

Abstract— In this paper, a spiking growing algorithm (SGA)
is proposed for optimizing the structure of radial basis function
(RBF) neural network. Inspired by the synchronous behavior of
spiking neurons, the spiking strength (ss) of the hidden neurons
is defined as the criteria of SGA, which investigates a new way to
simulate the connections between hidden and output neurons of
RBF neural network. This SGA-based RBF (SGA-RBF) neural
network can self-organize the hidden neurons online, to achieve
the appropriate network efficiency. Meanwhile, to ensure the
accuracy of SGA-RBF neural network, the structure-adjusting
and parameters-training phases are performed simultaneously.
Simulation results demonstrate that the proposed method can
obtain a higher precision in comparison with some other
existing methods.

Index Terms—Spiking-based mechanism, spiking-based
growing algorithm, self-organizing radial basis function neural
network, nonlinear system.

I. INTRODUCTION
EING inherited from the concept of biological receptive
fields, radial basis function (RBF) neural network has

been proposed. Meanwhile, due to the simple structure and
universal approximation ability, RBF neural network has
been widely used for nonlinear system modeling, adaptive
control, and fault diagnosis [1]–[3]. However, most of these
studies fixed the number of hidden neurons [4]. Thus there are
two main disadvantages: if the number of hidden neurons is
too large, heavy computational burden and over-fitting
phenomenon will be occurred. On the contrary, if the number
of hidden neurons is too small, it may likely to with a result of
low precision [5]. One of the challenges for RBF neural
network is to self-organize the structure to improve the

H. G. Han is with College of Electronic and Control Engineering, Beijing

University of Technology, Beijing, and also with the Department of
Mechanical and Biomedical Engineering, City University of Hong Kong,
Kowloon, Hong Kong. (Corresponding author to provide phone:
010-67391631; e-mail: rechardhan@sina.com).

L. D. Wang studies at College of Electronic and Control Engineering,
Beijing University of Technology, Beijing, China. (e-mail:
wanglidan01@163.com).

J. F. Qiao is with College of Electronic and Control Engineering, Beijing
University of Technology, Beijing, China. (e-mail: isibox@sina.com).

G. Feng is with the Department of Mechanical and Biomedical
Engineering, City University of Hong Kong, Kowloon, Hong Kong, and also
with the Nanjing University of Science and Technology, Nanjing 210094,
China(e-mail: megfeng@cityu.edu.hk).

This work was supported by the National Science Foundation of China
under Grant 61203099; National Science Foundation of China under Grant
61034008; Ph.D. Programs Foundation of Ministry of Education of China
under Grant 20121103120020; Beijing Municipal Natural Science
Foundation under Grant 4122006; Beijing Nova Program under Grant
Z131104000413007; HongKong Scholor Program under Grant XJ2013018.

approximation accuracy.
In order to design a proper size of RBF neural network,

some methods and strategies have been proposed to realize
the self-organizing adjustment of RBF structure [6]. Chen et
al. proposed an orthogonal least squares (OLS) algorithm to
add the hidden neurons one by one until catching the required
network [7]. However, the OLS algorithm has a heavy
computing burden which calculated by the process of
Gram-Schmidt orthogonalization, especially for large
training data set [8]. To overcome this problem, some
improved OLS algorithms have been proposed in [9]–[11].
These algorithms can improve the training speed to organize
the structure of RBF neural network. But, all these algorithms
are dependent on the total training samples, this means that
the OLS-based methods are primarily used for offline
learning [12].

Recently, some sensitivity analysis (SA) methods have
been proposed to design the structure of RBF neural network.
Shi et al. proposed a SA algorithm for constructing the
structure of RBF neural network [12]. The number of hidden
neurons can be calculated by the maximization of the output’s
sensitivity to the training data. However, it is difficult to own
the geometric probability density functions of the input
variables [13]. To decompose the variance of the output as a
sum of contributions of each input variable, Saltelli et al. used
the Fourier transform sensitivity method to decompose the
signal function into an infinite number of different frequency
sine signals [14]. Han et al. introduced a Fourier transform
SA algorithm to design a dynamic RBF neural network [15].
The simulation results show that the network performances,
such as approximation accuracy, are improved. However,
ill-conditioned problems may occur because of their
stochastic nature.

