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Abstract—This paper presents a Kinect based hand gesture 
recognition system that can effectively recognize both one-
hand and two-hand gestures. It is robust against the 
disturbance of complex background and objects such as the 
faces and hands of other people by exploiting the depth 
information and carefully choosing the region of interest (ROI) 
in the process of tracking. The recognition module is 
implemented using template matching and other light weight 
techniques to reduce the computational complexity. In the 
experiments, this system is tested on real world tasks from 
controlling the slide show in PowerPoint to playing the highly 
intense racing video game Need for Speed. The practical 
performance confirms that our system is both effective in 
terms of robustness and versatility and efficient for various 
real-time applications. 
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I. INTRODUCTION 
Hand gesture recognition takes a significant position in 

the field of human-computer interaction (HCI). Both 
academic and industrial communities have shown growing 
interests in this area [1, 2]. With the development of 
multimedia and machine intelligence techniques, hand 
gesture recognition has been applied to a wide range of 
interactive systems [3], such as video games [4], virtual 
reality [5], sign language recognition [6], surgical system [7] 
and robot control [8]. 

Compared with glove-based hand gesture recognition 
that needs extra devices to be worn on hands [9, 10], vision 
based hand gesture recognition is more appealing to users 
due to its natural and intuitive operation. However, vision 
based hand gesture recognition is confronted with many 
tough challenges such as cluttered background and 
illumination change. For example, complex background with 
regions similar to skin color can interfere with the 
segmentation of hand while the change in illumination can 
alter the appearance of hand due to the influence of shadows. 
Furthermore, the articulated structure of hand may result in 
special challenges such as deformation and self-occlusion. 
After all, many applications have a high requirement on the 
efficiency and it is difficult to find a solution that can 
robustly recognize hand gestures in uncontrolled 
circumstances in a real-time manner. The reason is that most 

traditional detection, tracking and recognition techniques 
with high precision are computationally intensive and cannot 
satisfy this demanding constraint. 

 Fortunately, the introduction of RGB-D sensors such as 
Kinect and ASUS Xtion in recent years has significantly 
simplified the process of vision based object recognition, 
especially the segmentation phase. These sensors provide 
remarkable improvement when dealing with complex 
backgrounds and the depth data can also provide more 
information about the object and help improve the 
performance of recognition. Due to their unique benefits, 
RGB-D sensors are becoming more and more popular in 
computer vision and pattern recognition.  

Among all existing commodity RGB-D sensors, Kinect 
by Microsoft is the most popular one. Since the first release 
of Kinect in late 2010 in combination with Xbox 360 (the 
Windows version was released in 2012), a large number of 
interesting applications have been developed. For hand pose 
recognition, Ren et al. built a Kinect based hand gesture 
recognition system [11], which can recognize hand poses and 
was used for performing arithmetic computation and playing 
the rock-paper-scissors game [12]. Their system required the 
hand to be at the forefront and the user to wear a black belt 
on the gesturing hand’s wrist for hand segmentation purpose. 
Its recognition time was around 0.5 second as reported. 
Using both the color and depth information that Kinect 
provides, Oikonomidis et al. [13] built a 3D model of hand to 
recover the full articulation structure and used the particle 
swarm optimization algorithm to find the parameters of hand 
model. The system’s frame rate was 15 FPS when 
implemented using parallel computing on GPU. The authors 
later applied this approach to recognizing two strongly 
interacting hands [14] and the frame rate dropped to 4 FPS. 
Keskin et al. [15] extracted the skeleton structure of hand 
from depth images using random decision forest and used 
this approach to recognize ASL digitals and achieved a 
recognition rate of 99.9%.  

Most hand pose recognition algorithms cannot meet the 
real-time requirement as detailed information of the hand 
needs to be extracted, resulting in very high computational 
complexity. The hand also has numerous appearances due to 
its articulated structure and different viewpoints and large 
training datasets are necessary. 
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There are also many studies on recognizing dynamic 
hand gesture using Kinect. Tang [16] proposed an approach 
that can recognize the gestures of “grasp” and “drop” with 
over 90% accuracy. Liang [17] conducted gesture 
recognition using depth images and compared the proposed 
method with traditional methods using 2D images and 
showed that depth information improved performance 
notably. There are also some attempts by using Kinect 
skeleton tracking SDK for hand tracking. However, it takes a 
few seconds for Kinect to find the skeleton and the precision 
is not reliable enough.  

This paper presents a hand gesture recognition system, 
which can track the movements of both hands and recognize 
both dynamic gestures and poses of hands. With the function 
of one-hand gesture recognition, users can have full control 
of the slide show in PowerPoint without using keyboard and 
mouse. For two-hand gesture recognition, users can 
smoothly control the popular racing video game Need for 
Speed, which is very demanding in response time.  

