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Abstract—Kernel spectral clustering (KSC) solves a weighted
kernel principal component analysis problem in a primal-dual
optimization framework. It results in a clustering model using
the dual solution of the problem. It has a powerful out-of-sample
extension property leading to good clustering generalization w.r.t.
the unseen data points. The out-of-sample extension property
allows to build a sparse model on a small training set and
introduces the first level of sparsity. The clustering dual model is
expressed in terms of non-sparse kernel expansions where every
point in the training set contributes. The goal is to find reduced
set of training points which can best approximate the original
solution. In this paper a second level of sparsity is introduced
in order to reduce the time complexity of the computationally
expensive out-of-sample extension. In this paper we investigate
various penalty based reduced set techniques including the Group
Lasso, L0, L1 + L0 penalization and compare the amount of
sparsity gained w.r.t. a previous L1 penalization technique. We
observe that the optimal results in terms of sparsity corresponds
to the Group Lasso penalization technique in majority of the
cases. We showcase the effectiveness of the proposed approaches
on several real world datasets and an image segmentation dataset.

I. INTRODUCTION

Clustering algorithms are widely used tools in fields like
data mining, machine learning, graph compression and many
other tasks. The aim of clustering is to divide data into natural
groups present in a given dataset. Clusters are defined such
that the data present within the group are more similar to
each other in comparison to the data between clusters. Spectral
clustering methods [1], [2] and [3] are generally better than
the traditional k-means techniques. A new Kernel Spectral
Clustering (KSC) algorithm based on weighted kernel PCA
formulation was proposed in [4]. The method was based on
a model built in a primal-dual optimization framework. The
model had a powerful out-of-sample extension property which
allows to infer cluster affiliation for unseen data. The KSC
methodology has been extensively applied for task of data
clustering [4], [5], [6], [7] and community detection [8], [9],
[10] in large scale networks.

The data points are projected to the eigenspace and the
projections are expressed in terms of non-sparse kernel expan-
sions. In [5], a method to sparsify the clustering model was
proposed by exploiting the line structure of the projections
when the clusters are well formed and well separated. How-
ever, the method fails when the clusters are overlapping and

for real world datasets where the projections in the eigenspace
do not follow a line structure as mentioned in [6]. In [6], the
authors used an L2 + L1 penalization to produce a reduced
set to approximate the original solution vector. Although the
authors propose it as an L2 + L1 penalization technique, the
actual penalty on the weight vectors is L1 penalty and the loss
function is squared loss function and hence the name. There-
fore in this paper we refer to the previous proposed approach
as L1 penalization technique. It is well known that the L1

regularization introduces sparsity as shown in [11]. However,
the resulting reduced set is neither the sparsest nor the most
optimal w.r.t. the quality of clustering for the entire dataset. In
this paper we propose alternative penalization techniques like
Group Lasso [12] and [13], L0 and L1+L0 penalizations. The
Group Lasso penalty is ideal for clusters as it results in groups
of relevant data points. The L0 regularization calculates the
number of non-zero terms in the vector. The L0-norm results in
a non-convex and NP-hard optimization problem. We modify
the convex relaxation of L0-norm based iterative sparsification
procedure introduced in [14] for classification. We apply it
to obtain the optimal reduced sets for sparse kernel spectral
clustering.

The main advantage of these sparse reductions is that it
results in much simpler and faster predictive models. It allows
to reduce the time complexity for the computationally expen-
sive out-of-sample extensions and also reduces the memory
requirements for building the test kernel matrix.

II. KERNEL SPECTRAL CLUSTERING

We first provide a brief description of the kernel spectral
clustering methodology according to [4].

A. Primal-Dual Weighted Kernel PCA framework

Given a dataset D = {xi}
Ntr

i=1
, xi ∈ R

d, the training points
are selected by maximizing the quadratic Rènyi criterion as
depicted in [6], [15] and [18]. This introduces the first level
of sparsity by building the model on a subset of the dataset.
Here xi represents the i

th training data point and the training
set is represented by Xtr. The number of data points in the
training set is Ntr. Given D and the number of clusters k, the
primal problem of the spectral clustering via weighted kernel

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2436



PCA is formulated as follows [4]:

min
w(l),e(l),bl

1

2

k−1
∑

l=1

w
(l)⊺

w
(l) −

1

2Ntr

k−1
∑

l=1

γle
(l)⊺

D
−1

Ω
e
(l)

such that e
(l) = Φw

(l) + bl1Ntr
, l = 1, . . . , k − 1,

(1)

where e
(l) = [e

(l)
1 , . . . , e

(l)