Resource allocation network (RAN) [16] was designed by
Platt and RANEK [17], which trained with extended Kalman
filter (EKF), was developed and improved based on the RAN.
To avoiding the scale of RBF become unnecessarily large, the
minimal resources allocating network (MRAN) proposed
with the concept of the contribution of neuron to the overall
network output [18]–[19]. However, various parameters and
thresholds in pruning process impede its application for
solving complex nonlinear problems. Huang et al. proposed
the growing and pruning RBF (GAP-RBF) [20], and
generalized growing and pruning RBF (GGAP-RBF) [21]
which relies on the concept of neuron’s significance. Though
these algorithms generate RBF models in terms of
compactness and generalization ability, the significance relies

A Spiking-based Mechanism for Self-organizing RBF
Neural Networks

Honggui Han, Lidan Wang, Junfei Qiao, and Gang Feng

B

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3775

on all the input information.
Moreover, some optimization methods have been

employed to organize the RBF neural network [22].
Ferentions et al. proposed a genetic algorithm which is a
biological plausible to reduce the hidden neurons [23]. Yao et
al. and Alex et al. respectively proposed particle swarm
optimization algorithms to train the structure and parameters
of RBF neural network [24]–[25]. These algorithms can
realize the construction of RBF neural network. However,
these optimization methods are computation expensive,
especially when the search space is huge.

Different from above algorithms, this paper constructs the
RBF neural network via mimic biological neurons systems
and information processing ability of the human brain
[26]–[27]. A novel structure growing approach (SGA) is
proposed to design the RBF neural networks. The
structure-adjusting phase and parameters-training phase are
performed simultaneously for the SGA-RBF neural network.

The rest of the paper is organized as follows. Section 2
describes the RBF neural network briefly. The concrete
spiking-based structure adjusting mechanism and parameters
training methods are given in Section 3. In Section 4, the
computation complexity of proposed SGA-RBF neural
network is discussed and compared with the other methods. In
Section 5, function approximation experiments and nonlinear
system modeling simulation are studied to verifying the
effectiveness of the proposed algorithm, and the comparison
with several other approaches presented. Finally, this paper
concludes with a discussion of the further development in
Section 6.

I. STRUCTURE OF RADIAL BASIS FUNCTION (RBF) NEURAL
NETWORK

The typical RBF neural network has a three-layer forward
structure. The first layer is input layer, which passes the input
data to the hidden layer. The neurons in the hidden layer
simultaneously receive and process the information from the
input layer, each neuron in this layer has a Gaussian
activation function. The third layer is a linear calculation
called output layer.

A multi-input-single-output (MISO) RBF neural network
is shown in Fig.1. The input vector is x=[x1, x2, …, xi], the
total number of hidden neurons is J. For the pth sample, the
I-dimensional input values are mapped into the J-dimensional
outputs by the function x

() exp ,
2

p j
j p 2

j

-
-

2σ
Φ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

x c
x

(1)

where ‖ ‖represents the Euclidean distance between vector
xp and cj, j=1,2,…,J, Фj() is the activation function of the jth
hidden neuron, cj and σj represent the center and width of the
jth hidden neuron respectively.

For the pth sample, the network output is defined as

()
1

,
J

p j j p
j

o w Φ
=

=∑ x

(2)

where wj is the weight connection between the jth hidden unit
and output neuron.

II. THE SPIKING-GROWING ALGORITHM-BASED RBF

(SGA-RBF) NEURAL NETWORK
Two parts are given in this section: the SGA mechanism

for structure design and the gradient learning approach for
parameters adjusting.

A. SGA Mechanism
In [27], the Leaky Integrate-and-Fire (LIF) model of

biological neurons is expressed as:

() (),m
dV V t RI t
dt

τ = − + (3)

where V(t) is the membrane potential of biological neuron, τm
is the membrane time constant (describe the time span that the
action potential decreases to 0), R is the membrane resistance
and I(t) is an injected current. The postsynaptic voltage varies
with time as shown in Fig.2.

In this paper, the time scales of neurons’ duty-cycle are

given as [28]

() 1 2
2 ,

1 exp()
m V

V
kτ

τ ττ τ −
= +

+ −

(4)

where τ1 and τ2 denotes different time scales. kτ is a sign that
characterize the slope of synaptic activation.

