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Abstract— In this paper, a multiple kernel extreme learning
machine (MKELM) is proposed for multivariate time series
prediction. The multivariate time series is reconstructed in
phase space, and a variable selection algorithm is then applied
to form the compact and relevant input for the prediction
model. On the basis of multiple kernel learning and extreme
learning machine with kernels, multi different kernels is used
in MKELM to present the dynamics of multivariate time series.
A simulation example, prediction of Lorenz chaotic time series
is conducted to demonstrate the effectiveness of the proposed
method.

I. INTRODUCTION

DURING the last decades, time series prediction has

played an important role in both science research and

engineering applications [1], [2]. Commonly, time series has

the characteristic of nonlinearity, and consists of multiple

variables [3]. However, most of the published papers are

concerned with univariate time series other than the mul-

tivariate time series. However, multivariate time series often

contains more dynamic information of the underlying system

than univariate time series [4]. As a result, the research on

multivariate time series prediction has drawn an increasing

focus [5], [6].

Neural networks, which have a strong nonlinear mapping

ability, have been one of the most influential prediction

tools. According to the Takens’ delay embedding theorem

[7], the time series can be reconstructed to the phase space

by the delayed coordinate, translating the time correlation

to the spatial correlation. With the universal approximation

capability, neural networks can be an effective prediction

model. But the traditional gradient-based learning algorithms

of neural networks convergence slow and are easy to be

trapped in local optimum, which has constrained the further

application of neural networks in the field of time series

prediction.

In order to overcome the shortcomings of traditional neural

networks, extreme learning machine (ELM) [8] is proposed.

The input weights and the hidden layer biases of ELM

are randomly generated and keep fixed during the learning

progress. Only the output weights need to be tuned and linear

regression can obtain satisfying results. As a result, ELM has

been successfully applied to time series prediction [9], [10],

[11]. Although the ELM model has greatly improved the
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neural network training speed and accuracy, there are also

some shortcomings of ELM itself, i.e. the output weights

calculation process is an ill-posed problem, the optimal

structure of the ELM is hard to be determined. Combining

ELM with support vector machines (SVM) by replacing the

hidden layer mapping of ELM with kernel function mapping

of SVM, extreme learning machine with kernels (KELM)

[12] is developed. KELM model avoids the optimal structure

determination problem and retains the advantage of fast

training speed of ELM. However, it is the single kernel used

in KELM that leads to some shortcomings of single kernel

methods such as limited dynamic representation capability

and complex parameter optimization.

At the same time, considering the different dynamic fea-

tures of multivariate time series, it is suggested that for

multivariate time series prediction problem the adaptation

of a single predictor might not be enough [13], [14], [15].

In this paper, a prediction model based on multiple kernel

extreme learning machine (MKELM) is proposed. Inspired

by the multiple kernel learning (MKL), which uses hybrid

kernels to obtain more dynamic information in the feature

space [16], [17], ELMK is extended to use multiple different

kernels to represent the dynamics of multivariate time series.

II. EXTREME LEARNING MACHINE WITH KERNELS

Mathematically, ELM [18] can be formulated as follows

L
∑

i=1

wig(xj) =

L
∑

i=1

wig(Win(i) · xj + bi) = yj , j = 1, ..., N.

(1)

where xj ∈ ℜ
n is the input vector, Win(i) ∈ ℜ

n is the weight

vector connecting the input nodes to the i−th hidden node,

Win(i) · xj denotes the inner product of Win(i) and xj , bi ∈

ℜ is the bias of the i−th hidden node, g(·) is the sigmoid

activation function , wi ∈ ℜ is the weight connecting the

i−th hidden node to the output node, yj ∈ ℜ is the output

of ELM, L is the number of the hidden nodes and N is the

number of training samples.

Let T = [t1, ..., tN ]T, w = [w1, w2, · · · , wL]
T and

H =







g(Win(1), b1, x1) . . . g(Win(L), bL, x1)
...

. . .
...

g(Win(1), b1, xN ) · · · g(Win(L), bL, xN )







N×L

where T is the desired vector and matrix H is called the

hidden layer output matrix of ELM; the ith column of H

is the ith hidden node’s output vector with respect to inputs

x1, x2, ..., xN and the jth row of H is the output vector of the
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hidden layer with respect to input xj . If the ELM model with

L hidden nodes can learn these N training samples with no

residuals, then it means that there exist w so that

Hw = T (2)

The least squares solution of (2) is

w = H†T (3)

where H† is the Moore-Penrose generalized inverse of matrix

H .

The training process of ELM is a simple linear regres-

sion, which can effectively overcome the inherent flaws of

traditional neural networks. However, the number of hidden

layer nodes, which is an important parameter of ELM crucial

to the performance of prediction model, usually should be

selected by some time-consuming methods according to the

learning tasks [19], [20]. Avoiding the hidden nodes selection

problem, extreme learning machine with kernels (ELMK)

[12] is developed, by replacing the hidden layer mapping

h (x) in ELM by the kernel function mapping φ (x) in SVM.