Ntr
]⊺ are the projections onto the

eigenspace, l = 1, . . . , k−1 indicates the number of score vari-
ables required to encode the k clusters, D

−1

Ω
∈ R

Ntr×Ntr is the
inverse of the degree matrix associated to the kernel matrix Ω.
Φ is the Ntr ×nh feature matrix, Φ = [φ(x1)

⊺; . . . ;φ(xNtr
)⊺]

and γl ∈ R
+ are the regularization constants. We note that

Ntr ≪ N i.e. the number of points in the training set is
much less than the total number of data points in the dataset.
The kernel matrix Ω is obtained by calculating the similarity
between each pair of data points in the training set. Each
element of Ω, denoted as Ωij = K(xi, xj) = φ(xi)

⊺
φ(xj) is

obtained for example by using the radial basis function (RBF)
kernel. The clustering model is then represented by:

e
(l)
i = w

(l)⊺

φ(xi) + bl, i = 1, . . . , Ntr, (2)

where φ : R
d → R

nh is the mapping to a high-dimensional
feature space nh, bl are the bias terms, l = 1, . . . , k − 1.

The projections e
(l)
i represent the latent variables of a set of

k − 1 binary cluster indicators given by sign(e
(l)
i ) which can

be combined with the final groups using an encoding/decoding
scheme. The decoding consists of comparing the binarized
projections w.r.t. codewords in the codebook and assigning
cluster membership based on minimal Hamming distance. The
dual problem corresponding to this primal formulation is:

D
−1

Ω
MDΩα

(l) = λlα
(l)

, (3)

where MD is the centering matrix which is defined as MD =

INtr
− (

(1Ntr
1

⊺

Ntr
D

−1

Ω
)

1
⊺

Ntr
D

−1

Ω
1Ntr

). The α
(l) are the dual variables and

the positive definite kernel function K : R
d × R

d → R plays
the role of similarity function. This dual problem is closely
related to the random walk model as shown in [4].

B. Out-of-Sample Extensions Model

The projections e
(l) define the cluster indicators for the

training data. In the case of an unseen data point x, the
predictive model becomes:

ê
(l)(x) =

Ntr
∑

i=1

α
(l)
i K(x, xi) + bl. (4)

This out-of-sample extension property allows kernel spectral
clustering to be formulated in a learning framework with
training, validation and test stages for better generalization.
The validation stage is used to obtain the model parameters
like the kernel parameter (σ for RBF kernel) and the number
of clusters k in the dataset. The data points corresponding to
the validation set are also selected by maximizing the quadratic
Rènyi entropy criterion.

C. Model Selection

The original KSC formulation in [4] works well assuming
piece-wise constant eigenvectors and using the line structure
of the projections of the validation points in the eigenspace.
It uses an evaluation criterion called Balanced Line Fit (BLF)
for model selection i.e. for selection of k and σ for the RBF
function. However, this criterion works well only in case of
well separated clusters. So, we use the Balanced Angular Fit
(BAF) criterion proposed in [8] and [7] for cluster evaluation.
This criterion works on the principle of angular similarity
and is efficient when the clusters are either well separated or
overlapping. The BAF criterion varies from [-1, 1] and higher
values are better for a given value of k.

III. SPARSE REDUCTIONS TO KSC MODEL

A. Related Work

In classical spectral clustering one needs to store the N×N

matrix where N is the total number of points in the dataset.
One then has to perform an eigen-decomposition of this matrix.
The time complexity of this eigen-decomposition is O(N3).
In the case of KSC we can build the training model using a
training set (Ntr ≪ N ) and use the out-of-sample extension
property to predict the cluster affiliation for unseen data. This
leads to the first level of sparsity. However, the projections of
the data points in the eigenspace are expressed in terms of non-
sparse kernel expansions as reflected in (4). This non-sparsity

is a result of the KKT condition: w
(l) =

∑Ntr

i=1
α

(l)
i φ(xi).

Here w
(l) represents the optimal representation of the primal

weight vectors and comprises of linear combination of the
mapped training data points in the feature space. When using
a universal kernel like the RBF kernel the feature space
comprises infinite dimensions. Thus, we first create an explicit
feature map using the Nyström approximation as in [16] and
[17]. This explicit feature map is created using the training
points Xtr and the feature mapping becomes: φ : R

d → R
Ntr .