Define τ2=0, k=τ1, based on the connection mode between
different cortex, an function for spiking strength (ss), is
designed as

sin()
ln(1),j

j

kss kτ Φ ε+
= − − (5)

-80
-100

-40
-60

0
-20

40
20

V/mv

t/s

resting potential

threshold value

membrane
potential

Fig. 2. The postsynaptic voltage over time

1

i

Φ1

Φ2

Φ3

ΦJ

∑

x1

xi

wj

o

…

…

Input Layer Hidden Layer Output Layer

Fig. 1. The structure of RBF neural network

3776

where both k and kτ are constants, Фj is the output value of the
jth hidden neuron. The sine function is introduced into the
spiking strength function due to the characteristic of duty
period in spiking neurons, and ε is a small positive number for
the purpose of avoiding the calculation trouble when
sin(Фj)=0.

In biological spiking neurons, the membrane potential
value indicates the excitement level at different times. The
relationship between the spiking strength (ss) and the outputs
of hidden neuron (Фj) in (5) is clearly depicted in Fig.3. The
curve presents periodically spiking.

 If the value of ssj is larger than the firing threshold ss0 and
the curve is on a growth trend, the neuron is an excited one
and will be splitted. When the value of ssj is less than the
resting potential, the jth neuron is inactive one and will be
deleted to obtain a parsimonious structure of the network.

According to (5), the derivation of ss can be rewritten as
() ()

() () ()
cos

.
sin sin

j j

j j j

kk

d k

dss τ Φ
Φ Φ ε Φ ε

Φ
=
⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦

 (6)

To make the growing mechanism effectively, the concept
of squared error percentage Er is defined as [29]–[30]

 2max min

1

100 ,
P

r p
p

o o
E e

P =

−
= × ∑ (7)

omax, omin represent the maximum value and minimum value
of the proposed SGA-RBF output, P is the total number of
training samples.

The centers and widths of the new added hidden neurons
are expressed as [31]–[32]:

,
,

1, 2, , ,

jm m j m

jm m j

newm N

α β
σ α σ

= +⎧
⎪ =⎨
⎪ =⎩

c c x

(8)

where cj and σj
represents the center and variance of pre-split

jth neuron, Nnew is the number of the new added unit, cjm and
σjm respectively represents the center and variance of the new
added mth neuron, αm ∈ [0.95,1.05], βm ∈ [0,0.1].
 The output weights of the new added hidden neurons can be
defined as [31]–[32]

()
()

1

,

1,

1, 2, , ,

new

j j p

new jm p

N
mm

new

jm m

w e

N

m N

w
Φ

Φ

γ

γ

=

⎧ ⋅ −
⎪

⋅⎪
⎪⎪ =⎨
⎪ =⎪
⎪
⎪⎩

=

∑

x

x

(9)

where wjm represents the connection weight between the new
added neuron m and the output layer, wj represents the
connection weight between the pre-split hidden neuron and
the output layer, e is the current error of the network.

B. The Gradient Learning Approach

The parameters were trained contains three parts: the
output weight, the center and the width, the performance
evaluation function as follows:

,p p pe y o= − (10)

2

1

1 () ,
2

P

p p p
p

E y o
=

= −∑
 (11)

where yp is the desired output and op is the actual output.
There will be:

 1

,
P

p
p

p p

j j

E o
w w e

=

∂ ∂
∂ ∂ ×= − ∑ (12)

()

()
1

,j p

j p

P

p
pj j

p pE o
eΦ

Φσ σ
=

∂ ∂ ∂
∂ ∂ ∂= − ×∑x

x (13)

 1

()

()
.pj

pj

P

p
pj j

p pE o
c c eΦ

Φ
=

∂ ∂ ∂
∂ ∂ ∂ ×= − ∑x

x
 (14)

According to the equations (1)-(2) and (10)-(11), the
equations (12)-(14) can be rewritten as

()
1

,j

P

p p
p

p

j

E
w e Φ

=

∂
∂ −= ∑ x (15)

2
,

3

()
1 ,

pj j p j j

jj

P
p

p p
e w

E
Φ

σσ

−
=∂

∂ = −
∑ x y c

 (16)

()

2

()
1 .

p jpj j

j

p

j

P
p

pE
c

e w Φ

σ

−

=∂
∂ = −

∑ X cx

 (17)

Then the gradient learning approach is

1() () ,p
j p j p w

j

E
w w

w
η+

∂
= −

∂
x x (18)

