑁 ]𝑇 , 𝑅 = 𝑑𝑖𝑎𝑔{𝑅(𝜓1), ..., 𝑅(𝜓𝑁 )}, 𝐾1 =

𝑑𝑖𝑎𝑔{𝐾11, ...,𝐾𝑁1}, 𝑉𝑐(𝑡) = [𝑉 𝑇
1𝑐(𝑡), ..., 𝑉

𝑇
1𝑐(𝑡)]

𝑇 . Then, the
𝑁 subsystem (23) with (26) can be expressed as

𝑧̇1 =−𝐾1𝑠+𝑅𝑧2 − 𝑉𝑐(𝑡), (27)

Consider a Lyapunov function candidate

𝒱11 =
1

2
𝑧𝑇1 (𝐻 ⊗ 𝐼3)𝑧1, (28)

whose time derivative along (27) is given by

𝒱̇11 =− 𝑠𝑇𝐾1𝑠+ 𝑠𝑇𝑅𝑧2 − 𝑠𝑇𝑉𝑐(𝑡). (29)

Step 2. Taking the time derivative of 𝑧𝑖2 yields

𝑀𝑖𝑧̇𝑖2 =− 𝐶𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 −𝐷𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 − 𝑔𝑖(𝜈𝑖𝑟) + 𝜏𝑖
+ 𝜏𝑖𝑒𝑛(𝑡)−𝑀𝑖𝛼̇𝑖1. (30)

Then, consider the second Lyapunov function candidate

𝒱12 = 𝒱11 + 1
2𝑧
𝑇
2 𝑀𝑧2, (31)

where 𝑀 = 𝑑𝑖𝑎𝑔{𝑀1, ...,𝑀𝑁}. Its time derivative with (30)
is

𝒱̇12 =− 𝑠𝑇𝐾1𝑠− 𝑠𝑇𝑉𝑐(𝑡) +

𝑁∑

𝑖=1

{𝑧𝑖2(−𝐶𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟

−𝐷𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 − 𝑔𝑖(𝜈𝑖𝑟) + 𝜏𝑖 + 𝜏𝑖𝑒𝑛(𝑡)−𝑀𝑖𝛼̇𝑖1 +𝑅𝑇𝑖 𝑠𝑖)}.
(32)

The desired kinetic control law 𝜏𝑖 is chosen as

𝜏𝑖 = −𝐾𝑖2𝑧𝑖2 −𝑅𝑇𝑖 𝑠𝑖 + 𝑓𝑖(𝜒𝑖, 𝑡), (33)

where 𝑓𝑖(𝜒𝑖, 𝑡) = 𝑀𝑖𝛼̇𝑖1 + 𝐶𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 + 𝐷𝑖(𝜈𝑖𝑟)𝜈𝑖𝑟 +
𝑔𝑖(𝜂𝑖, 𝜈𝑖𝑟) − 𝜏𝑖𝑒𝑛(𝑡) with 𝜒𝑖 = [1, 𝜂𝑖, 𝜂𝑗 , 𝜈𝑖𝑟, 𝜈𝑗𝑟]

𝑇 , 𝑗 ∈ 𝒩𝑖
; 𝐾𝑖2 = 𝑑𝑖𝑎𝑔{𝑘𝑖21, 𝑘𝑖22, 𝑘𝑖23} ∈ ℝ

3×3 with 𝑘𝑖21 ∈ ℝ, 𝑘𝑖22 ∈
ℝ, 𝑘𝑖23 ∈ ℝ being positive constants.

Note that without the explicit knowledge of
𝐶𝑖, 𝐷𝑖, 𝑔𝑖,𝑀𝑖, 𝜏𝑖𝑒𝑛(𝑡), the controller given in (33) cannot be
available. Then, let 𝑓𝑖(𝜒𝑖, 𝑡) be approximated by the NN in
(10).