Consequently, the replaced hidden layer mapping can be

unknown. As a result, the kernel matrix of ELM can be

defined as follows

ΩELM = HHT :
ΩELMi,j = h (xi) · h (xj) = K (xi · xj)

The output function can be written as

f (x) = h (x)HT
(

I
C
+HHT

)

−1
T

=







K (x · x1)
...

K (x · xN )







T

(

I
C
+ΩELM

)

−1
T

The hidden layer mapping in the special kernel implemen-

tation of ELM can be unknown, but the corresponding kernel

is usually given. Therefore, there is no longer need to identify

the number of the hidden nodes (the structure of ELM) [12].

Given a training set T = (xi, ti), i = 1, . . . , N , where

xi ∈ ℜ
P , and ti ∈ ℜ. The original optimization problem of

ELMK can be written as

minLP = 1
2‖w‖

2
+ C 1

2

N
∑

i=1

ξ2i

s.t. φ (xi) · w = ti − ξi, 0, i = 1, . . . , N
(4)

where w is a vector in the feature space F, and φ(x) maps

the input x to a vector in F. C is the regularization parameter.

Here, we use φ(x) instead of h(x) in order to keep consistent

with support vector machine and implicitly indicate that the

mapping is unknown. ξ is the error.

The corresponding Lagrangian dual problem can be for-

mated as

LD =
1

2
‖w‖

2
+C

1

2

l
∑

i=1

ξ2i −

l
∑

i=1

θi (φ (xi)w − ti + ξi) (5)

III. MULTIPLE KERNEL EXTREME LEARNING MACHINE

Based on the aforementioned analysis, multiple kernel ex-

treme learning machine (MKELM) is proposed in this paper.

The reasoning is similar to combining different predictors:

instead of choosing a single optimal ELMK predictor and

putting all eggs in the same basket, it is better to have

a set and let an algorithm do the picking or combination

[21], and a single ELMK predictor may not efficient enough

to model the multivariate time series [14], [15]. There can

be two uses of MKELM: (a) Different kernels correspond

to different time scales dynamics, using a combination of

kernels can express multi time scale system dynamics. (b)

Different kernels may be using inputs coming from different

time series possibly from different sources or locations.

In MKELM, the kernel K (x, x′) is actually a convex

linear combination of other single ELMK kernels

K (x, x′) =
M
∑

k=1

µkKk (x, x
′)

s.t. µk ≥ 0,
M
∑

k=1

µk = 1

(6)

where M is the total number of kernels, which corresponding

to signal ELMK. Thus, the optimization problem of MKELM

can be written as

minLMKELM = 1
2

∑

k
1
µk

‖wk‖
2
+ C 1

2

N
∑

i=1

ξ2i

s.t.
∑

k φk (xi)wk = ti − ξi, i = 1, . . . , N
∑

k
1
µk

= 1, k = 1, . . . ,M

(7)

The approach for solving the MKELM optimization problem

is to use a 2-step alternate optimization algorithm [22]. While

considering that the vector µ is fixed, the first step would

consist in solving the dual problem

J(µ) = −
1

2

∑

i,j
αiαj

M
∑

k=1

µkKk (x, x
′)−

1

2C

∑

i
α2
i (8)

This is the usual ELMK dual problem using a single hybrid

kernel matrix K (xi, xj) =
∑

k µkKk (xi, xj). Hence, this

step can be solved by the algorithm proposed in [12]. The

more efficient the ELMK algorithm is, the more efficient

the MKELM algorithm becomes. The overall complexity of

MKELM algorithm is tied to the one of the single kernel

ELMK algorithm.

Then, the second step consists in updating the weight

vector µ. For a given µ, J (µ) is the objective value of

original ELMK where the kernel K is the aggregation of

each individual kernel weighted by µ. Therefore, J (µ) is

convex, which ensures global convergence, and differentiable

on µ [17]. The differentiation of J (µ) with respect to µk can

be written as

∂J

∂µk

= −
1

2

∑

i,j
αiαjKk (x, x

′) (9)

Finally, the algorithm of MKELM can be summarized

as

1: initialization
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2: Set weight µk = 1
M
, k = 1, . . . ,M

3: while stopping criteria is not reached do

4: Solve the original ELMK J with the combined kernel

K =
∑

k µkKk

5: Compute gradient descent D of J w.r.t. µk for k =
1, . . . ,M

6: Set d = argmax
k

µk, J
† = 0, µ† = µ,D† = D

7: while J† < J (µ) do

8: µ = µ†, D = D†

9: v = argmin
{k|Dk<0}

−µk/Dk, γmax = −µv/Dv

10: µ† = µ+ γmaxD,D
†

d = Dd −Dv, D
†

v = 0
11: Solve the original ELMKJ† with the combined

kernel K =
∑

k µ
†

kKk

12: end while

13: Line search D with γ ∈ [0, γmax]
14: µ← µ+ γD

15: end while

where the stopping criteria is the variation of µ of each iter-

ation is less than the preset threshold value or the maximum

number of iterations is reached. The ultimate solution will

be the kernel weight µ, and the weights w.