1() () ,j p j p
j

pE
σσ σ η σ+ = −

∂
∂x x (19)

1 1() () .j p j p c

p

j

E
cc c η+ +

∂
∂= −x x

(20)

Based on the former analysis, the details of proposed
SGA-RBF adjustment process is summarized as follows.
Step1: Create an initial RBF neural network with a small
number of hidden neurons, the number of neurons in the input

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

hidden units output

sp
ik

in
g

st
re

ng
th

spiking strength

firing threshold

resting potential

Fig. 3. The curve between ss and hidden unit output

3777

layer equals to the dimensions of the input vector. The
number of output layer units depends on the output variables.
The center and width of Gaussian function and the output
weight is randomly generated.
Step2: The output weights, centers and widths of hidden units
are trained by the gradient descent algorithm.
Step3: Calculate the equations (5)-(7), if the three rules are
satisfied: ssj is larger than the threshold ss0 and its derivative
is a positive number, Er is no less than the expectation value
E0 such as

0

0

,

0,

.

j

j

r

d

E E

ss ss
dss

Φ

⎧ >
⎪
⎪ >⎨
⎪
⎪ ≥⎩

 (21)

split the jth neuron, adjust the structure of the RBF neural
network and reset the parameters of the new added units
based on the equation (8)-(9).
Step4: Train the output weight, the center and width of
hidden neurons by the gradient descent algorithm.
Step5: If the training phase meets the precision requirement
or reaches the training epochs, stop the iteration. Otherwise
go to Step3.

III. COMPUTATIONAL COMPLEXITY
Both the time computation cost and memory space

requirement of the proposed SGA-RBF are discussed in this
section.

For each sample, the complexity level in the training phase

depends both on the number of hidden neurons and the
iterations. The time complexity of the gradient descent
method is O (J×iters) and the structure growing phase is O (J
×iters). So the computational complexity in the structure
adjusting and parameter training process which performs
simultaneously is O (J×iters). Where, J is the number of
hidden neurons and the iters means the total epochs in the
training phase, generally, J<<iters≤Maxepoch. The OLS
method relies on the implementation of the pseudoinverse
technique to calculate the weight matrix. The time complexity
of the pseudoinverse method is O (J 3), where J depends on
the maximum number of hidden neurons, which equals to the
number of input samples. If the number of the training
samples is slightly larger, the OLS method will need more
training time than the SGA algorithm.

The memory space requirement for proposed SGA-RBF is
3(1, J) + (I, J) + (P, J), the space occupation for the centers of
hidden neurons is (I, J), for the outputs of hidden neurons is
(P, J), for the radius of hidden neurons, the weight values and
ss values of hidden neurons are (1, J). The memory space
occupation for the traditional OLS method is 4(1, J) + (I, J) +
2(P, P), including the space of centers (I, J), radius (1, J),

weight vector (1, J), output of hidden neuron (1, J) and the
inverse weight vector (1, J). In addition, the space
requirement for Gram-Schmidt orthogonalization process is
2(P, P), P is the total number of training samples. From the
above calculation results, the space complexity of OLS RBF
neural network is larger than the proposed SGA-RBF neural
network.

IV. SIMULATIONS

To demonstrate the effectiveness and applicability of the
proposed SGA-RBF neural network, three experiments are
discussed.

The root mean square error is used to evaluate the training
procedure in the experiments.

2

1

RMSE ,
P

p
p

e P
=

= ∑ (22)

where p is the number of samples, P is the total number of
training samples.

A. Nonlinear Hermit function
The first experiment is designed to approximate the

nonlinear Hermit polynomial function, which was proposed
in [33], by the proposed SGA-RBF neural network.

2
21.1(1 2)exp(),

2
xy x x= − + −

(23)

the variable x satisfies the uniform distribution U ∈ [-4, 4].
For each trail, the size of training samples is 100, the size of
testing samples is 101. The initial number of hidden neurons
is 2, the output weights and hidden function parameters are
randomly generated.

For the sample p the output of RBF neural network is op,
the desired output is yp, the error is calculated by (11). The
max training epochs is 200. The experimental results are
shown in Figs. 4-6 and Table1.

