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Abstract—This paper proposes a novel algorithm based on 
local similarities to detect community structure in complex 
network. By analyzing the strengths and weaknesses of popular 
similarity indexes, a new index of node similarity is defined 
which can reflect closeness of local connections in networks as 
community does. And the similarity between a node and a 
community is defined by the sum of similarities between this 
node and all nodes within the community. Then networks can 
be partitioned without presetting the number of communities 
based on the assumption that nodes with highest similarities 
tend to merge together, additionally bridging nodes as 
byproducts. This method’s effectiveness is confirmed by 
applying it to the IEEE 39-bus and 118-bus standard power 
grids. Influence of the bridging nodes in cascading failures is 
also discussed.  

Keywords—power grid; community detection; local similarity; 
bridging nodes 

I. INTRODUCTION 
With the rapid development of power industry, the scale 

of power grid is increasing and the architecture becomes 
more and more complex. This trend adds the difficulty of 
power system’s analysis and control a lot. Development of 
complex network theory brings new perspectives on this 
system, such as Small-world, community structure, 
cascading failures and networks robustness [1]. 

Communities in networks, which are local structures of 
dense inner connections and sparse links between them, help 
to solve the complex problem. They partition the network of 
large scale into loosely coupled networks of much smaller 
scale easier to control. This divide-and-conquer strategy 
improves the robustness of the system. In power grid, 
community structure is often used in reactive power network 
partition [2], coherency-based dynamic equivalence [3], and 
power system restoration [4] and so on.1 
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There have been many methods developed by now to 
detect communities in networks, for example, GN [5] and 
MFC [6] as hierarchical clustering, CNM [7] and GA [8] as 
modularity optimization and many other algorithms [9].  
Applying these network partition methods to power grids 
compensates some deficiencies of traditional method based 
on geographical and administrative area only and gets some 
available results. Ni et al.[2] pre-divide the network by 
voltage sensitivity  matrix and  merge the partition by  
modularity optimization. They get communities in the 
power grid that can ensure the control ability for generators 
and balance reactive power in place within the community. 
Lin et al.[4] apply GN algorithm by removing edges of 
biggest betweennesses in sequence in power grid. The 
hierarchical structure detected helps to restore the power 
subsystems quickly and parallel them in right order. Pan et 
al.[10] redefine the modular index introducing the reactive 
power balance degree of the network partitions. Then they 
adopt the improved Louvain hierarchical algorithm in power 
grids and find out pilot nodes of good observability and 
controllability sensitivity. Guo et al.[11] view a node’s 
controllability sensitivity as its coordinate in space and in 
this way map the power grid to coordinate space. Then they 
apply traditional hierarchical agglomerative clustering to 
grids to acquire the community structure. Recently more 
attention is paid to power grid network partition to enhance 
the robustness. Pahwa et al.[12] propose a constraint 
programming formulation and modified Fast Greedy 
algorithm and the Bloom algorithm for optimal islanding in 
grids. Mehrjerdi et al.[13] apply spectral k-way partitioning 
formulation in grids and propose fuzzy secondary voltage to 
avoid propagation of disturbances between regions. 

This paper redefines a local similarity index and each 
node selects the community to which it belongs without 
artificial hypothesis of the count of communities. Bridging 
nodes can be detected along the community detection 
process. Also bridging nodes’ influence on cascading failure 
is examined. 

The rest of the paper is organized as follows. Section II 
introduces the community detection process including 
similarity index definition, network partition and some 
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supplements.  Section III analyzes the computation cost and 
Section IV applies the algorithm in standard power grids 
and compares the influence of different indexes and 
clustering methods. Finally, Section V concludes this paper 
and puts forward a future research direction. 

II. COMMUNITY DETECTION 
The network partitioning method we proposed is based 

on the assumption that nodes with high similarities are more 
likely to form a community. Network partitioning, unlike 
hierarchical clustering including divisive and agglomerative 
approaches, improves the performance of partition by 
moving nodes among communities. The goal of exchanging 
nodes is to put similar nodes or closely connected nodes 
within one community as possible. The similarity index and 
the partition process are given as follows. 