IV. SIMULATION EXAMPLES

In this section, we will give one example to substantiate

the proposed prediction method based on MKELM.

The simulation is conducted in the Matlab environment

running on the Windows 7 operating system, Pentium(R)

Dual CPU 2.60Hz, 4 GB RAM. The root mean square error

(RMSE) is used to characterize the accuracy of prediction

RMSE =

√

√

√

√

1

n

n
∑

i=1

(di − pi)
2

(10)

where di indicates the i-th sample of the desired output, pi
indicates the i-th sample of the predicted output, and n is

the number of samples.

In order to demonstrate the effectiveness of our pro-

posed prediction method, variable selection methods: max-

relevance min-redundancy (mRMR) [23], is used to select the

optimal variables, and extreme learning machine (ELM) [18],

online extreme learning machine (OSELM) [24], support

vector regression (SVR) [25], extreme learning machine with

kernels (KELM) [12], and multiple kernel learning (MKL)

[17] are compared in our simulation.

In this example, the proposed prediction method will be

demonstrated on the benchmark Lorenz chaotic multivariate

time series. The Lorenz system is as







dx
dt

= a(y − x)
dy
dt

= (c− z)x− y
dz
dt

= xy − bz

(11)

When a = 10, b = 8/3, c = 28 and x(0) = y(0) =
z(0) = 1.0, the Lorenz system with chaotic solutions has

been discovered. The fourth-order Runge-Kutta method is

applied to generate a chaotic time series. The sampling time

is chosen as 0.02.

Here, we use the x(t), y(t) and z(t) together to predict

the x(t+ η) time series and η is the prediction horizon. The

embedded data vector is formed by 18 values of the time

series

d (k) = [x (k) , x (k − τ1) , · · · , x (x− (m1 − 1)τ1)
y (k) , y (k − τ2) , · · · , y (x− (m2 − 1)τ2)
z (k) , z (k − τ3) , · · · , z (x− (m3 − 1)τ3)]

T

where m1 = m2 = m3 = 6, τ1 = 8, τ2 = 7, τ3 = 8.

The parameter settings are as following: The length of

training set is 1500 and the length of testing set is 500.

The mRMR [23] is applied to select 1 − 18 variables, the

prediction results based on the different selected variables

are shown in Fig. 1. From Fig. 1, we can see that the

prediction performance is different with different variables

selected, and when 3 variables is selected, we get the best

result. The prediction results of MKELM conducted on the

Lorenz time series with 3 variable selected are shown in Fig.

2. The predicted values are fitting the actual values well, and

the prediction errors are at a low level near zero.

The parameters of the compared methods are set as

following. The number of hidden nodes of ELM [18], the

number of hidden nodes and chunk number of OSELM

[24], the regularization coefficient and kernel width of SVR

[25] with Gaussian kernel, the regularization coefficient and

kernel width of KELM [12] with Gaussian kernel, and the

regularization coefficient of MKL [17] are chosen by 10-fold

cross validation.

The prediction performance is measured by the testing

error (RMSE), and all the prediction results are shown in

Table I. It can be seen form Table I that, the prediction

results based on selected variables are better than these based

on original 18 variables, which indicate the effectiveness of

the variable selection preprocessing procedure. It can also

be seen form Table I that the prediction performance of

MKELM is superior to the compared methods, which ensures

the effectiveness of the proposed methods.

TABLE I

COMPARISON OF SINGLE-STEP PREDICTION ACCURACY (LORENZ-x(t))

Variables [1,7,15] [1-18]

ELM 0.1672 0.4189

OSELM 0.0155 0.1551

SVR 0.8567 0.8848

KELM 0.0125 0.0652

MKL 0.0970 0.1056

MKELM 0.0034 0.1022

V. CONCLUSIONS

In this paper, a multivariate time series prediction method

based on multiple kernel extreme learning machine is pro-

posed. The multivariate time series is first reconstructed to

phase space. Then variable selection is used to preprocess the

transformed data. A prediction model named multiple kernel
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Fig. 1. Prediction Error and Selected Variables.
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Fig. 2. Prediction results of Lorenz x(t) time series based on MKELM
method.

extreme learning machine, which combines the multiple

kernel learning and extreme learning machine with kernels,

is proposed to model the nonlinear input-output function.