The objective is to find a reduced set of training points
RS = {x̃i}

R
i=1 such that it approximates w

(l) by a new

weight vector w̃
(l) =

∑R
i=1

β
(l)
i φ(x̃i) while minimizing the

reconstruction error ||w(l) − w̃
(l)||22 where x̃i is the i

th point
in the reduced set RS whose cardinality is R. In [5], it was
shown by the authors that if the reduced set RS is known
then the β

(l) co-efficients can be obtained by solving the linear
system:

Ωψψ
β

(l) = Ωψφ
α

(l)
, (5)

where Ωψψ
mn = K(x̃m, x̃n), Ωψφ

mi = K(x̃m, xi), m,n =
1, . . . , R, i = 1, . . . , Ntr and l = 1, . . . , k − 1.

In the past literature including the works in [5] and [6], it
was shown that this reduced set can be built by selecting points
whose projections in the eigenspace occupy certain positions or
by using an L1 penalization. The first method works only when
the clusters are well formed and well separated and cannot be
generalized to real world datasets. The second method using
L1 penalization cannot introduce significant sparsity. In this
paper, we investigate other penalization techniques including
the Group Lasso [12] and [13], L0 and L1 +L0 penalizations.
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B. Group Lasso Penalization

The Group Lasso was first proposed for regression in [12]
where it solves the convex optimization problem:

min
β∈Rp

‖y −
L

∑

l=1

Xlβl‖
2
2 + λ

L
∑

l=1

√
ρl‖βl‖2,

where the
√

ρl accounts for the varying group sizes, ‖ ¦ ‖2 is
the Euclidean norm. This procedure acts like Lasso [11] at
a group level: depending on λ, an entire group of predictors
may drop out of the model. We now utilize this to obtain the
formulation for our optimization problem as:

min
β∈RNtr×(k−1)

‖Φ⊺
α − Φ⊺

β‖2
2 + λ

Ntr
∑

l=1

√
ρl‖βl‖2, (6)

where Φ = [φ(x1), . . . , φ(xNtr
)], α = [α(1)

, . . . , α
(k−1)], α ∈

R
Ntr×(k−1) and β = [β1, . . . , βNtr

], β ∈ R
Ntr×(k−1) . Here

α
(i) ∈ R

Ntr while βj ∈ R
k−1 and we set

√
ρl as the fraction of

training points belonging to the cluster to which the l
th training

point belongs. By varying the value of λ we control the amount
of sparsity introduced in the model as it acts as a regularization
parameter. In [13], the authors show that if the initial solutions

are β̂1, β̂2, . . . , β̂Ntr
then if ‖X⊺

l (y −
∑

i6=l Xiβ̂i)‖ < λ, then

β̂l is zero otherwise it satisfies: β̂l = (X⊺

l Xl+λ/‖β̂l‖)
−1

X
⊺

l rl

where rl = y −
∑

i6=l Xiβ̂i.

Analogous to this, the solution to the group lasso penal-
ization for our problem can be defined as: ‖φ(xl)(Φ

⊺
α −

∑

i6=l φ(xi)β̂i)‖ < λ then β̂l is zero otherwise it satisfies: β̂l =

(Φ⊺Φ + λ/‖β̂l‖)
−1

φ(xl)rl where rl = Φ⊺
α −

∑

i6=l φ(xi)β̂i.
The Group Lasso penalization technique can be solved by a
blockwise co-ordinate descent procedure as shown in [12]. The
time complexity of the approach is O(maxiter ∗ k

2
N

2
tr) where

maxiter is the maximum number of iterations specified for the
co-ordinate descent procedure and k is the number of clusters
obtained via KSC. From our experiments we observed that on
an average 10 iterations suffice for convergence.

An important point to remember here is that β̂l ∈ R
k−1 and

is a vector. When this β̂l is zero it means that it is equivalent to
zero vector or the corresponding l

th training point is not part
of the reduced set RS. In our experiments, we set the initial

value of β as β̂ij = αij + N (0, 1) where N (0, 1) represents
Gaussian noise with mean 0 and standard deviation 1.