The prominent features that are different from existing 
hand gesture recognition applications are: i) our system can 
deal with strongly cluttered background such as the presence 
of multiple people and there is no need for users to wear 
marking devices; ii) our approach has comparatively low 
computational complexity with fast response speed and its 
practical performance is good enough to be used with high 
end video games. 

Section II presents Kinect and the experiment 
environment. The main process of our approach is detailed in 
Section III. The two applications and experiment results are 
shown in Section IV. Section V concludes this paper and 
indicates the directions for future work.  

II. KINECT AND EXPERIMENT ENVIRONMENT 

A. Kinect 
As Fig. 1 shows, Kinect consists of an RGB camera, an 

IR emitter, an IR depth sensor, a microphone array and a tilt. 
The RGB camera can capture three-channel data in a 1280 × 
960 resolution at 12 FPS or a 640 × 480 resolution at 30 FPS. 
The IR emitter emits infrared light beams and the IR depth 
sensor reads the IR beams reflected back to the sensor. The 
reflected beams are converted into depth information 
measuring the distance between an object and the sensor. 
The depth map’s resolution can be 320 × 240 or 640 × 480, 
both at 30 FPS. 

 

 

 

 

 

 

 

Fig. 1. The components of Kinect  

The angular field of view is 57 degrees horizontally and 
43 degrees vertically and Kinect can be tilted up or down by 
27 degrees. Under the normal model, the valid operating 
distance of Kinect is 0.8m~4m. Under the near model, the 
valid operating distance is 0.4m~3m. 

B. Experiment Environment 
In our experiments, we used both the RGB video stream 

and the depth map produced by the Kinect sensor with a 
resolution of 640 × 480 at 30 FPS. The computer system was 
a standard PC with Intel Core i5-2320 CPU at 3.0 GHz and 
8G RAM. The OS was 64-bit Windows 7 and our system 
was developed using Microsoft Visual C++ and OpenCV 
2.4.5. This specification represents a typical computing 
environment nowadays. For the applications, we used 
Microsoft Office PowerPoint 2010 and Need for Speed: Most 
Wanted (2012). 

III. HAND GESTURE RECOGNITION TECHNOLOGIES 
Fig. 2 shows the overall procedure of the proposed hand 

gesture recognition system. One-hand gesture recognition 
starts from locating the hand using color image and depth 
data and then tracks its movement to get its trajectory, which 
is used to recognize the gesture. For two-hand gesture 
recognition, we first locate and track one hand as in one-
hand gesture recognition. Then using the shape and location 
information of the identified hand, we locate the other hand 
and perform two-hand gesture recognition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Flowchart of hand gesture recognition: one-hand gesture 
recognition (left branch) and two-hand gesture recognition (right branch) 
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A. Preprocessing 
Poor lighting condition can have a severe influence on 

skin color detection in RGB images. Although Kinect is able 
to perform automatic white balance, the result is not 
satisfactory. To gain more robustness against illumination 
uncertainty, the system conducts color balance before 
detecting skin color.  

There are many color balancing algorithms: Scale by 
Max, Gray World, White World (Perfect Reflector) etc. As 
Kinect can only work normally in indoor environment, the 
most likely situation confronted is insufficient illumination 
and colored lighting. We compared empirically several color 
balancing approaches and found that Gray World had 
relative better performance. The Gray World method 
assumes that the red, green and blue channels of a given 
image should have the same mean value. So, we adjusted the 
mean value of each channel to be the same as that of the 
green channel since human eyes are most sensitive to this 
region of the spectrum. 

                   (1) 

In (1), ri, gi, bi are the red, green and blue components of 
pixel i in the image respectively while avg(r), avg(g) and 
avg(b) are the mean values of red, green and blue channels. 
The effect of color balancing is shown in Fig. 3 where color 
balancing can help detect skin more precisely and eliminate 
the disturbance of some skin-like color. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The effect of color balancing: original image (a); skin detection 
result of original image (b); balanced image (c); skin detection result of 
balanced image (d) 

B. First Hand Detection 
Since it is natural to put hands forward when one wants 

to perform gestures, we define that when a user puts forward 
his/her hand and the distance between hand and body is over 
a threshold, it is a sign of starting to make gestures. First, the 
system applies an elliptical boundary model [18] to the RGB 
image (Fig. 4(a)) to extract possible skin parts (Fig. 4(b)). A 
threshold minArea is used to remove regions that are too 

small to be hand regions and skin-like objects too far from 
the sensor are also eliminated (Fig. 4(c)). The result is shown 
in Fig. 4(d).  

 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 
 
 

 

 
Fig. 4. The process of first hand detection 
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Next, the system determines whether one of the skin 
blocks contains the target hand following three steps: 

1) Locate target candidates. Suppose the minimum depth 
of the ith skin block is minDepthi. A depth filter is applied to 
extract the sub-region with depth in the range of [minDepthi, 
minDepthi + thresh1] (See Fig. 4(e) and Fig. 4 (g) for some 
examples). This operation can be used to segment hand from 
arm, which may have similar color information but different 
depth information. 