The performance of the proposed method has been tested by

Lorenz chaotic time series prediction simulation. The simu-

lation results indicate that variable selection preprocessing

procedure can select a compact and relevant variable set

for the prediction model. Meanwhile, the proposed multiple

kernel extreme learning machine outperforms other state-of-

art methods.

REFERENCES

[1] P. Zhao, L. Xing, and J. Yu, “Chaotic time series prediction: From one
to another,” Physics Letters A, vol. 373, no. 25, pp. 2174–2177, 2009.

[2] N. Sapankevych and R. Sankar, “Time series prediction using support
vector machines: a survey,” IEEE Computational Intelligence Maga-

zine, vol. 4, no. 2, pp. 24–38, 2009.

[3] L. Cao, A. Mees, and K. Judd, “Dynamics from multivariate time
series,” Physica D: Nonlinear Phenomena, vol. 121, no. 1-2, pp. 75–
88, 1998.

[4] K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka, “Forecast-
ing the behavior of multivariate time series using neural networks,”
Neural Networks, vol. 5, no. 6, pp. 961–970, 1992.

[5] F. Popescu, “Robust statistics for describing causality in multivariate
time series,” Journal of Machine Learning Research, vol. 12, pp. 30–
64, 2011.

[6] A. a. Jamshidi and M. J. Kirby, “Modeling multivariate time series
on manifolds with skew radial basis functions,” Neural computation,
vol. 23, no. 1, pp. 97–123, Jan. 2011.

[7] F. Takens, “Detecting strange attractors in turbulence,” Dynamical

systems and turbulence, Warwick 1980, pp. 366–381, 1981.
[8] G. Huang, D. Wang, and Y. Lan, “Extreme learning machines: a

survey,” International Journal of Machine Learning and Cybernetics,
vol. 2, no. 2, pp. 107–122, 2011.

[9] A. Nizar, Z. Dong, and Y. Wang, “Power utility nontechnical loss
analysis with extreme learning machine method,” IEEE Transactions

on Power Systems, vol. 23, no. 3, pp. 946–955, 2008.
[10] M. Van Heeswijk, Y. Miche, T. Lindh-Knuutila, P. Hilbers, T. Honkela,

E. Oja, and A. Lendasse, “Adaptive ensemble models of extreme
learning machines for time series prediction,” Artificial Neural Net-

worksICANN 2009, pp. 305–314, 2009.
[11] C. Lian, Z. Zeng, W. Yao, and H. Tang, “Ensemble of extreme learning

machine for landslide displacement prediction based on time series
analysis,” Neural Computing and Applications, vol. 24, no. 1, pp. 99–
107, 2014.

[12] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42,
no. 2, pp. 513–529, 2012.

[13] H. Jaeger, “Discovering multiscale dynamical features with hierarchi-
cal echo state networks,” Jacobs University Bremen, Tech. Rep, 2007.

[14] X. Wang and M. Han, “Multivariate chaotic time series prediction
based on hierarchic reservoirs,” in Systems, Man, and Cybernetics

(SMC), 2012 IEEE International Conference on. IEEE, 2012, pp.
384–388.

[15] A. Widodo and I. Budi, “Multi layer kernel learning for time series
forecasting,” in Advanced Computer Science and Information Systems

(ICACSIS), 2012 International Conference on. IEEE, 2012, pp. 313–
318.

[16] L. Duan, I. W. Tsang, and D. Xu, “Domain transfer multiple kernel
learning,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 34, no. 3, pp. 465–479, Mar. 2012.
[17] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet et al., “Sim-

plemkl,” Journal of Machine Learning Research, vol. 9, pp. 2491–
2521, 2008.

[18] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: theory
and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501,
2006.

[19] G. Feng, G. Huang, Q. Lin, and R. Gay, “Error minimized extreme
learning machine with growth of hidden nodes and incremental learn-
ing,” IEEE Transactions on Neural Networks, vol. 20, no. 8, pp. 1352–
1357, 2009.

[20] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“Op-elm: optimally pruned extreme learning machine,” IEEE Trans-

actions on Neural Networks, vol. 21, no. 1, pp. 158–162, 2010.
[21] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many

could be better than all,” Artificial intelligence, vol. 137, no. 1, pp.
239–263, 2002.

[22] M. Gnen and E. Alpaydn, “Multiple kernel learning algorithms,”
Journal of Machine Learning Research, vol. 12, pp. 2211–2268, 2011.

[23] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, vol. 27, no. 8, pp. 1226–1238, 2005.
[24] L. Nan-Ying, H. Guang-Bin, P. Saratchandran, and N. Sundararajan,

“A fast and accurate online sequential learning algorithm for feed-
forward networks,” Neural Networks, IEEE Transactions on, vol. 17,
no. 6, pp. 1411–1423, 2006.

[25] A. J. Smola and B. Schölkopf, “A tutorial on support vector regres-
sion,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

201