C. L0 Penalization

We modify the iterative sparsification procedure for classi-
fication as shown in [14] and use it for obtaining the reduced
set. The optimization problem (J ) which is solved iteratively
is formulated as:

min
β∈RNtr×(k−1)

‖Φ⊺
α − Φ⊺

β‖2
2 + ρ

Ntr
∑

i=1

ǫi + ‖Λ.β‖2
2

such that ‖βi‖
2
2 ≤ ǫi, i = 1, . . . , Ntr

ǫi ≥ 0,

(7)

where Λ is matrix of the same size as the β matrix i.e.
Λ ∈ R

Ntr×(k−1). The term ‖Λ.β‖2
2 along with the constraint

‖βi‖
2
2 ≤ ǫi corresponds to the L0-norm penalty on β matrix.

Λ matrix is initially defined as a matrix of ones so that it
gives equal chance to each element of β matrix to reduce
to zero. The constraints on the optimization problem forces
each element of βi ∈ R

(k−1) to reduce to zero. This helps
to overcome the problem of sparsity per component which
is explained in [6]. The ρ variable is a regularizer which
controls the amount of sparsity that is introduced by solving
this optimization problem.

The optimization problem stated in (6) is a convex Quadrat-
ically Constrained Quadratic Programming (QCQP) problem.
Its computational complexity is O(k3

N
3
tr) and we solve it iter-

atively using the CVX software:[20]. We obtain a β matrix as a
solution for each iteration such that β

t+1

ij = arg minβJ (Λt
ij).

For each iteration, the Λ matrix is re-weighted as: Λt
ij = 1

βt
ij

,

∀ i = 1, . . . , Ntr, j = 1, . . . , k − 1. It was shown in [14] that
this iterative procedure results in a convex approximation to
the L0-norm. But as the L0-norm is a non-convex problem it
results in a local minimum. We stop this iterative procedure
when the rate of change of the β matrix is below a threshold
such that ‖βt+1 − β

t‖2
2/Ntr < 10−4. We then select those

indices i for which ‖βt+1

i ‖2
2 > 10−6 and put the corresponding

training points in the reduced set RS. In our experiments we
observe that the number of iterations required to reach this
convergence is usually less than 20.

D. L1 + L0 Penalization

The L1 + L0 penalization formulation is quite similar to
the formulation of L1 penalization as defined in [6]. We add
an additional regularization matrix Λ on the β matrix and the
problem formulation becomes:

min
β∈RNtr×(k−1)

‖Φ⊺
α − Φ⊺

β‖2
2 + ρ

Ntr
∑

i=1

ǫi + ‖Λ.β‖2
2

such that |βi| ≤ ǫi, i = 1, . . . , Ntr

ǫi ≥ 0,

(8)

The difference between (7) and (8) is the set of constraints for
both the optimization problems. In (8) the constraint |βi| ≤ ǫi

corresponds to the L1 penalization.

This problem formulation results in a convex Quadratic
Programming (QP) problem due to linear constraints. Its com-
putational complexity is O(k3

N
3
tr). It is also solved iteratively

using the CVX software. We initialize Λ matrix as ones and
after each iteration we modify each element of Λt matrix such
that Λt

ij = 1

βt
ij

, ∀ i = 1, . . . , Ntr, j = 1, . . . , k − 1. We show

in the experimental results that this penalization often results
similarly to the L1 penalization outcomes. This suggests that
the L1 penalization is driving the amount of sparsity in this
penalization to obtain the reduced set RS.

E. Choice of Tuning parameter

The choice of the right tuning parameter is essential to
obtain optimal reduced set. The tuning parameter λ influences
the amount of sparsity in the model for the Group Lasso
penalization technique while in case of other penalization
techniques this is handled by the tuning parameter ρ. Sparsity

is defined as 1 − |RS|

Ntr
.
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The procedure for selection of this tuning parameter is quite
simple. For Group Lasso penalization technique, we obtain
the λmax initially which is defined as: argmax‖φ(xl)(Φ

⊺
α −

∑

i6=l φ(xi)β̂i)‖, ∀ l = 1, . . . , Ntr. In order to tune the value
of the regularizer λ for varying the amount of sparsity for the
reduced set RS, we use different fractional values of λmax

as λ. The values of λ are set such that the value of sparsity
covers the entire range [0, 1] i.e. we vary the value of λ such
that there is no sparsity (sparsity= 0) in the model to the case
when there is no data point in the reduced set RS (sparsity
= 1).

