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Abstract— Smartphones emerge from the incorporation of
new services and features into mobile phones, allowing to
implement advanced functionalities for the final users. The
implementation of Machine Learning (ML) algorithms on
the smartphone itself, without resorting to remote comput-
ing systems, allow to achieve such goals without expensive
data transmission. However, smartphones are resource-limited
devices and, as such, suffer from many issues, which are
typical of stand–alone devices, such as limited battery capacity
and processing power. We show in this paper how to build
a thrifty classifier by exploiting bit–based hypothesis spaces
and local Rademacher Complexities. The resulting classifier is
tested on a real–world Human Activity Recognition application,
implemented on a Samsung Galaxy S II smartphone.

I. INTRODUCTION

SMARTPHONES are nowadays playing an important role
in the exploration of novel alternatives for the retrieval

of information directly from the users. It is foreseen that
these devices will be able to monitor and learn from our
actions effectively and unobtrusively [1], thus allowing to
implement personalized approaches to healthcare and re-
mote assistance, entertainment, or marketing. Such results
can be achieved thanks to the opportunities, offered by
smartphones, of identifying the actions carried out by one
or more subjects through the gathering and understanding
of context information about the user state, behavior and
habits and its surrounding environment. This can be done by
the exploitation of environmental and on-body sensors, and
distributed computing resources. Accelerometry is one of the
mechanisms used for the retrieval of information [2], while
peripherals like Bluetooth and data collection mechanisms
like cloud storages allow to implement effective knowledge
sharing and context depicting.

Current–generation smartphones embed accelerometers,
gyroscopes and magnetometers. The purpose of these sensors
was initially to allow implementing appealing and enriched
graphical user interfaces and more pervasive gaming op-
tions, but they also provide information about the actions
performed by the device owner, and allow to extract high–
level behavioral patterns through Machine Learning (ML)
algorithms [2]. ML algorithms on such mobile devices could
target a wide range of new applications that benefit from the
device processing and opportunistic sensing capabilities.
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We focus here on the problem of learning effective multi–
class classifiers to be implemented on smartphones for Hu-
man Activity Recognition (HAR). We target mainly energy
efficiency, which is currently the main limitation of these
mass-marketed devices, and propose a novel approach that
requires fewer system resources for its operation, if compared
to a straightforward implementation.

For this purpose, we will consider the conventional super-
vised learning framework, where the learning process con-
sists in selecting an appropriate hypothesis space and, then, in
choosing the most suitable model in it [3]. It is a well–known
fact that these two steps lead to an approximation error,
depending on the (non-optimal) choice of the hypothesis
space and an estimation error, due to the finite number of
available observations for learning [4]. The approximation
and estimation errors have been widely investigated through-
out the last decades, and effective theoretical approaches and
practical procedures have been designed to deal with them.

However, when resorting to actual computing systems, fur-
ther constraints arise, related to implementation restrictions.
In large scale learning, for example, data do not usually fit in
memory and computational capabilities are not sufficient for
learning the whole dataset, which compels to the searching
for approximate solutions [5], [6].

On another side, resource–limited devices give rise to
other types of constraints. In particular, power consumption
and thermal dissipation lead to preferring fixed-point com-
putations over floating-point ones to increase computation
efficiency and improve battery saving [7], [8]. In addition
to new challenges in designing the learning process, such
constraints introduce an implementation error, related to
the restrictions of realizations on real-world devices. The
investigation of these aspects from both a theoretical and a
practical point of view is thus necessary to design procedures
allowing to cope with these problems and to target our
objectives.

The problem of finding models to be effectively imple-
mented on resource-limited devices, has been usually tackled
by adapting models to fit computational constraints in an a-
posteriori fashion (namely, after the learning process con-
cluded) [9]. In this paper, instead, we reverse the perspective
by acting on the whole learning process, starting from the
definition of the hypothesis space. For such purposes, we
mostly rely on two main pillars, i.e. two ideas that emerged
in recent literature.

