
 
 

 

  

Abstract— In this paper, a spiking growing algorithm (SGA) 
is proposed for optimizing the structure of radial basis function 
(RBF) neural network. Inspired by the synchronous behavior of 
spiking neurons, the spiking strength (ss) of the hidden neurons 
is defined as the criteria of SGA, which investigates a new way to 
simulate the connections between hidden and output neurons of 
RBF neural network. This SGA-based RBF (SGA-RBF) neural 
network can self-organize the hidden neurons online, to achieve 
the appropriate network efficiency. Meanwhile, to ensure the 
accuracy of SGA-RBF neural network, the structure-adjusting 
and parameters-training phases are performed simultaneously. 
Simulation results demonstrate that the proposed method can 
obtain a higher precision in comparison with some other 
existing methods. 

Index Terms—Spiking-based mechanism, spiking-based 
growing algorithm, self-organizing radial basis function neural 
network, nonlinear system. 

I. INTRODUCTION 
EING inherited from the concept of biological receptive 
fields, radial basis function (RBF) neural network has 

been proposed. Meanwhile, due to the simple structure and 
universal approximation ability, RBF neural network has 
been widely used for nonlinear system modeling, adaptive 
control, and fault diagnosis [1]–[3]. However, most of these 
studies fixed the number of hidden neurons [4]. Thus there are 
two main disadvantages: if the number of hidden neurons is 
too large, heavy computational burden and over-fitting 
phenomenon will be occurred. On the contrary, if the number 
of hidden neurons is too small, it may likely to with a result of 
low precision [5]. One of the challenges for RBF neural 
network is to self-organize the structure to improve the 
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approximation accuracy. 
In order to design a proper size of RBF neural network, 

some methods and strategies have been proposed to realize 
the self-organizing adjustment of RBF structure [6]. Chen et 
al. proposed an orthogonal least squares (OLS) algorithm to 
add the hidden neurons one by one until catching the required 
network [7]. However, the OLS algorithm has a heavy 
computing burden which calculated by the process of 
Gram-Schmidt orthogonalization, especially for large 
training data set [8]. To overcome this problem, some 
improved OLS algorithms have been proposed in [9]–[11]. 
These algorithms can improve the training speed to organize 
the structure of RBF neural network. But, all these algorithms 
are dependent on the total training samples, this means that 
the OLS-based methods are primarily used for offline 
learning [12].  

Recently, some sensitivity analysis (SA) methods have 
been proposed to design the structure of RBF neural network. 
Shi et al. proposed a SA algorithm for constructing the 
structure of RBF neural network [12]. The number of hidden 
neurons can be calculated by the maximization of the output’s 
sensitivity to the training data. However, it is difficult to own 
the geometric probability density functions of the input 
variables [13]. To decompose the variance of the output as a 
sum of contributions of each input variable, Saltelli et al. used 
the Fourier transform sensitivity method to decompose the 
signal function into an infinite number of different frequency 
sine signals [14]. Han et al. introduced a Fourier transform 
SA algorithm to design a dynamic RBF neural network [15]. 
The simulation results show that the network performances, 
such as approximation accuracy, are improved. However, 
ill-conditioned problems may occur because of their 
stochastic nature.    

Resource allocation network (RAN) [16] was designed by 
Platt and RANEK [17], which trained with extended Kalman 
filter (EKF), was developed and improved based on the RAN. 
To avoiding the scale of RBF become unnecessarily large, the 
minimal resources allocating network (MRAN) proposed 
with the concept of the contribution of neuron to the overall 
network output [18]–[19]. However, various parameters and 
thresholds in pruning process impede its application for 
solving complex nonlinear problems. Huang et al. proposed 
the growing and pruning RBF (GAP-RBF) [20], and 
generalized growing and pruning RBF (GGAP-RBF) [21] 
which relies on the concept of neuron’s significance. Though 
these algorithms generate RBF models in terms of 
compactness and generalization ability, the significance relies 
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on all the input information.  
Moreover, some optimization methods have been 

employed to organize the RBF neural network [22]. 
Ferentions et al. proposed a genetic algorithm which is a 
biological plausible to reduce the hidden neurons [23].  Yao et 
al. and Alex et al. respectively proposed particle swarm 
optimization algorithms to train the structure and parameters 
of RBF neural network [24]–[25]. These algorithms can 
realize the construction of RBF neural network. However, 
these optimization methods are computation expensive, 
especially when the search space is huge. 