A.  Similarity Index 
Similarity is an index describing probabilities nodes 

belong to the some communities based on the assumption 
above. Given the network topological information by an 
adjacent matrix A , many indexes have been developed to 
measure the node similarity [14,15].  

Common Neighbors index (CN) describes the similarity 
by the number of two nodes' common neighbors, namely  

   ( , ) ( ) ( )similarity x y x y= Γ ∩ Γ  ,                (1) 
where ( )xΓ  denotes the neighbor set of node x and X  the 
number of elements in set X . CN is simple and easy to 
calculate, but ignores further topology information about the 
network.  

Katz index is developed as the ensemble of all paths 
between nodes, defined as 

2 2 3 3 1( )similarity A A A I A Iβ β β β −= + + + = − − ,(2)                                                    
with parameter 1β <  controlling different influence of 
paths. Note that  β  should be smaller than the reciprocal of 
the maximum of the eigenvalues of matrix A to ensure the 
convergence of Eq.(2) and often is set 0.01. This index 
considers the global information of the network. However, 
it’s always difficult to get the global topology and 
consuming to calculate Katz index.  

Then Local Paths index (LP) is proposed as a trade-off, 
namely 

                     2 3similarity A Aβ= + .       (3) 
It contains a little more network information and increases 
little computation cost. However, LP is proposed to predict 
links between disconnected nodes, which abandons direct 
connection as similarity between the endpoints. Take this 
example in Fig.1, with LP index the indirectly connected 
nodes D and B has similarity 1.01 bigger than that 0.03 of 
directly connected nodes D and E. It goes against intuition 
and does not fit the community detection process with 
similarity. 

 
Fig.1 the example network 

To solve these problems mentioned above, this paper 
combines advantages of LP and Katz index and proposes a 
new local similarity index (LS) 

            2 2 3similarity A A Aβ β= + + .  (4) 
Parameter β is set a little bigger than that of the two 
indexes above, as the LS index should involve more local 
topology information which is beneficial for community 
detection. It can be adjusted appropriately to fit the 
community structure best. To fit the grids, it is set 0.4 in this 
paper. The highest paths order is set 3 here as LP does. It 
calculates the times node X can reach node Y within three 
steps, which indirectly reflects connections between a 
node’s neighbors. This metric reflects local close 
connections well as community does. 

B.  Network Partition 
K-means and K-medoids are popular clustering methods 

[16]. Both of them proceed by selecting k  initial cluster 
centers randomly and assign each node to its nearest cluster 
centers to get a community structure. Then cluster centers 
are updated according to the communities. This process is 
repeated until it converges when there’s no further change in 
each node’s assignment to communities. The difference 
between these two methods is cluster centers’ updating. K-
means clustering calculates the means of nodes coordinates 
as cluster centers, while K-medoids clustering selects 
medoids, which have biggest similarities with other nodes 
inner clusters, as cluster centers.  

However, the above methods both fails to detect 
community in networks. K-means is applicable for vectors 
in Euclidean Space but not for relational data in networks 
described as adjacent matrix. K-medoids clustering is 
suitable for data describing both attribute and relations but 
only considers nodes similarity with the medoids, neglecting 
connections between non-medoids nodes, which doesn’t fit 
the community structure in network well.  

Both of the two methods above update cluster centers 
and calculate similarities between nodes and centers as 
similarities between nodes and communities, to assign nodes 
to communities. This paper designs a novel clustering 
method improving the above process. Instead of updating 
cluster centers, we calculates the sum of similarities 
between a node and all nodes in a community as the 
similarity between the node and the community, namely the 
similarity between node i  and all nodes in community jC  

( , ) ( , )
j

j
p C

similarity i C similarity i p
∈

= ∑ .        (5) 

The similarity between each node and each community can 
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be viewed as a node’s grade of membership in a community. 
So we assign node i  to the community iC  which has the 
biggest similarity with it, namely 

                
,( 1,2 )

arg max ( , )
j

i
jC j k

C similarity i C
=

= .  (6)  

To illustrate this algorithm, the partition steps are given 
as follows: 
1)  Randomly partition all the nodes in network G  into k                     
initial communities 1 2, , kC C C , and k  is a parameter to     
adjust the number of initial communities. 