The first result [10], [11], [12] allows proving that en-
hancements can be obtained if the hypothesis space is local:
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namely, it consists of only those functions, that are most
likely to be chosen by the learning procedure.

The second pillar result [13] shows that exploiting a
limited representation when defining an hypothesis space
is equivalent to introducing a regularization in the learning
process: in fact, using few bits allows reducing noise as well
as the number of functions included in the hypothesis space
[14], [15].

In this work we propose a novel learning procedure: by
exploiting a representation relying on few bits, it allows to
describe a limited number of functions, chosen so to foster
locality. The derived advantages are threefold:

• The learning process is implicitly regularized by the use
of a limited representation;

• Model performance is improved thank to the locality of
the hypothesis space;

• Physical/computational constraints hold, as only few
bits are exploited.

The paper is organized as follows. Section II briefly
recalls the standard supervised learning framework, in par-
ticular by focussing on how it must be modified to deal
with implementation on resource–limited devices. Section
III moves from the theoretical introductory considerations
and results of Section II to practice, by presenting an actual
algorithm to train effective classifiers and by contextualizing
it to the particular case of the exploitation of a well–known
solver tool. Section IV shows some preliminary results on
a Human Activity Recognition on Smartphones (HARoS)
dataset, publicly available on a widely known online file
repository. Finally, Section V proposes some concluding
remarks.

II. THE LEARNING FRAMEWORK: STRUCTURAL RISK
MINIMIZATION AND LOCAL RADEMACHER COMPLEXITY

In this section, we recall the standard supervised learning
framework [10] and, then, we properly modify it so to intro-
duce the implementation constraints, typical of small scale
learning with resource-limited devices, such as smartphones.

Our goal is to approximate the relationship between inputs
from a set X and outputs from a set Y , which is encoded by
a fixed, but unknown, probability distribution μ over X ×Y .
The learning algorithm maps a set of labeled samples Dn =
{(X1, Y1), . . . , (Xn, Yn)} to h ∈ H (X ∈ X and Y ∈ Y).
The accuracy in representing the hidden relationship μ is
measured with reference to a loss function

� : Y × Y → [0, 1] . (1)

The generalization error is defined as

L(h) = E(X,Y )�(h(X), Y ), (2)

where we assume that each labelled sample is independently
generated according to μ. Since μ is unknown, we can only
compute its empirical estimate, i.e. the empirical error

L̂n(h) =
1

n

n
∑

i=1

�(h(Xi), Yi). (3)

It is possible to prove that we can bound L(h) with
probability (1 − δ), ∀h ∈ H, where H is the hypothesis
space, by using empirical quantities only [10]:

L(h) ≤c1L̂n(h) + c2r
∗ + φ1(δ, n) (4)

r∗ : r = c3R̂n

{

H(∗,h0) : L̂n(h) ≤ 2r
}

+ φ2(δ, n)

where c1, c2, c3 are computable constants, while φ1, φ2

are functions that depend only on the level of confidence
[10]. Moreover, R̂n

{

H(∗,h0) : L̂n(h) ≤ 2r
}

is the Local
Rademacher Complexity (LRC) term, that can be computed
as follows:

R̂n

{

H(∗,h0) : L̂n(h) ≤ 2r
}

=

Eσ1,...,σn
sup

h∈H(∗,h0),L̂n(h)≤2r

2

n

n
∑

i=1

σi�(h(Xi), Yi) (5)

where σ1, . . . , σn are independent uniform {±1}-valued ran-
dom variables. H(∗,h0) is the hypothesis space, derived by
star–shaping H around h0:

H(∗,h0) = {h+ α(h− h0) : h ∈ H, α ∈ [0, 1]} , (6)

H∗ = H(∗,0) = {αh : h ∈ H, α ∈ [0, 1]} . (7)