Fig. 4 shows the RMSE values in the training process

within 200 steps. The error values present oscillation when
new neurons are added to the hidden layer. However, the
RMSE values decrease faster after the structure organization.
Fig. 5 gives the concrete dynamic adjustment form of the
hidden neurons in the training process. The results show that
the proposed spiking-based mechanism can self-organize the
network structure.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The training epochs

R
M

S
E

Fig. 4. The training error

Table.1 The computational complexity comparison
Computation Cost SGA-RBF Maxepoch×J
 OLS J3
Memory Requirement SGA-RBF 3(1,J)+(I,J)+ (P, J)
 OLS 4(1,J)+(I,J)+2(P,P)

3778

In Fig. 6, the outputs of the SGA-RBF neural network are

presented to compare with real values. The testing outputs of
the proposed SGA-RBF neural network close to the desired
outputs. The performance comparison with other algorithms
is presented in Table 2.

Based on Table 2, after 200 training process, the number of
hidden neurons in proposed SGA-RBF neural network is
smaller than the traditional RBF neural network and Resource
allocating network (RAN). Meanwhile, the proposed
SGA-RBF neural network is more accuracy than the two
algorithms. By comparing with the Orthogonal least squares
(OLS) method [34] and Bayesian information criterion
(BIC-OLS) method [34], the number of hidden neurons in

proposed SGA algorithm is larger and the testing RMSE
value is far less than the two methods. Comprehensive
comparison among all algorithms presented in Table 2, the
training RMSE value is the smallest and the training time is
the shortest in the first four methods. Moreover, the testing
RMSE value is the minimum one in all listed algorithms. The
highest testing accuracy means that SGA-RBF owns the best
generalization ability in all listed methods. A higher precision
with a more parsimonious structure, shorter training time, it
indirectly suggests that the proposed SGA mechanism is
efficient to design the RBF neural network by plausible
biological mode.

Table 2 demonstrates that the training time of the
proposed SGA-RBF is shorter than that of OLS method.
This result manifests that the SGA algorithm is efficient to
construct the RBF neural network.

B. 2-D sine function
Approximate the two-dimensional function [31]

() ()sin sinx y
z

x y
=

⋅
(24)

There are two inputs (x, y) and one output z in the proposed

SGA-RBF neural network. The variables x and y are both
generated randomly within [-1, 1]. The size of training
samples and testing samples are both 400. The hidden output
weights and hidden activation function parameters are
randomly generated within a small scope. The initial number
of hidden neurons is 3. The pre-set training error was 0.01.
The experimental results are shown as Figs. 7-9.

Fig. 7 indicates the RMSE values in the training process

within 500 steps. The RMSE values are also with slight
oscillation when new neurons are inserted to the hidden layer.
And the RMSE values keep a state of decrease quickly when
the structure is adjusted. Fig. 8 gives the dynamic details of
the hidden neurons in the training process. The testing outputs
of SGA-RBF neural network is compared in Fig. 9. It can be
seen that the testing values of the proposed SGA-RBF neural
network are close to the real points.

Fig. 8 shows that the ultimate number of hidden neurons is
12 after the training process. The testing RMSE value is
0.0021. The traditional RBF neural network were
experimented to compare with the proposed SGA-RBF neural

-4 -3 -2 -1 0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

3

Input x

O
ut

pu
t

y

The testing curve

desired output

SGA-RBF output

Fig. 6. The testing sample output

Table.2 The performance comparison of different algorithms

Algorithms Hidden
neurons

Running
time(s)

RMSE
training testing

SGA-RBF 7 0.65 0.0366 0.0012

RBF 10 9.46 0.0889 0.0028

RAN[16] 14* 1.12* 0.0433* 0.0073*
 OLS[34] 6 0.80* 0.4489* 0.5050
BIC-OLS[34] 3 * * 0.1793
*There are no results listed in the original papers.
The number of RBF algorithm was dynamically selected from the
consecutive integer 1 to 30. The RBF neural network with 10 hidden
neurons has the best training and testing RMSE values.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The training epochs

R
M

S
E

Fig. 7. The training root-mean-square-error

0 20 40 60 80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

the training epochs

th
e

nu
m

be
r

of
 h

id
de

n
un

its

Fig. 5 The number of hidden neurons

3779

network. The number of hidden neurons in the RBF neural
network was chosen from consecutive integer 1 to 40. In the
dynamic selection process, the RBF neural network, which
has 15 neurons in the hidden layer, obtains the smallest
training RMSE value. The testing RMSE value of the RBF
neural network is 0.0099. It can be seen that proposed
SGA-RBF obtains a smaller testing RMSE value using fewer
hidden neurons. The results suggest that the proposed SGA
method can self-organize the network structure.