2)  For each node in network G , take following steps. 

3)  For node i , calculate by (5) the similarity index  
( , )jsimilarity i C  between node i  and each community 

( ), 1, 2jC j k=  and then assign node i  belongs to the 

community iC  by (6), which has the biggest similarity with 
it. 

4)  The algorithm stops if it reaches the given number of 
iterations or assignments of each node don't change any 
more. Otherwise go to step 2). 

C.  Supplements  of  the algorithm 
With the assignments of nodes changing, the number of 

communities may decrease as communities merge together 
automatically. So the initial count of communities can be set 
as the upper bound of possible amount of communities, then 
natural community structure can be acquired without human 
intervention.  

Additionally, nodes’ membership information can be 
analyzed to get more characteristics about node influence in 
the community structure. For example, nodes’ membership 
can help to find bridging nodes which are closely connected 
to more than one community. To describe bridging nodes’ 
community uncertainty, an index called bridging property is 
defined here, namely 

( ) ( )( )2

1,2

, j
j k

bridging i max similarity i C
=

= −∑       (7) 

with intermediate variable 
1,2

max ( , )jj k
max similarity i C

=
= . 

The greater this index is, the more connections the node has 
with other communities and the more likely it is a bridging 
node.  

Since nodes are assigned randomly to form the initial   
community structure and different initial conditions may 
lead to different final partitions, it is reasonable to take the 
algorithm many times and select the community structure 
that fit the network best. Here the modularity index 
proposed by Newman et al. is used to evaluate the 
performance of the community structure detected by our 
method. Its modularity is proposed as the following 
equation 

( )1 ,
2 2

i j
ij i j

ij

k k
Q A C C

M M
δ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑                  (8) 

where ijA  is element of adjacent matrix A , M  is the counts 

of edges in the network, ik  is degree of node i , iC is the 

community which node i  belongs to and ( ),i jC Cδ   equals 

1 if node i  and j  are in the same community and  0 
otherwise. This index will be calculated in the experiment to 
monitor the community detection process. 

III. ALGORITHM COST ANALYSIS 

A. Calculation of similarity matrix 
According to [15], reasonable choice of the paths order 

partially depends on the average shortest distance of the 
network. The features of small world and six degrees of 
complex network taken into consideration, high paths order 
just increases computation much but influences similarity 
index little. This paper sets 3 as the highest paths order and 
the corresponding time complexity to calculate the 
similarity matrix is 3( )O N k< > . On the other hand, as the 
computing process of similarities between a node and the 
others is independent, parallel computing may be taken to 
decrease the time cost. 

B.  Cost of network partition 
For node similarity matrix S , the ith row denotes the 

similarity between node i and the other nodes in the 
network, and element 0ijS =  means node i   and j  can't be 
reachable within three steps. For description convenience, 
nodes reachable within three steps from node x are called 
near neighbors of x  below. As node's neighbors are likely 
to be linked, the count of each node’s near neighbors gets an 
average magnitude 3k< > . It is efficient to record the near 
neighbors of a node using a linked list since complex 
networks are often sparse. Each node’s similarities with 
different communities can be calculated when traversing its 
linked list and then used to partition the network. As a result, 
this partition process's time complexity is 3( )O tN k< >   
with iteration times t  needed. Similar to the node similarity 
calculation, each node's assignment is also independent and 
can be parallel computed. 

To sum up, the whole time complexity of this algorithm 
is 3(( +1) )O t N k< >   and use of parallel computing could 
help decrease the time cost.  