The bound of Eq. (5) contemplates only those functions in
H that will be likely chosen by the learning process to assess
the performance of a model. Consequently, according to the
Structural Risk Minimization (SRM) principle [3], we can
define an infinite series of hypothesis spaces of increasing
size H1 ⊆ H2 ⊆ · · · and select:

hopt : arg min
h∈Hi∈{H1⊆H2⊆··· }

L(h) (8)

L(h) ≤ c1L̂n(h) + c2r
∗ + φ1(δ, n)

r∗ : r = c3R̂n

{

H(∗,h0)
i : L̂n(h) ≤ 2r

}

+ φ2(δ, n)

As a last step, we devote the last part of this section to
the introduction of implementation constraints of real-world
applications on resource-limited devices, as discussed in the
introduction. For this purpose, we exploit the results in [13],
by limiting our analysis to the binary classification case: X ∈
R
d, so that X = x, and Y ∈ {±1}, so that Y = y. H consists

of functions, which are parametrized as follows:

h(x) = wTφ(x), φ : Rd → R
D and w ∈ R

D. (9)

Moreover, the ramp loss [16]

�(h(x), y) =
1

2
min[2,max[0, 1− yh(x)]] (10)

is used as loss function, which allows to perform regular-
ization in the learning process. Moreover with the ramp
loss function the Rademacher Complexity defined in Eq. (5)
becomes:

R̂n

{

H(∗,h0) : L̂n(h) ≤ 2r
}

=

Eσ1,...,σn
sup

h∈H(∗,h0),L̂n(h)≤2r

2

n

n
∑

i=1

σi�(h(Xi), Yi) =
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Eσ1,...,σn
sup

h∈H(∗,h0),L̂n(h)≤2r

2

n

n
∑

i=1

�(h(Xi), σi) (11)

According to the SRM principle, we start by defining the
infinite series of hypothesis spaces as H = {w : ‖w‖22 ≤
w2

MAX}, where w2
MAX is the hyperparameter that adjusts the

size of the class of functions. It is worth underlining that H
is star–shaped around zero by definition, i.e. H = H(∗,0) =
H∗. Given the restrictions of several real-world applica-
tions and implementations on resource-limited devices (like
smartphones), it is often convenient to resort to fixed-point
arithmetics, in order to reduce the computational burden of
Machine Learning approaches. A (possibly limited) number
of bits should be then used in order to describe the hypothesis
space and the functions it includes, for example by defining
the following class of models:

H =

⎧

⎨

⎩

w :

⎡

⎣

‖w‖22 ≤ w2
MAX

wj ∈ wMAX
2κ−1 {−2κ + 1, . . . , 2κ − 1}

∑D
i=1[wj �= 0] ≤ Dζ

⎤

⎦

⎫

⎬

⎭

(12)

where κ is the number of exploited bits. Moreover, a further
constraint has been introduced to select a subset of features
(ζ controls the maximum percentage of inputs to consider):
in resource-limited applications, this is of importance to
limit the computational burden by neglecting features (e.g.
sensors signals) that are of scarce influence on the overall
classification process. It is clear noting that the size of the
hypothesis space increases with the hyperparameters wMAX,
κ, and ζ.

As, unfortunately, the class of functions of Eq. (12) is not
star–shaped, a further step is needed, i.e. we can impose star-
shaping around zero:

H∗ = {αw : w ∈ H, α ∈ [0, 1]} . (13)

III. FROM THEORY TO PRACTICE

We have to reformulate the SRM optimization Problem
(8) in order to exploit H∗, as defined in the last part of the
preceding section. We need to define some further quantities:

Φ = [φ(x1)| . . . |φ(xn)]T (14)
Y = diag[y1| . . . |yn] (15)
Θ = diag[σ1| . . . |σn] (16)

an = [a1| . . . |an]T (17)

y = [y1| . . . |yn]T (18)