2) Find the connected region of candidates. Apply 
another depth filter with range [minDepthi, minDepthi + 
thresh2] on the depth image to find the ith connected region 
(regardless of the color information) containing the ith target 
candidate.  This operation can be used to create a connected 
region consisting of hand and arm (Fig. 4(f)) or face and 
body (Fig. 4(h)).  

3) Determine the target. Compare the area of each 
candidate with the area of its corresponding connected region. 
If the ratio is larger than a threshold, we assume that the 
candidate is the outstretched hand (target). Otherwise, the 
candidate is eliminated. The reason is that, for example, the 
face usually only accounts for a small portion of the face-
body region compared to the ratio between the outstretched 
hand and the hand-arm region. As a result, interfering objects 
such as face and the non-gesturing hand can be effectively 
removed, as shown in Fig. 4(i). 

C. Second Hand Detection 
It is very natural for a user to put both hands forward 

with the same pose before he/she starts to perform two-hand 
gestures. Consequently, for two-hand gesture recognition, we 
assume that this is the initial gesture. 

As the system has detected the first hand in the previous 
part (Section III-B), it is assumed that the second hand is on 
the same depth plane and has similar pose as the first hand. 
So the depth and shape information can be used to detect the 
second hand and start tracking both hands. 

D. Tracking 
Recently, tracking-by-detection has become increasingly 

popular for object tracking [19, 20]. The idea is to detect the 
object of interest in each frame and associate the object 
locations in successive frames to generate the trajectory. 

In the process of tracking, according to the hand location 
and size in the previous frame, a region of interest (ROI) is 
set for the current frame and the target is only searched in the 
ROI. This step narrows down the range of search 
significantly and thus reduces the amount of computation 
and eliminates the disturbance of distractors outside of ROI. 
In our system, the ROI is defined as: 

                                                                         (2) 

In (2), [x0, y0, z0] is the hand location in the previous 
frame and s is set to be half of the circumstance of hand’s 
bounding box while thresh is a fixed threshold based on the 
longest distance that hand can move in 1/30 second.  

Only the depth images are used for tracking for the sake 
of efficiency, as the coordinates of depth image and color 
image are not matched precisely and converting the 
coordinates of an entire image is a time consuming task. 

A practical issue is the coarseness of the depth image. 
Due to the method of depth information acquisition, Kinect 
cannot precisely measure the depth of objects with smooth 
surface such as glass. Furthermore, depth data can be 
inaccurate at the edge of objects (Fig. 5). These bugs may 
occur frequently and interrupt the tracking process. Setting 
ROI can eliminate the influence of some of these flaws. 
However, those in the vicinity of the target hand can cause 
real trouble as the detection is based on the nearest object in 
ROI. In practice, if the hand is missing and the depth of the 
closest object is significantly different from the hand in the 
last frame, this object will be removed and a second 
detection is conducted to increase the robustness of tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Examples of the flaws in the depth images produced by Kinect: 
color images (a) and (c); corresponding depth images with flaws marked by 
red circles (b) and (d)  

E. Palm and Fist Classification 
To distinguish palm and fist, we collected a dataset with 

500 images of palm and fist and manually segmented them 
from the background, as shown in Fig. 6 

 

 

 

 

 

 

Fig. 6. Segmented samples of palm and fist 
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Since the system imposes no strict restriction on the 
user’s distance to Kinect or the orientation of the hands, the 
features of hand need to be invariant to scaling, rotation and 
translation. Hu’s moment invariants [21] are extensively 
used global features in pattern recognition. These seven 
values of Hu’s moment invariants are computed by 
normalizing central moments through order three, which are 
invariant to object scaling, rotation and translation.  

Compared with other popular classifiers such as neural 
networks, decision tree model and naïve Bayes classifier, 
SVM has better performance when dealing with small 
datasets, especially in nonlinear and high dimensional 
situations. Thus, we chose SVM to identify palm and fist. 

Due to the limitation of Kinect hardware, the depth data 
at the edge of object may be quite rough. To better exploit 
geometrical features, the depth image is smoothed by 
blurring and binarization using a threshold. 

F. Gesture Recognition 
To recognize the meaning of gestures based on the 

trajectory of hands, a challenge is called gesture spotting, 
which is to separate unintended gestures from meaningful 
gestures. Traditional dynamic hand gesture recognition 
approaches include hidden Markov model (HMM), dynamic 
time warping (DTW) and finite-state machine (FSM).  