Different from above algorithms, this paper constructs the 
RBF neural network via mimic biological neurons systems 
and information processing ability of the human brain 
[26]–[27]. A novel structure growing approach (SGA) is 
proposed to design the RBF neural networks. The 
structure-adjusting phase and parameters-training phase are 
performed simultaneously for the SGA-RBF neural network. 

The rest of the paper is organized as follows. Section 2 
describes the RBF neural network briefly. The concrete 
spiking-based structure adjusting mechanism and parameters 
training methods are given in Section 3. In Section 4, the 
computation complexity of proposed SGA-RBF neural 
network is discussed and compared with the other methods. In 
Section 5, function approximation experiments and nonlinear 
system modeling simulation are studied to verifying the 
effectiveness of the proposed algorithm, and the comparison 
with several other approaches presented. Finally, this paper 
concludes with a discussion of the further development in 
Section 6. 

I. STRUCTURE OF RADIAL BASIS FUNCTION (RBF) NEURAL 
NETWORK  

The typical RBF neural network has a three-layer forward 
structure. The first layer is input layer, which passes the input 
data to the hidden layer. The neurons in the hidden layer 
simultaneously receive and process the information from the 
input layer, each neuron in this layer has a Gaussian 
activation function. The third layer is a linear calculation 
called output layer.  

A multi-input-single-output (MISO) RBF neural network 
is shown in Fig.1. The input vector is x=[x1, x2, …, xi], the 
total number of hidden neurons is J. For the pth sample, the 
I-dimensional input values are mapped into the J-dimensional 
outputs by the function x 
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where ‖ ‖represents the Euclidean distance between vector 
xp and cj, j=1,2,…,J, Фj( ) is the activation function of the jth 
hidden neuron, cj and σj  represent the center and width of the 
jth hidden neuron respectively. 

For the pth sample, the network output is defined as  
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where wj is the weight connection between the jth hidden unit 
and output neuron. 

 

 

                     
II. THE SPIKING-GROWING ALGORITHM-BASED RBF 

(SGA-RBF) NEURAL NETWORK 
Two parts are given in this section: the SGA mechanism 

for structure design and the gradient learning approach for 
parameters adjusting.  

A. SGA Mechanism 
In [27], the Leaky Integrate-and-Fire (LIF) model of 

biological neurons is expressed as: 

( ) ( ),m
dV V t RI t
dt

τ = − +                    (3) 

where V(t) is the membrane potential of biological neuron, τm 
is the membrane time constant (describe the time span that the 
action potential decreases to 0), R is the membrane resistance 
and I(t) is an injected current. The postsynaptic voltage varies 
with time as shown in Fig.2. 

 
In this paper, the time scales of neurons’ duty-cycle are 

given as [28]  
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where τ1 and τ2 denotes different time scales. kτ is a sign that 
characterize the slope of synaptic activation.  

Define τ2=0, k=τ1, based on the connection mode between 
different cortex, an function for spiking strength (ss), is 
designed as  

sin( )
ln( 1),j

j

kss kτ Φ ε+
= − −                     (5) 
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Fig. 2. The postsynaptic voltage over time 
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Fig. 1. The structure of RBF neural network 
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where both k and kτ are constants, Фj is the output value of the 
jth hidden neuron. The sine function is introduced into the 
spiking strength function due to the characteristic of duty 
period in spiking neurons, and ε is a small positive number for 
the purpose of avoiding the calculation trouble when 
sin(Фj)=0.  

In biological spiking neurons, the membrane potential 
value indicates the excitement level at different times. The 
relationship between the spiking strength (ss) and the outputs 
of hidden neuron (Фj) in (5) is clearly depicted in Fig.3. The 
curve presents periodically spiking. 

 
      If the value of ssj is larger than the firing threshold ss0 and 
the curve is on a growth trend, the neuron is an excited one 
and will be splitted. When the value of ssj is less than the 
resting potential, the jth neuron is inactive one and will be 
deleted to obtain a parsimonious structure of the network. 

According to (5), the derivation of ss can be rewritten as   
( ) ( )
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To make the growing mechanism effectively, the concept 
of squared error percentage Er is defined as [29]–[30] 

                          2max min
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omax, omin represent the maximum value and minimum value 
of the proposed SGA-RBF output, P is the total number of 
training samples. 

The centers and widths of the new added hidden neurons 
are expressed as [31]–[32]: 
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where cj and σj 
represents the center and variance of pre-split 

jth neuron, Nnew is the number of the new added unit, cjm and 
σjm respectively represents the center and variance of the new 
added mth neuron, αm ∈  [0.95,1.05], βm ∈  [0,0.1]. 
   The output weights of the new added hidden neurons can be 
defined as [31]–[32] 
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where wjm represents the connection weight between the new 
added neuron m and the output layer, wj represents the 
connection weight between the pre-split hidden neuron and 
the output layer, e is the current error of the network.  