σ = [σ1| . . . |σn]T . (19)

As we have to compute the two quantities of interest,
namely minh∈H L̂n(h) and R̂n

{

H∗ : L̂n(h) ≤ 2r
}

, the
corresponding minimization problem can be formulated as
follows:

min
h∈S, 1n

∑n
i=1 �T (h(xi),yi)≤2r

n
∑

i=1

�(h(xi), σi). (20)

In order to compute R̂n

{

H∗ : L̂n(h) ≤ 2r
}

, we have S =

H∗; instead, S = H and σi = yi, ∀i ∈ {1, . . . , n} when we

are interested in deriving minh∈H L̂n(h). Consequently, the
(overall) optimization problem can be formulated as:

min
w,α,ξy,ξσ

min[2n, ξ
σ], (21)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖w‖22 ≤ w2
MAX

ξy ≥ max[0n,1n − αY Φw]
ξy ≥ 0n
ξσ ≥ max[0n,1n − αΘΦw]
ξσ ≥ 0n
w ∈ wMAX

2κ−1 {−2κD + 1D, . . . ,2
κ
D − 1D}

1TD [w �= 0D] ≤ Dζ
1Tn min[2n, ξ]

y ≤ 4nr

where α = 1 when searching for minh∈H L̂n(h).
Problem (21) is an NP-problem and, thus, we introduce

a further error source, related to the impossibility of finding
its global minimum. Nevertheless, the hypothesis space is
designed so to consist of a limited number of functions, and
thus it can be effectively explored [10].

Then, a good solution can be generally found by exploiting
general purpose optimization tools, such as CPLEX [17],
the method proposed in [13], or a mixture of these last
two techniques. With reference to this last option, we first
define an alternative formulation of Problem (21), where a
relaxation of the combinatorial constraints is implemented:

min
w,ξy,ξσ

min[2n, ξ
σ], (22)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖w‖22 ≤ w2
MAX

ξy ≥ max[0n,1n − Y Φw]
ξy ≥ 0n
ξσ ≥ max[0n,1n −ΘΦw]
ξσ ≥ 0n
1Tn min[2n, ξ

y] ≤ 4nr

Note that α does not appear in the previous formulation since
αw, with α ∈ [0, 1], already belongs to the class ‖w‖22 ≤
w2

MAX.
We can solve Problem (22) using CPLEX [17]. For this

purpose we have to reformulate Problem (22) as follows:

min
w,ξy,ξσ,ηy,ησ

ξσ + 2ησ, (23)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖w‖22 ≤ w2
MAX

ξy ≥ 1n − Y Φw −Mηy

ξy ≥ 0n
ξσ ≥ 1n −ΘΦw −Mησ

ξσ ≥ 0n
1Tn (ξ

y + 2ηy) ≤ 4nr
ηy ∈ {0, 1}
ησ ∈ {0, 1}

(24)

The previous problem is equivalent, for large values of M ,
to Problem (22), as also underlined in [18]. Problem (23) is
a standard Mixed Integer Quadratic Programming (MIQP).

As a last step, we project the “floating-point” solution to
the nearest (with respect to the Euclidean distance) solution,
which satisfies the two combinatorial constraints:

w ∈ wMAX

2κ − 1
{−2κD + 1D, . . . ,2

κ
D − 1D} (25)
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1TD [w �= 0D] ≤ Dζ. (26)

It is worth underlining that Problem (21) is anyhow more
complex to solve than other learning procedures (e.g. models
training with the Support Vector Machine algorithm [3]):
in other words, we move the computational burden to the
learning phase, so to keep as light as possible the feed-
forward running phase. This is not unusual in learning,
where a trade-off between learning and model complexity is
implemented and properly balanced (e.g. refer to [19], [20],
[21], [22]).