C. Nonlinear system modeling

One of the nonlinear dynamic systems is given by (25),
which has been used in several literatures, notably [35], [36],
to demonstrate the effectiveness of RBF algorithms

() () () ()

() () ()2 2

1 2.5
y 1 ,

1 1
y t y t y t

t u t
y t y t

− +⎡ ⎤⎣ ⎦+ = +
+ + −

(25)

where t ∈ [1,500] y(0)=0, y(1)=0, u(t)=sin(2πt/25).
The model is defined as follows:

() () () ()()ˆ 1 , 1 , .y t f y t y t u t+ = − (26)

There are three inputs (y(t), y(t-1), u(t)) and one output
ŷ (t+1) in the SGA-RBF neural network. In the training
phase, A set of 400 points were chosen between t=1 and 400
according to (26) as training data. Another 100 input-target
points in the interval [401, 500] were used as the testing data.
The initial number of hidden neurons was 2. The pre-set

training error value was 0.01. The centers, the radius and
weights were generated randomly in a small range. The
experiment results are presented in Figs. 10-11 and Table 2.

Fig.10 shows the error values in the training process. The

error values are in a small range periodically except the first
few training data. The testing outputs of the SGA-RBF neural
network are shown to make a comparison with the desired
output values in Fig.11. The testing output values of the
SGA-RBF neural network are nearly equal to the desired
outputs. The performance comparison with other algorithms
is presented in Table 3.

Table 3 shows that the proposed SGA-RBF neural network
not only has the smallest number of hidden neurons in the
listed algorithms but has a smaller training and testing RMSE
values. The smaller number of hidden neurons means that the
proposed SGA obtains a more compact network. The better

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0.7

0.8

0.9

1

x value

sine(x,y)

y value

z
va

lu
e

desired output

SGA-RBF output

Fig. 9. The testing results

Table.3 The performance comparison of different algorithms

Algorithms

Hidden
neurons

Running
time(s)

RMSE

training testing

 SGA-RBF 23 0.92 0.0175 0.0166

RBF
OLS[37]

 54
 65

104.38
 1.91

0.0243
0.0288

0.0194
0.4452

RBFAFS[37] 35 * 0.1384 *
Farag’s model[37] 75 * 0.1930 0.2010
*The results are no listed in original papers.
The number of RBF algorithm was dynamically chosen from the consecutive
integer 1 to 80. The RBF neural network with 54 hidden neurons has the
smallest training and testing RMSE values.

0 50 100 150 200 250 300 350 400 450 500
3

4

5

6

7

8

9

10

11

12

The training epochs

th
e

nu
m

be
r

of
 h

id
de

n
la

ye
r

un
its

Fig. 8. The number of hidden units in the training phase

0 50 100 150 200 250 300 350 400
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

The training samples

er
ro

r

Fig. 10. The training error

400 410 420 430 440 450 460 470 480 490 500
-2

-1

0

1

2

3

4

The testing samples

ou
tp

ut
 y

desired output

SGA-RBF output

Fig. 11. The testing output

3780

RMSE value in the testing phase suggests that the proposed
SGA-RBF has better generalization ability. Moreover, the
training time is much shorter than the dynamic RBF neural
network and OLS algorithm, which also demonstrates the
conclusion obtained in Section 4 that the time cost used in
SGA algorithm is less than OLS method. It indirectly again
implies that the proposed SGA is efficient to design RBF
neural networks, which works in a plausible biological mode.

V. CONCLUSION
This paper proposed a SGA for self-organizing RBF neural

network. The proposed SGA-RBF neural network derives
from the cerebral cortex aims to obtain a compact structure
and precise operation. The simulation results show that the
proposed SGA-RBF neural network is suitable to
approximate the nonlinear functions and model the nonlinear
systems. From the experimental results, we can safely draw
these conclusions:

1) The proposed SGA-RBF neural network can realize the
dynamic adjustment with a result of self-organizing structure.

2) The growing mechanism, determined both by the ss of
the hidden neurons and the errors of the training process, can
improve the accuracy of the SGA-RBF neural network.