                   
B.  The Gradient Learning Approach 

The parameters were trained contains three parts: the 
output weight, the center and the width, the performance 
evaluation function as follows: 

,p p pe y o= −                              (10) 
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where yp is the desired output and op is the actual output. 
There will be: 

               1

,
P

p
p

p p

j j

E o
w w e

=

∂ ∂
∂ ∂ ×= − ∑                                 (12) 

              

( )

( )
1

,j p

j p

P

p
pj j

p pE o
eΦ

Φσ σ
=

∂ ∂ ∂
∂ ∂ ∂= − ×∑x

x                        (13) 

          1

( )

( )
.pj

pj

P

p
pj j

p pE o
c c eΦ

Φ
=

∂ ∂ ∂
∂ ∂ ∂ ×= − ∑x

x
                       (14)                  

According to the equations (1)-(2) and (10)-(11), the 
equations (12)-(14) can be rewritten as 
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Then the gradient learning approach is  
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Based on the former analysis, the details of proposed 
SGA-RBF adjustment process is summarized as follows. 
Step1: Create an initial RBF neural network with a small 
number of hidden neurons, the number of neurons in the input 
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Fig. 3.  The curve between ss and hidden unit output  
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layer equals to the dimensions of the input vector. The 
number of output layer units depends on the output variables. 
The center and width of Gaussian function and the output 
weight is randomly generated.  
Step2: The output weights, centers and widths of hidden units 
are trained by the gradient descent algorithm. 
Step3: Calculate the equations (5)-(7), if the three rules are 
satisfied: ssj is larger than the threshold ss0 and its derivative 
is a positive number, Er  is no less than the expectation value 
E0 such as  
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                              (21) 

split the jth neuron, adjust the structure of the RBF neural 
network and reset the parameters of the new added units 
based on the equation (8)-(9). 
Step4: Train the output weight, the center and width of 
hidden neurons by the gradient descent algorithm. 
Step5: If the training phase meets the precision requirement 
or reaches the training epochs, stop the iteration. Otherwise 
go to Step3.  

                        
 

III. COMPUTATIONAL COMPLEXITY 
Both the time computation cost and memory space 

requirement of the proposed SGA-RBF are discussed in this 
section.  

 
 
 
 

 
For each sample, the complexity level in the training phase 

depends both on the number of hidden neurons and the 
iterations. The time complexity of the gradient descent 
method is O (J×iters) and the structure growing phase is O (J 
×iters). So the computational complexity in the structure 
adjusting and parameter training process which performs 
simultaneously is O (J×iters). Where, J is the number of 
hidden neurons and the iters means the total epochs in the 
training phase, generally, J<<iters≤Maxepoch. The OLS 
method relies on the implementation of the pseudoinverse 
technique to calculate the weight matrix. The time complexity 
of the pseudoinverse method is O (J 3), where J depends on 
the maximum number of hidden neurons, which equals to the 
number of input samples. If the number of the training 
samples is slightly larger, the OLS method will need more 
training time than the SGA algorithm.  

The memory space requirement for proposed SGA-RBF is 
3(1, J) + (I, J) + (P, J), the space occupation for the centers of 
hidden neurons is (I, J), for the outputs of hidden neurons is 
(P, J), for the radius of hidden neurons, the weight values and 
ss values of hidden neurons are (1, J). The memory space 
occupation for the traditional OLS method is 4(1, J) + (I, J) + 
2(P, P), including the space of centers (I, J), radius (1, J), 

weight vector (1, J), output of hidden neuron (1, J) and the 
inverse weight vector (1, J). In addition, the space 
requirement for Gram-Schmidt orthogonalization process is 
2(P, P), P is the total number of training samples. From the 
above calculation results, the space complexity of OLS RBF 
neural network is larger than the proposed SGA-RBF neural 
network. 

                     
IV. SIMULATIONS 

To demonstrate the effectiveness and applicability of the 
proposed SGA-RBF neural network, three experiments are 
discussed.  

The root mean square error is used to evaluate the training 
procedure in the experiments. 

2
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p
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e P
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= ∑                       (22) 

where p is the number of samples, P is the total number of 
training samples. 

A. Nonlinear Hermit function 
The first experiment is designed to approximate the 

nonlinear Hermit polynomial function, which was proposed 
in [33], by the proposed SGA-RBF neural network. 