For the L1, L0 and L1 + L0 penalization techniques we
have to tune the parameter ρ. To have a fair comparison we
use the same range and same values for tuning parameter ρ in
case of these techniques. However, the best results for different
penalization techniques can occur for different value of tuning
parameter ρ. The choice of ρ is again dependent on the amount
of sparsity it generates. We aim to select the smallest range
of values for ρ such that the value of sparsity covers the
entire range [0, 1]. From our experiments, we observe that the
smallest possible range for ρ corresponding to which sparsity
varies from [0, 1] is [1, 10]. Thus, we vary the value of ρ

in logarithmic steps between the range [1, 10] to obtain the
optimal reduced sets.

F. Out-of-Sample Extension Time Complexity

For the KSC method [4] we consider the entire dataset
as the test set. The cardinality of the entire dataset is N . The
computational complexity for the out-of-sample predictions for
KSC method is O(NtrN) where Ntr ≪ N . This is because
for the out-of-sample extension we need to create the test
kernel matrix of size Ntr ×N . When this kernel matrix is too
large to be stored in memory then we divide the test data into
chunks such that each chunk can fit in memory. Test cluster
membership prediction is then done for each chunk.

For the reduced set based methods we can greatly reduce
the computational cost for out-of-sample extensions. Let the
cardinality of the reduced set corresponding to the Group
Lasso, L0 and L1+L0 penalization methods be R1, R2, R3 re-
spectively. Since these methods introduce sparsity, the amount
of sparsity introduced corresponding to these penalization
methods can be defined as: R1/Ntr, R2/Ntr and R3/Ntr

respectively. The cardinality of the reduced set RS is much
lesser than the size of the training set i.e. Ri ≪ Ntr,
i = 1, 2, 3. Thus the time complexity for the out-of-sample
extension corresponding to the three proposed reduced sets is
O(RiN), i = 1, 2, 3. This also reduces the constraint on the
memory as the size of the test kernel matrix for the reduced
sets becomes Ri ×N , i = 1, 2, 3 which is much less than the
size of the original test kernel matrix (Ntr × N ).

G. Synthetic Example

We show the results of an experiment on a synthetic
dataset using RBF kernel in Figure 1. The dataset consists
of 3 overlapping Gaussian clouds in 2-dimensions for a total
number of 1, 500 data points. We select 450 data points for
training and 600 data points for validation using the quadratic
Rènyi entropy criterion.

Figure 1 shows the results on this synthetic dataset cor-
responding to Group Lasso, L0, L1, L1+L0 penalizations.
We vary the regularization parameter λ for Group Lasso
and ρ for the other penalization methods. In Figures 1b, 1d,
1f and 1h, the ‘o’-shaped, red-bodied black-outlined points
correspond to the reduced set. In these Figures the training
set is constant but the reduced set changes in accordance to
the penalization technique. Since the dataset is synthetic, the
groundtruth is known beforehand, the quality of the clusters
are evaluated using an external quality metric - Adjusted Rand
Index (ARI) as defined in [21]. The ARI metric compares the
cluster memberships obtained using the reduced set w.r.t. the
groundtruth of the test points and higher value of ARI signifies
better match between the cluster memberships.

From Figures 1b, 1c and 1j, we observe that the best result
for Group Lasso penalization occurs when the regularization
parameter λ = 0.8λmax. It introduces maximal amount of
sparsity (sparsity = 0.9933, cardinality of reduced set is 4)
while obtaining the best generalization (ARI = 0.56). The best
result for L0 penalization technique takes place for ρ = 10
and produces a sparse reduced set (sparsity = 0.9911). But the
generalization (ARI = 0.478) is not as good as Group Lasso.
This can be observed from Figures 1d, 1e and 1k.

The L1 and L1 + L0 penalization techniques produce
the same generalization and sparsity for several values of
regularizer ρ as depicted in Figures 1k and 1l. Figure 1l
indicates that as we increase the value of ρ the amount of
sparsity increases. However, when we increase the value of
ρ from 8 to 10, then the quality of the clusters decrease
as observed from Figure 1k. The best result for the L1 and
L1 +L0 penalization techniques (sparsity = 0.93, ARI = 0.44)
is worse than Group Lasso and L0 penalization technique both
in terms of quality (ARI) and amount of sparsity introduced.

IV. EXPERIMENTS ON REAL WORLD DATASETS

A. Experimental Setup

We conducted experiments on several real world datasets
which are available at [22]. We provide a brief description
of these datasets in Table I. Since the cluster memberships
of these datasets are not known beforehand, we use internal
clustering quality metrics for evaluation of the resulting clus-
ters. These internal quality metrics include the widely used
silhouette (sil) index and the Davies Bouldin (db) index as
described in [21]. Larger the values of sil better the clustering
quality and lower the value of db better the clustering quality.