3) In the training phase, parameters of the new inserted
neurons were redefined. The experiment results prove that
oscillation of the errors weakened by the compensation.

4) Three experiments revealed that the SGA-RBF neural
network has a satisfactory generalization power.

In the future work, a pruning algorithm will be designed for
the SGA-RBF neural network. In addition, some effective
learning algorithms will be considered for training the
parameters.

ACKNOWLEDGMENT
This work was supported by the National Science

Foundation of China under Grant 61203099; National
Science Foundation of China under Grant 61034008; Ph.D.
Programs Foundation of Ministry of Education of China
under Grant 20121103120020; Beijing Municipal Natural
Science Foundation under Grant 4122006; Beijing Nova
Program under Grant Z131104000413007; Hong Kong
Scholor Program under Grant XJ2013018.

REFERENCES
[1] M. Bortman, M. Aladjem, “A growing and pruning method for radial

basis function networks,” IEEE Transactions on Neural Networks, vol.
20, no. 1, pp. 1039–1045, June 2009.

[2] H. G. Han, J. F. Qiao, “Adaptive computation algorithm for RBF neural
network,” IEEE Transactions on Neural Networks, vol. 23, no. 2, pp.
342–347, February 2012.

[3] J. Moody, C. J. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Computation, vol. 1, no. 2, pp. 281–294,
March 2008.

[4] S. Ferrari, F. Bellocchio, V. Piuri, “A hierarchical RBF online learning
algorithm for real-time 3-D scanner,” IEEE Transactions on Neural
Networks, vol. 21, no. 2, pp. 275–282, February 2010.

[5] W.K. Chen, Linear Networks and Systems (Book style). Belmont,
CA: Wadsworth, 1993, pp. 123–135.

[6] T. T. Xie, Y. Hao, H. Joel, “Fast and efficient second-order method for
training radial basis function networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 23, no. 4, pp. 609–619, April
2012.

[7] S. Chen, C. F. N. Cowan, P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE
Transactions on Neural Networks, vol. 2, no. 2, pp. 302–309, March
1991.

[8] S. Venkatesh, S. Gopal,” Orthogonal least square center selection
technique- A robust scheme for multiple source partial discharge
pattern recognition using radial basis probabilistic neural network,”
Expert Systems with Applications, vol. 38, no. 7, pp. 8978–8989, July
2011.

[9] S. Chen, J. Wigger, “Fast orthogonal least squares algorithm for
efficient subset model selection,” IEEE Transactions on Signal
Processing, vol. 43, no. 7, pp. 1713–1715, July 1995.

[10] B. Walczak, D. L. Massart, “The radial basis functions-partial least
squares approach as a flexible non-linear regression technique,”
Analytica Chimica Acta, vol. 331, no. 3, pp. 177–185, September 1996.

[11] J. B. Gomm, D. L. Yu, “Selecting radial basis function network centers
with recursive orthogonal least squares training,” IEEE Transactions
on Neural Networks, vol. 2, no. 11, pp. 306–314, March 2000.

[12] D. Shi, D. S. Yeung, J. Gao, “Sensitivity analysis applied to the
construction of radial basis function networks,” Neural Networks, vol.
18, no. 7, pp. 951–957, September 2005.

[13] B. Sudret, “Global sensitivity analysis using polynomial chaos
expansions,” Reliability Engineering and System Safety, vol. 93, no. 7,
pp. 964–979, July 2008.

[14] A. Saltelli, S. Tarantola, K. Chan, “A quantitative, model independent
method for global sensitivity analysis of model output,” Technometrics,
vol. 41, no. 1, pp. 39–56, March 1999.

[15] J. F. Qiao, H. G. Han, “A repair algorithm for radial basis function
neural network and its application to chemical oxygen demand
modeling,” International Journal of Neural Systems, vol. 20, no. 1, pp.
63–74, January 2010.

[16] J. Platt, “A resource allocating network for function interpolation,”
Neural Computation, vol. 3, no. 2, pp. 213–225, March 1991.

[17] V. Kadirkamanathan, M. Niranjan, “A function estimation approach to
sequential learning with neural networks,” Neural Computation, vol. 5,
no. 6, pp. 954–975, November 1993.

[18] Y. Lu, N. Sundararajan, P. Saratchandran, “A sequential learning
scheme for function approximation using minimal radial basis function
neural networks,” Neural Computation, vol. 9, no. 2, pp. 461–478,
February 1997.