  

2
21.1(1 2 )exp( ),

2
xy x x= − + −

                     
(23)

 
the variable x satisfies the uniform distribution U ∈ [-4, 4]. 
For each trail, the size of training samples is 100, the size of 
testing samples is 101. The initial number of hidden neurons 
is 2, the output weights and hidden function parameters are 
randomly generated.   

For the sample p the output of RBF neural network is op, 
the desired output is yp, the error is calculated by (11). The 
max training epochs is 200. The experimental results are 
shown in Figs. 4-6 and Table1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 shows the RMSE values in the training process 

within 200 steps. The error values present oscillation when 
new neurons are added to the hidden layer. However, the 
RMSE values decrease faster after the structure organization. 
Fig. 5 gives the concrete dynamic adjustment form of the 
hidden neurons in the training process. The results show that 
the proposed spiking-based mechanism can self-organize the 
network structure. 
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Table.1 The computational complexity comparison   
Computation Cost SGA-RBF Maxepoch×J 
 OLS J3 
Memory Requirement SGA-RBF 3(1,J)+(I,J)+ (P, J) 
 OLS 4(1,J)+(I,J)+2(P,P) 
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In Fig. 6, the outputs of the SGA-RBF neural network are 

presented to compare with real values. The testing outputs of 
the proposed SGA-RBF neural network close to the desired 
outputs. The performance comparison with other algorithms 
is presented in Table 2. 

Based on Table 2, after 200 training process, the number of 
hidden neurons in proposed SGA-RBF neural network is 
smaller than the traditional RBF neural network and Resource 
allocating network (RAN). Meanwhile, the proposed 
SGA-RBF neural network is more accuracy than the two 
algorithms. By comparing with the Orthogonal least squares 
(OLS) method [34] and Bayesian information criterion 
(BIC-OLS) method [34], the number of hidden neurons in 

proposed SGA algorithm is larger and the testing RMSE 
value is far less than the two methods. Comprehensive 
comparison among all algorithms presented in Table 2, the 
training RMSE value is the smallest and the training time is 
the shortest in the first four methods. Moreover, the testing 
RMSE value is the minimum one in all listed algorithms. The 
highest testing accuracy means that SGA-RBF owns the best 
generalization ability in all listed methods. A higher precision 
with a more parsimonious structure, shorter training time, it 
indirectly suggests that the proposed SGA mechanism is 
efficient to design the RBF neural network by plausible 
biological mode. 

Table 2 demonstrates that the training time of the 
proposed SGA-RBF is shorter than that of OLS method. 
This result manifests that the SGA algorithm is efficient to 
construct the RBF neural network. 
 

B. 2-D sine function 
Approximate the two-dimensional function [31] 

                             

( ) ( )sin sinx y
z

x y
=

⋅                                 
(24)

 
There are two inputs (x, y) and one output z in the proposed 

SGA-RBF neural network. The variables x and y are both 
generated randomly within [-1, 1]. The size of training 
samples and testing samples are both 400. The hidden output 
weights and hidden activation function parameters are 
randomly generated within a small scope. The initial number 
of hidden neurons is 3. The pre-set training error was 0.01. 
The experimental results are shown as Figs. 7-9. 

 
Fig. 7 indicates the RMSE values in the training process 

within 500 steps. The RMSE values are also with slight 
oscillation when new neurons are inserted to the hidden layer. 
And the RMSE values keep a state of decrease quickly when 
the structure is adjusted. Fig. 8 gives the dynamic details of 
the hidden neurons in the training process. The testing outputs 
of SGA-RBF neural network is compared in Fig. 9. It can be 
seen that the testing values of the proposed SGA-RBF neural 
network are close to the real points.  

Fig. 8 shows that the ultimate number of hidden neurons is 
12 after the training process. The testing RMSE value is 
0.0021. The traditional RBF neural network were 
experimented to compare with the proposed SGA-RBF neural 
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Fig. 6.  The testing sample output 

Table.2 The performance comparison of different algorithms   

Algorithms Hidden 
neurons 

Running 
time(s) 

RMSE 
training testing 

SGA-RBF 7 0.65 0.0366 0.0012 

RBF 10 9.46 0.0889 0.0028 

RAN[16]   14*  1.12*   0.0433*   0.0073* 
     OLS[34]        6   0.80*   0.4489* 0.5050 
BIC-OLS[34] 3 * * 0.1793 
*There are no results listed in the original papers. 
The number of RBF algorithm was dynamically selected from the 
consecutive integer 1 to 30. The RBF neural network with 10 hidden 
neurons has the best training and testing RMSE values. 
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Fig. 7.  The training root-mean-square-error 
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network. The number of hidden neurons in the RBF neural 
network was chosen from consecutive integer 1 to 40. In the 
dynamic selection process, the RBF neural network, which 
has 15 neurons in the hidden layer, obtains the smallest 
training RMSE value. The testing RMSE value of the RBF 
neural network is 0.0099. It can be seen that proposed 
SGA-RBF obtains a smaller testing RMSE value using fewer 
hidden neurons. The results suggest that the proposed SGA 
method can self-organize the network structure.  