In what follows, a practical kinetic control law is construct-
ed as follows

𝜏𝑖 = −𝐾𝑖2𝑧𝑖2 −𝑅𝑇𝑖 𝑠𝑖 + 𝑊̂𝑇
𝑖 (𝑡)𝜑𝑖(𝜒𝑖), (34)

where 𝑊̂𝑖(𝑡) is an estimate of 𝑊𝑖(𝑡) that updated as

˙̂
𝑊𝑖(𝑡) = Γ𝑖𝑊Proj{−𝜑𝑖(𝜒𝑖)𝑧𝑇𝑖2 + 𝑘𝑊 [𝑊̂𝑖𝑓 (𝑡)− 𝑊̂𝑖(𝑡)]},

(35)

where 𝑊𝑖𝑓 (𝑡) is a low-pass filter weight estimate of 𝑊𝑖(𝑡)
given by

˙̂
𝑊𝑖𝑓 (𝑡) = Γ𝑖𝑓Proj{𝑊̂𝑖(𝑡)− 𝑊̂𝑖𝑓 (𝑡)}, (36)

where 𝑘𝑊 ∈ ℝ,Γ𝑖𝑊 ∈ ℝ,Γ𝑖𝑓 ∈ ℝ are positive constants.

Substituting the control law (34) into (32) yields

𝒱̇12 =− 𝑠𝑇𝐾1𝑠− 𝑠𝑇𝑉𝑐(𝑡)− 𝑧𝑇2 𝐾2𝑧2

+

𝑁∑

𝑖=1

𝑧𝑇𝑖2[𝑊̃
𝑇
𝑖 (𝑡)𝜑𝑖(𝜒𝑖)− 𝜀𝑖], (37)

where 𝐾2 = 𝑑𝑖𝑎𝑔{𝐾12, ...,𝐾𝑁2} and 𝑊̃𝑖(𝑡) = 𝑊̂𝑖(𝑡)−𝑊𝑖(𝑡).
The resulting closed-loop network system can be described by
⎧
⎨

⎩

𝑧̇𝑖1 = −𝐾𝑖1𝑠𝑖 +𝑅𝑖𝑧2𝑖 − 𝑉𝑖𝑐(𝑡),

𝑀𝑖𝑧̇𝑖2 = −𝐾𝑖2𝑧𝑖2 −𝑅𝑇𝑖 𝑠𝑖 + 𝑊̃𝑇
𝑖 (𝑡)𝜑𝑖(𝜒𝑖)− 𝜀𝑖,

˙̃𝑥𝑖 = −𝜅𝑖1𝑥̃𝑖 + 𝜐𝑖𝑥,
˙̃𝑦𝑖 = −𝜅𝑖2𝑦𝑖 + 𝜐𝑖𝑦.

(38)

C. Stability analysis

It is the position to state the result of this paper.

Theorem 1. Consider a networked system consisting of 𝑁
MSVs governed by the dynamics (5) (6) with Assumptions 1
and 2 satisfied. Select the control laws (34) with the adaptive
laws (35) (36). Then, all signals in the closed-loop system are
UUB, and the pattern tracking errors 𝜂𝑖 − 𝜂𝑗 −𝒫𝑖𝑗 satisfy (8)
(9) for some constants 𝛿1 and 𝛿2.
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Proof. Take the following Lyapunov function candidate
𝒱3 = 𝒱1 + 𝒱𝑜, whose time derivative along (37) can be put
into

𝒱̇3 = −𝑠𝑇𝐾1𝑠− 𝑧𝑇2 𝐾2𝑧2 − 𝑠𝑇𝑉𝑐 − 𝑧𝑇2 𝜀

− 𝑡𝑟[(𝑊̃𝑇Γ−1𝑊 + 𝑘𝑊 𝑊̃𝑇
𝑓 Γ−1𝑓 )𝑊̇ ]

− 𝑥̃𝑇𝜅1𝑥̃− 𝑦𝑇𝜅2𝑦 − (𝜐𝑇𝑥 Γ
−1
𝑥 + 𝑘𝑥𝜐

𝑇
𝑓𝑥Γ

−1
𝑥𝑓 )𝑣̇𝑥

− (𝜐𝑇𝑦 Γ
−1
𝑦 + 𝑘𝑦𝜐

𝑇
𝑓𝑦Γ
−1
𝑦𝑓 )𝑣̇𝑦. (39)

Using Young’s inequality, it is easy to verify that

𝒱̇3 ≤ −ℏ1∥𝑠∥2 − ℏ2∥𝑧2∥2 − ℏ3∥𝑥̃∥2 − ℏ4∥𝑦∥2 + 𝜖𝑠,

where ℏ1 = 𝜆𝑚𝑖𝑛(𝐾1) − 1/2; ℏ2 = 𝜆𝑚𝑖𝑛(𝐾2) − 1/2; ℏ3 =
𝜆𝑚𝑖𝑛(𝜅1) − 1/2; ℏ3 = 𝜆𝑚𝑖𝑛(𝜅2) − 1/2; 𝜖𝑠 = 1

2∥𝜀𝑀∥2 +

[𝜆𝑚𝑎𝑥(Γ
−1
𝑊 ) + 𝑘𝑊𝜆𝑚𝑎𝑥(Γ

−1
𝑓 )]𝑊̃𝑀𝑊 𝑑

𝑀 + 𝜖𝑜.