IV. EXPERIMENTS AND ANALYSIS 
Here we apply the algorithm in IEEE 39-bus and 118-

bus standard power grids. Comparison of the influence of 
different indexes and clustering method is also discussed. 
Neglecting complex electrical properties, the generators and 
loads are viewed as nodes and lines as links between nodes 
indiscriminately. Then the power grid is simplified as an 
undirected and unweighted network. The links between 
nodes can be viewed as similarity, as they reflect the 
interplay of nodes’ voltage fluctuation. 
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A.  Experiment on 39-bus standard power grid 
In IEEE 39-bus standard power grid, there are 10 

generators and 29 load nodes. To ensure that each 
community has at least one generator, the upper bound of 
the count of communities is 10. Then pre-divide the grid 
into 10 initial communities with one generator in each 
community, each load node assigned into the same 
community as the generator which has the most similarity 
with it is in.  In this way, the initial condition is fixed and so 
will the final community structure detected be. The change 
of modularity in community detection process is shown in 
Fig.2. 

As can be seen, the initial community structure we pre-
divide has modularity 0.5151. Then the communities 
automatically exchange nodes and sometimes merge 
together according to the local similarity index. The 
modularity shows an upward tendency which means the 
partition tends to make an obvious community structure.  
The iteration stops in only 3 steps and the algorithm finally 
partitions the 34 nodes in this power grid into 5 
communities with modularity 0.6092. The community 
structure is shown in Fig.3. 
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Fig.2. Change of modularity along with iterations of community detection 
 

 

Fig.3.Five communities discovered in IEEE 39-bus standard power grid. 
Nodes are separated by bold lines. 
 

Furthermore, to estimate the influence of bridging nodes 
discovered in this power grid community detection, a 
simplified cascade failure model is applied here. As loads 
transmit through shortest electrical paths, here suggest each 
node’s initial load (0)L  is given as its betweenness in the 
initial network and capacity C  is given as ( ) ( )1 0C Lα= +   
in [17]. Constant α is called the tolerance parameter and set 
0.2 in this simulation. After removing nodes, loads are 
redistributed that a node’s load changes to its betweenness 
in the changed network. 

Nodes chosen randomly, with biggest degrees, with 
biggest betweennesses or with biggest bridging properties 
are removed respectively to trigger the cascading failure. 
The damage caused by the cascade is quantified by the size 
of the largest connected component in the network left. 
Result of the simulation is showed (see Fig.4). 

As Fig.4.(a) presents, when intentionally attacking the 
power grid, removing nodes with top degrees at a time may 
cause the most serious cascading failure among the four  
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Fig.4. Cascading failure in IEEE 39-bus standard power grid, as triggered 
by removing nodes in different ways. Parameter r is the count of 
removing nodes and s is the size of the largest connected component in 
the left network. Nodes of corresponding counts are removed all at once 
in figure (a) and one by one in figure (b). 
 
strategies and randomly may be the least. However, when a 
node of top index is removed, nodes of near top indexes 
may be overloaded and removed passively as cascading 
failure. At next step, if these nodes are removed once 
together, the left network won’t change any more and the 
subsequent nodes’ damage effect are covered by the   
previous ones’. That’s why in Fig.4.(a) the size may keep 
stable when the count of   removing top nodes increases.  If 
the nodes left in the cascading are removed in order one by 
one, as the below Fig.4.(b) shows, removing the nodes 
sorted by bridging property will cause the most serious 
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cascading failure. Degree is also a good index of nodes’ 
influence in the network, as it causes serious cascading 
failure in both cases and requires less computation cost.  

To see more details, each node is removed to check 
other failure nodes triggered, listed in table 1. The rest nodes 
removed not on the list mean that they cause no cascading 
failure. The top five bridging nodes are of indexes 4, 14, 18, 
17 and 27. Each of them removed can cause cascading 
failure of many other nodes. On the other hand, there are 
overlaps between the damage effects of these nodes, which 
is consistent with above analysis. 