 
 

 
C. Nonlinear system modeling  

One of the nonlinear dynamic systems is given by (25), 
which has been used in several literatures, notably [35], [36], 
to demonstrate the effectiveness of RBF algorithms 

          
( ) ( ) ( ) ( )

( ) ( ) ( )2 2

1 2.5
y 1 ,

1 1
y t y t y t

t u t
y t y t

− +⎡ ⎤⎣ ⎦+ = +
+ + −       

(25)
 

where t ∈ [1,500] y(0)=0, y(1)=0, u(t)=sin(2πt/25). 
The model is defined as follows: 

( ) ( ) ( ) ( )( )ˆ 1 , 1 , .y t f y t y t u t+ = −                       (26) 

There are three inputs (y(t), y(t-1), u(t)) and one output 
ŷ (t+1) in the SGA-RBF neural network. In the training 
phase, A set of 400 points were chosen between t=1 and 400 
according to (26) as training data. Another 100 input-target 
points in the interval [401, 500] were used as the testing data. 
The initial number of hidden neurons was 2. The pre-set 

training error value was 0.01. The centers, the radius and 
weights were generated randomly in a small range. The 
experiment results are presented in Figs. 10-11 and Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

 
Fig.10 shows the error values in the training process. The 

error values are in a small range periodically except the first 
few training data. The testing outputs of the SGA-RBF neural 
network are shown to make a comparison with the desired 
output values in Fig.11. The testing output values of the 
SGA-RBF neural network are nearly equal to the desired 
outputs. The performance comparison with other algorithms 
is presented in Table 3.  

Table 3 shows that the proposed SGA-RBF neural network 
not only has the smallest number of hidden neurons in the 
listed algorithms but has a smaller training and testing RMSE 
values. The smaller number of hidden neurons means that the 
proposed SGA obtains a more compact network. The better 
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Fig. 9.  The testing results 

Table.3 The performance comparison of different algorithms 

Algorithms 
    

Hidden   
neurons 

Running 
time(s) 

RMSE 

training testing 

     SGA-RBF       23     0.92 0.0175 0.0166 

RBF 
OLS[37] 

      54 
      65 

104.38 
    1.91 

0.0243 
0.0288 

0.0194 
0.4452 

RBFAFS[37] 35 * 0.1384 * 
Farag’s model[37]     75         * 0.1930 0.2010 
*The results are no listed in original papers. 
The number of RBF algorithm was dynamically chosen from the consecutive 
integer 1 to 80. The RBF neural network with 54 hidden neurons has the 
smallest training and testing RMSE values. 
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Fig. 8.  The number of hidden units in the training phase 
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RMSE value in the testing phase suggests that the proposed 
SGA-RBF has better generalization ability. Moreover, the 
training time is much shorter than the dynamic RBF neural 
network and OLS algorithm, which also demonstrates the 
conclusion obtained in Section 4 that the time cost used in 
SGA algorithm is less than OLS method.  It indirectly again 
implies that the proposed SGA is efficient to design RBF 
neural networks, which works in a plausible biological mode. 

V. CONCLUSION 
This paper proposed a SGA for self-organizing RBF neural 

network. The proposed SGA-RBF neural network derives 
from the cerebral cortex aims to obtain a compact structure 
and precise operation. The simulation results show that the 
proposed SGA-RBF neural network is suitable to 
approximate the nonlinear functions and model the nonlinear 
systems. From the experimental results, we can safely draw 
these conclusions:  

1) The proposed SGA-RBF neural network can realize the 
dynamic adjustment with a result of self-organizing structure. 

2) The growing mechanism, determined both by the ss of 
the hidden neurons and the errors of the training process, can 
improve the accuracy of the SGA-RBF neural network.  

3) In the training phase, parameters of the new inserted 
neurons were redefined. The experiment results prove that 
oscillation of the errors weakened by the compensation.  

4) Three experiments revealed that the SGA-RBF neural 
network has a satisfactory generalization power. 

In the future work, a pruning algorithm will be designed for 
the SGA-RBF neural network. In addition, some effective 
learning algorithms will be considered for training the 
parameters. 
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