Noting that either ∥𝑠∥ > √𝜖𝑠/ℏ1, or ∥𝑧2∥ >
√
𝜖𝑠/ℏ2, or

∥𝑥̃∥ >√𝜖𝑠/ℏ3, or ∥𝑦∥ >√𝜖𝑠/ℏ4 renders 𝒱̇3 < 0, it follows
that 𝑠, 𝑧2, 𝑥̃, 𝑦 are UUB. Noting that 𝑠 = (𝐻 ⊗ 𝐼3)𝑧1 and the
fact 𝐻 is positive definite By Lemma 1, it follows that

∥𝑧𝑖1∥ ≤ ∥𝑧1∥ ≤
√

𝜖

𝜆𝑚𝑖𝑛(𝐻)ℏ1
, (40)

implying (8) with 𝛿2 taken as

𝛿1 = 2

√
𝜖

𝜆𝑚𝑖𝑛(𝐻)ℏ1
.

Also, note that

∥
𝑁∑

𝑖=1

𝜂𝑖
𝑁
− 𝜂𝑟∥ ≤

∑𝑁
𝑖=1 ∥𝑞𝑖1∥
𝑁

, (41)

which leads to (8) with 𝛿3 taken as

𝛿2 =

√
𝜖

𝜆𝑚𝑖𝑛(𝐻)ℏ1
.

This completes the proof. □

IV. AN EXAMPLE

Consider a system consisting of five vehicles with the
information exchange topology given in Figure 1. The model
parameters can be found in [35]. The control parameters are
set to 𝐾𝑖1 = 𝑑𝑖𝑎𝑔{0.2, 0.2, 0.2}, 𝐾𝑖2 = 𝑑𝑖𝑎𝑔{75, 22, 68.4},
Γ𝑖𝑊 = 1000, Γ𝑖𝑓 = 2, 𝑘𝑊 = 0.1. The desired pattern
is chosen as 𝒫1 = [−1.5, 0, 0]𝑇 , 𝒫2 = [−1.5 cos(72∘),
1.5 sin(72∘), 0]𝑇 , 𝒫3 = [−1.5 cos(72∘), −1.5 sin(72∘), 0]𝑇 ,
𝒫4 = [1.5 cos(36∘), 0.7 sin(36∘), 0]𝑇 , 𝒫5 = [1.5 cos(36∘),
−1.5 sin(36∘), 0]𝑇 . The desired formation center is set to
𝜂𝑟 = {(2, 1, 0)𝑇 , (4, 1, 45∘)𝑇 }.

V1 V2 V3 V4 V5V0

Fig. 1. Communication topology

Simulation results are shown in Figures 2-4. Figure 2 shows
that the formation pattern cannot be stabilized due to the time-
varying ocean currents. By contrast, Figure 3 demonstrates the
formation is well maintained by the proposed identifier-based
pattern controller. Figure 4 verifies that the time-varying ocean
currents can be identified accurately by the proposed identifier.

Fig. 2. Formation trajectories without identifier (t=120s)

Fig. 3. Formation trajectories with identifier (t=120s)

V. CONCLUSIONS

This paper considered the coordinated pattern tracking
problem of multiple marine surface vehicles with uncertain
kinematics and kinetics. Neural networks, identifier and back-
stepping techniques are employed to devise the distributed
pattern tracking controllers, under which a stationary formation
can be reached for any undirected connected graphs. Lyapunov
stability analysis demonstrate that all signals in the closed-
loop systems are uniformly ultimately bounded. The main
advantage lies in the fact the proposed control scheme leads
to adaptive pattern controllers with guaranteed low frequency
control signals, which facilities the practical implementations
under hazardous sea environment. Simulation results showed
the efficacy of the proposed cooperative controllers.
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