Dataset Points Dimensions Clusters

Breast 699 9 2

Bridge 4096 16 -

Europe 169308 2 -

Glass 214 9 7

Iris 150 4 3

Mopsi Location Finland 13467 2 -

Mopsi Location Joensuu 6014 2 -

Thyroid 215 5 2

Wdbc 569 32 2

Wine 178 13 3

Yeast 1484 8 10

TABLE I: Real world datasets. Here ‘-’ means the number of
clusters are not known previously
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(a) Synthetic Dataset (b) Best GroupLasso Penalization (c) Best GroupLasso Generalization

(d) Best L0 Penalization (e) Best L0 Generalization (f) Best L1 Penalization

(g) Best L1 Generalization (h) Best L1 + L0 Generalization (i) Best L1 + L0 Generalization

(j) Group Lasso Evaluation (k) ARI versus ρ (l) Sparsity versus ρ

Fig. 1: Results on Synthetic Dataset corresponding to the reduced sets obtained for different penalization techniques.

Group Lasso L0 Penalization L1 Penalization L1 + L0 Penalization

Dataset sil db Sparsity λ Time(secs) sil db Sparsity ρ Time(secs) sil db Sparsity ρ Time(secs) sil db Sparsity ρ Time(secs)

Breast 0.6824 0.85 99.5% 0.7λmax 0.99 0.68980.833 96.6% 7.74 19.5 0.6898 0.833 96.6% 7.74 6.7 0.6898 0.833 96.6% 7.74 20.1

Bridge 0.423 1.436 99.0% 0.7λmax 34.8 0.596 1.3 97.1% 4.642 701.0 0.559 1.72 98.5% 5.995 238.4 0.559 1.72 98.5% 5.995 702.4

Europe 0.437 2.1 99.9% 0.9λmax 4509 0.352 1.145 99.75% 10 210,512 0.352 1.148 99.7% 10 61,456 0.352 1.148 99.7% 10 220,456

Glass 0.33 3.133 14.0% 1.0λmax 0.12 0.32231.913 93.75% 2.155 2.42 0.408 1.813 96.9% 4.64 0.68 0.547 2.037 89.1% 3.593 2.64

Iris 0.611 1.333 93.33% 0.9λmax 0.03 0.605 1.323 84.45% 2.78 1.02 0.61841.3063 86.67% 3.598 0.28 0.61841.3063 86.67% 3.598 1.03

Mopsi Location Finland 0.72191.2735 99.7% 0.6λmax 301.2 0.79761.142 99.6% 10 6,586 0.7946 1.158 99.5% 10 2,315 0.7946 1.158 99.5% 10 6,671

Mopsi Location Joensuu 0.911 0.64 99.5% 0.7λmax 80.2 0.88 0.67 96.5% 10 1,720 0.88140.6684 95.5% 10 612 0.88140.6684 95.5% 10 1,734

Thyroid 0.6345 0.844 98.4% 6λmax 0.13 0.538 1.04 93.75% 5.995 2.48 0.538 1.04 93.75% 5.995 0.7 0.538 1.04 93.75% 5.995 2.7

Wdbc 0.5585 1.304 96.5% 0.9λmax 0.78 0.56 1.303 97.6% 5.995 13.2 0.56 1.303 97.6% 5.995 4.11 0.56 1.303 97.6% 5.995 14.3

Wine 0.291 1.943 5.6% 1.0λmax 0.05 0.29 1.96 85.0% 1.668 1.28 0.29 1.96 86.8% 2.154 0.31 0.29 1.96 86.8% 2.154 1.3

Yeast 0.81 2.7 97.76% 0.9λmax 4.01 0.258 2.3 97.9% 7.74 79.1 0.2637 2.2 83.0% 10 25.2 0.2775 2.214 83.37% 10 82.32

TABLE II: Comparison of the sparsest feasible solution for the different penalization methods. Here we highlight the unique
best results i.e. the best results are highlighted if they correspond to a single penalization method. In most of the cases the L1

and L1 + L0 penalization result in the same sparsest solution.