[19] L. Yingwei, N. Sundararajan, P. Saratchandran, “Identification of
time-varying nonlinear systems using minimal radial basis function
neural networks,” IEEE Proceedings Part D-Control Theory and
Applications, vol. 144, no. 1, pp. 1–7, March 1997.

[20] G. B. Huang, P. Saratchandran, N. Sundararajan, “An efficient
sequential learning algorithm for growing and pruning RBF (GAP-RBF)
networks,” IEEE Transactions on Neural Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 34, no. 6, pp. 2284–2292,
December 2004.

[21] G. B. Huang, P. Saratchandran, N. Sundararajan, “A generalized
growing and pruning RBF(GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1,
pp. 57–67, January 2005.

[22] A. Alex, H. Sarimveis, B. George, “A new algorithm for online
structure and parameter adaptation of RBF networks,” Neural Networks,
vol. 16, no. 7, pp. 1003–1017, September 2003.

[23] K. P. Ferentions, “Biological engineering applications of feedforward
neural networks designed and parameterized by genetic algorithms,”
Neural Networks, vol. 18, no. 7, pp. 934–950, September 2005.

[24] J. J. Yao, J. Yang, L. M. Wang, “A HAMPSO-RBF algorithm applied
to target localization,” AASRI Conf. Computational Intelligence and
Bioinformatics, vol. 1, pp. 183–188, June 2012.

[25] A. Alexandridis, E. Chondrodima, H. Sarimveis, “Radial basis function
network training using a nonsymmetric partition of the input space and
particle swarm optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 2, pp. 219–230, February 2013.

[26] Y. Xu, X. Q. Zeng, L. X. Han, J. Yang, “A supervised multi-spike
learning algorithm based on gradient descent for spiking neural
networks,” Neural Networks, vol. 43, no. 2, pp. 99–113, February
2013.

3781

[27] C. Glackin, L. Maguire, L. McDaid, J. Wade, “Synchrony: A
spiking-based mechanism for processing sensory stimuli,” Neural
Networks, vol. 32, no. 2, pp. 26–34, August 2012.

[28] S. Alexander, I. Kastalskiy, V. Kazantsev, “Pattern retrieval in a
three-layer oscillatory network with a context dependent synaptic
connectivity,” Neural Networks, vol. 33, no. 4, pp. 67–75,
September 2012.

[29] M. Islam, A. Sattear, F. Amin, X. Yao, K. Murase, “A new constructive
algorithm for architectureal and functional adaptation of artificial
neural networks,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 39, no. 6, pp. 1590–1605,
December 2009.

[30] Y. W. Lu, N. Sundararajan, P. Saratchandran, “Performance evaluation
of a sequential minimal radial basis function(RBF) neural network
learning algorithm,” IEEE Transactions on Neural Networks, vol. 9,
no. 2, pp. 308–318, March 1998.

[31] H. G. Han, J. F. Qiao, “Prediction of activated sludge bulking based on
a self-organizing RBF neural network,” Journal of Process Control,
vol. 22, no. 6, pp. 1103–1112, July 2012.

[32] H. G. Han, J. F. Qiao, “Identification and modeling of nonlinear
dynamic systems using a novel self-organizing RBF-based approach,”
Automatica, vol. 48, no. 8, pp. 1729–1734, June 2012.

[33] D. J. C. Mackay, “Bayesian Interpolation,” Neural Computation, vol. 4,
no. 3, pp. 415–447, May 1992.

[34] P. Zhou, D. H. Li, H. Wu, F. Cheng, “The automatic model selection
and variable kernel width for RBF neural networks,” Neurocomputing,
vol. 74, no. 17, pp. 3628–3637, October 2011.

[35] R. Enrique, M. S. Josep, “Performing feature selection with multilayer
perceptrons,” IEEE Transactions on Neural Networks, vol. 19, no. 3,
pp. 431–441, March 2008.

[36] G. B. Huang, P. Saratchandran, N. Sundararajan, “A generalized
growing and pruning RBF(GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1,
pp. 57–67, January 2005.

[37] G. Leng, T. M. McGinnity, G. Prasad, “Design for self-organizing
fuzzy neural networks based on genetic algorithms,” IEEE
Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 755–766, December
2006.

3782