TABLE 1. FAILURE TRIGGERED BY EACH NODE’S REMOVAL 

 

B. Experiment on 118-bus  standard power grid 
This community detection process is also applied in the 

IEEE 118-bus standard power grid, in which there are 54 
generators and 64 load nodes. The change of modularity in 
community detection process is shown in Fig.5.  
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Fig.5. Change of modularity along with iterations of community detection 
 

We can see that the initial community structure has 
modularity 0.2186. Then the modularity is generally in an 
upward trend but has a little fluctuation during the iterations. 
As Fig.5 shows, the modularity is 0.6823 in step 5, 0.6766 
in step 6 and 0.6889 in step 8. This flexibility is a big 
advantage combining with other modularity optimization 
methods. As many other methods are based on greedy 
algorithm, the modularity is monotone increasing and easy 

to trap into the local optimum. The fluctuation above means 
that the algorithm here may avoid this defect and get better 
community structure. 

As communities exchange nodes and merge together, 
this network is naturally partitioned into 8 communities in 8 
iterations. The community structure detected is shown in 
Fig.6. 

 
Fig.6. Four communities discovered in IEEE 118-bus standard power grid. 
Nodes are separated by bold lines. 

 

Intuitively, nodes in the same community distribute near 
each other and have close connections. On the other hand, 
the community structure has modularity 0.6889 a little 
bigger than that of corresponding unweighted network in 
[18], which means the algorithm in this paper can decouple 
this power grid better. Details are showed in the following 
part C. 

C. Comparison of different indexes and clustering methods 
To compare different influence of similarity indexes on 

community detection, experiments are done in above grids. 
Also modularity is calculated here to evaluate the 
performance of clustering with different similarity indexes. 
Results are showed in table 2 as following. Pan’s clustering 
method [18] in corresponding unweighted grids is called 
Pan for short. 

TABLE 2. SIMILARITY INDEXESES’ AND CLUSTERING 
METHODS’ INFLUENCE ON  COMMUNITY DETECTION 
 39-bus grid 118-bus grid 300-bus grid 

CN -0.0666 0.0805 0.2400 
Katz 0.5801 0.6939 0.7626 
LP 0.2968 0.2231 0.4554 
LS 0.6092 0.6889 0.7831 
Pan 0.6226 0.6875 0.7442 
 

As can be seen from table 2, communities detected with 
CN and LP indexes have smaller modularities in both 39 

Node removed Failure nodes triggered  
1 5,8,9,10,11,12,13 
2 5,8,9,12,15,17,18,27,39 
3 1,7,8,9,11,12,15,17,25,26,27,39 
4 1,6,7,8,9,10,11,12,13,17,18,27,39 
5 1,7,9,10,11,12,13,39 
6 12,13 
8 1,39 

10 12 
13 4,5,6,11,1,9,17,18,39 
14 3,4,5,6,7,11,12,17,18,39 
15 3,4,17,18,39,11 
17 2,3,4,9,14,15,25 
18 15,25,27 
21 23,24 
24 21,22 
25 17,18,27,15 
26 18,4,14,15,1,7,8,9,11,39 
27 2,3,18,25,8,9 
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and 118-bus grids. It verifies the previous theoretical 
analysis that CN and LP indexes, neglecting direct 
connection as similarity, don’t fit the community detection 
well. Katz and LS indexes help to find more suitable 
community structure here. LS performs better than Katz 
index in 39-bus grid and reverses in 118-bus grid. Katz 
index with global topology considers more comprehensive 
information than LS does, which may be useful to describe 
similarities between nodes. On the other hand, Katz involves 
much irrelevant information contributing little to detect 
local community structure. LS needs less information than 
Katz does, which makes it available and easy to calculate 
and help to discover good community structure as Katz does, 
even better. Compared with Pan’s clustering method in 
corresponding unweighted grids in [18], the method 
proposed in this paper partitions 118 and 300 bus grids with 
higher modularity.  

V. CONCLUSION AND FUTURE WORK 
Based on study of previous method on community 

detection, this paper proposes a new similarity index 
reflecting local density in networks. With this index,   
partition of the networks can be acquired as each node is 
assigned to the community which has biggest similarity with 
the node. Along the process of community detection, the 
bridging nodes can also be discovered and their influence on 
cascading failure is examined. However, the algorithm here 
is used in highly simplified network and may have problems 
when applying in real power grid. More electrical 
characteristics should be taken into consideration in future 
work.  
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