B. Experimental Results

Table II showcases the sparsest feasible solution for the
different penalization methods and evaluates it on quality
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metrics like sil and db. We represent the amount of sparsity
as percentage of sparsity rather than fractions (i.e. fraction of
sparsity ×100). By feasible solutions we refer to the cases
when the cardinality of the reduced set |RS| > 0. For
higher values of regularization parameters the cardinality of
the reduced set can become zero and these solutions are not
part of the feasible solutions.

From Table II we observe that the Group Lasso penalization
introduces the maximum amount of sparsity in general and
in the obtained cases the cluster quality by corresponding
reduced set is better than the other penalization methods. The
Group Lasso penalization performs best for the Europe, Mopsi
Location Joensuu (MLJ), Thyroid, Wine and Yeast datasets.
We also observe that the proposed L0 penalization technique
generally results in sparser solution than the L1 penalization
method. In some cases it also results in better quality clusters,
for example in the cases of Bridge, Europe and Mopsi Location
Finland (MLF) datasets. An important observation is that the
results corresponding to the proposed L1+L0 penalization are
quite similar to the results of L1 penalization. This suggests
that the L1 penalization dominates in each step of the iterative
sparsification procedure for the L1 + L0 penalization method.

C. Real World Image Segmentation Dataset

We also perform an image segmentation experiment such
that each pixel is transformed into a histogram and the χ

2

distance is used in the RBF kernel with bandwidth σχ as shown
in Figure 2. The total number of pixels is 154, 401 (321 ×
481). The training set consists of Ntr = 7, 500 pixels and
the validation set consists of 10, 000 pixels. Both these set
are selected by maximizing the quadratic Rènyi entropy. After
validation we obtain k = 3 and kernel parameter σχ = 2.807.
We performed this experiment on a 2.4 GHz Core 2 Duo, 12
Gb RAM machine using MATLAB 2012b.

The Group Lasso based penalization method reduces the
reduced set to just two data points for λ = 0.7λmax and still
has the best sil = 0.294 value as shown in Figure 2a. In
KSC [4] there is a possibility of a null cluster i.e. the cluster
which is beyond the generalization boundary of all the clusters.
The Group Lasso penalization technique produces 2 points in
the reduced set, one corresponding to each cluster. The third
cluster corresponds to the null cluster. Hence, it results in good
segmentation as observed from Figure 2b.

The L0 penalization also results in a highly sparse model
(sparsity = 0.9645) and has the smallest db = 0.141 value as
observed from Figure 2c.

The results corresponding to L1 and L1 + L0 penalization
techniques are same for this image dataset. Thus, we only
show the result for L1 penalization technique in Figures 2e
and 2f. The optimal value of the tuning parameter ρ for these
penalization techniques was ρ = 10. From Figures 2d and
2f, we observe that the best image segmentation results for
the L0 and L1 penalization technique is the same. However,
the L0 penalization technique produces more sparsity (0.9645)
than L1 penalization technique (0.948) to obtain the same
segmentation. We obtain good image segmentation in case of
both the Group Lasso and the L0 penalization technique.

D. Discussion

We have used several penalization techniques to obtain
optimal reduced sets for kernel spectral clustering. We observe
that the Group Lasso based penalization technique results in
maximum sparsity in many cases and is computationally the
most efficient as shown in Table II. The Group Lasso based
penalization technique is also ideal for clustering as it retains
groups of relevant data points. The L0 penalization technique
results in sparser solution than L1 penalization technique in
general but at the expense of more computational time. This
is because it iteratively solves a QCQP for each sparsification
step whereas there is no such iterative procedure for L1

penalization technique. This can also be concluded from the
computation time shown for the two methods in Table II.
We also observe that as the size of the dataset increases the
L0, L1 and L1 + L0 penalization based techniques become
less feasible. This is because CVX is meant for smaller size
optimization problems and cannot handle very large scale
problems efficiently.

V. CONCLUSION

We proposed several methods for obtaining sparse optimal
reduced sets for kernel spectral clustering. The formulation
is based on weighted kernel PCA for a specific choice of
weights. Several techniques like Group Lasso, L0, L1 + L0

penalization methods had been proposed to obtain the reduced
set along with the modified weight vectors. The methodologies
were aimed to tackle different datasets in a computationally
and memory efficient way. We observed that the Group Lasso
resulted in the sparsest models with good clustering quality
in least computation time followed by reduced models by the
L0 penalization. The reduced models obtained by L1 + L0

penalization technique are quite similar to the reduced models
obtained by a previous L1 penalization method.
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