Since the focus of our system is on efficiency, simple 
methods are preferred. For directional one-hand gestures 
such as rightward, leftward, upward, downward and reverse, 
template matching is employed. First, we extract part of the 
trajectory with a certain length, for example 0.5 second, 
which measures the last 15 frames of the complete trajectory. 
Second, a few key points are sampled from the trajectory. 
Our system samples three key points: the starting point, the 
end point and the middle point. Third, their positions relative 
to the starting point are calculated. Finally, these key points 
are matched with those on the individual template. In Fig. 7, 
S is the trajectory of hand; S(i) is the ith key points of S; T is 
the template; T(i) is the ith key points on T. 

 

 

 

 

Fig. 7. Matching between hand trajectory and the template 

The similarity is measured by the mean square error 
(MSE) as follows (N is the number of sampled key points): 

                                                                                       (3) 

For circular gestures, there are some differences from the 
previous approach. First, as drawing a circle takes more time 
than directional gestures, the last 1 second part of the 
trajectory (30 frames) is extracted. Second, try to find a 
closed curve in the trajectory by searching the 30 frames to 
see whether there is a point coincides with the end point of 
the trajectory. Third, identify four key points of the closed 

curve with equal time intervals. Fourth, determine if the 
closed curve forms a circle by imposing restrictions on the 
distance between these key points. Finally, according to the 
sequential relationship of these key points, determine 
whether the circle is in clockwise or anticlockwise.  

After the recognition of a gesture, the system waits for 
one second before recognizing another gesture. This is to 
leave a time interval for the user to prepare for the next 
gesture, which can reduce the recognition error caused by 
hand reset. 

As to two-hand gesture recognition, our system currently 
focuses on the recognition of poses such as palm and fist 
including the change of poses and the relative position of the 
two hands to realize various functions. 

IV. APPLICATIONS 

A. Controlling PowerPoint 
We defined eight gestures for controlling PowerPoint, 

corresponding to six most common functions: open file, slide 
show, next page, previous page, quit slide show and close 
file, as shown in Table I. We asked five volunteers to 
perform these gestures to control PowerPoint after giving a 
5-minute briefing. The recognition rate of each type of 
gesture is shown in Table II. The average response time was 
around 20 ms. 

Although the result shows that certain gestures such as 
“reverse” and “circle” are more difficult to recognize than 
others, the overall recognition rate is already enough for 
operating slide show in PowerPoint and producing good user 
experience. After all, these two types of gestures are not 
frequently used in practice. 
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TABLE I.    
GESTURE DEFINITION FOR CONTROLLING POWERPOINT 

Gesture Meaning/Function 

rightward 

next page 

downward 

leftward 

previous page 

upward 

clockwise circle slide show 

anticlockwise circle quit slide show 

reverse close file 

clench open file (ENTER) 
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B. Controlling Need for Speed 
The Need for Speed is a series of racing video games that 

has become popular around the world since 1994. It features 
intense racing and pursuing in the game and has a very high 
requirement on the reaction time of players. We used one of 
the latest versions called Need for Speed: Most Wanted to 
testify the performance of recognition. 

The six defined gestures are shown in Table III. These 
gestures can realize six essential functions, controlling the 
movement of the car. These gestures can be also used in 
combination to create more versatile functions. For example, 
drift can be done by “right hand above left hand” (turn left) + 
“left palm, right fist” (hand brake). 

For this application, the response time is a crucial factor 
in addition to the recognition rate. In our experiment, with 
GeForce GTX 480, the frame rate was kept at around 45 FPS 
with all special effects enabled, ensuring the fluency of the 
game and good user experience. The average response time 
of the recognition system was around 20 ms, an acceptable 
delay that players are unlikely to be aware of. The 
recognition rate of each type of gesture is shown in Table IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 
In this paper, we presented a real-time hand gesture 

recognition system that can track both one-hand and two-
hand movements based on Kinect and verified its 
performance on controlling PowerPoint and the most 
popular racing video game Need for Speed.  

We adopted both color information and depth 
information to segment hand from background. To reduce 
the influence of illumination change, color balancing was 
implemented at the preprocessing stage.  The detection of the 
second hand used the shape and depth information of the first 
hand, which largely simplified the process. To achieve high 
efficiency, only the depth image was used in tracking and a 
3D ROI was set to narrow down the search range. This 
strategy reduced the computational burden significantly and 
enhanced the system’s anti-disturbance ability by eliminating 
distractions beyond the ROI range. For pose recognition, 
Hu’s moment invariants were adopted as the features 
together with SVM to distinguish palm and fist. The 
trajectory of hand was recognized by template matching for 
the sake of simplicity.  

The most prominent features of our system are its 
efficiency and robustness, which are two appealing features 
especially for smart devices with limited processing capacity 
and less controlled working environment. In the future, we 
will further enhance the function of our system to handle 
two-hand trajectory recognition and investigate challenging 
issues such as hand occlusion. 
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