IV. RESULTS & DISCUSSION

We propose some preliminary results, obtained by apply-
ing the previously presented approach to the Human Activity
Recognition on Smartphones (HARoS) [8], [23] dataset. A
set of trials with volunteers was required to create and
develop the Human Activity Recognition (HAR) dataset. In
total, 30 people with ages from 19 to 48 years participated
in this research and performed a set of motion sequences
comprising the 6 proposed Activities of Daily Living:

1) walking
2) walking upstairs
3) walking downstairs
4) sitting
5) standing
6) laying.
Each subject performed the experiment protocol twice, and

each activity was at least performed two times on each trial to
simulate repeatability (refer to [8] for further details). Also,
a timeout of 5 seconds in which people remained still was
arranged between each activity in order to separate each task
and simplify the data labeling process.

The obtained database was partitioned into training and
test sets in a proportion of 70% to 30%. The partition was
randomized but assuring that no samples were from the
same user in both subsets. The Samsung I9100 Galaxy S
II smartphone was the device utilized for the experiments.
The manual labeling process was done by selecting the
videos recorded from the experiments as the ground truth
and comparing them with the log files of the inertial signals.
Since the dataset consists of six classes and in this work we
deal with two-class problems, a One-vs-One (OvO) approach
was applied.

Model selection was performed by varying wMAX in the
range [10−3, 102] among 10 values, equally spaced in a
logarithmic scale; we also tested different values for κ =
{8, 16, 32} and ζ = {0.1, 1}, for which we computed the
class complexity r∗ accordingly. Table I reports the empirical
error on the training set L̂(h) and on the test set L̂T (h), in
addition to r∗.

Table I also presents results showing how performance, in
terms of predictions per second and battery life (in hours),
changes as κ and ζ are varied: these results are averaged
over the different OvO binary classification problems. These
values were obtained by simulating the HARoS process on a

Samsung Galaxy S II smartphone1, where we implemented
both fixed-point (8 and 16 bits) and floating-point (32 bits)
procedures, in accordance with the explored values of κ. The
code was written in Java for the user interface and in C for
implementing the most expensive operations, such as signal
processing and classification algorithms, more efficiently: the
use of C on Android was possible thanks to the Native
Development Kit (NDK), which allows embedding native
code components into Android OS applications. Most of
the phone services (e.g. Wi-Fi and 3G Network) as well
as the phone screen were switched-off during tests, as they
are in general the most energy consuming phone devices.
The idea was to isolate the classification process as much as
possible to obtain an approximate estimation of the battery
consumption of the realized app.

The time of the activity recognition process from the
sensor reading to determining the output was measured to
estimate the average prediction rate for each approach. Table
I shows the obtained results. It is worth highlighting the
large difference between the rates obtained using the fixed-
point representation and the results achieved by floating-
point arithmetic, and the proportional relationship between
the number of bits used and the processing time.

An additional test was carried out aimed to measure
battery consumption with the floating-point and fixed-point
representations. The experiment consisted of continuously
running the HAR smartphone application and measuring the
battery discharging time from a fully charged state down to a
minimum level of 10%. We found that the average battery life
is increased up to 100% when a fixed-point 8-bit application
is running instead of a floating-point one. These results are
highly dependent on the exploited hardware and operating
system, but they show the improvements that can be achieved
thanks to the proposed approach.

For obtaining a more reliable measure of the relationship
between the battery savings and processing time, more
experimental tests with different devices and operational
conditions would be required. In current scenarios, even
small savings in battery consumption make a big difference
in deciding whether or not to use a mobile app: this is the
case where HAR applications are required to deliver activity
information to other higher-level decision applications (e.g.
phone apps for maintaining a healthy lifestyle through HAR
[24]), thus implying sharing system resources. A general aim
is to build a device able to operate at least during a full day,
so that the battery recharges can occur during the night time.
These results are a good indicator of the benefits that this
method can offer for saving battery life and the possibility
of being integrated into devices for everyday life.

V. FINAL REMARKS

We showed in this paper how reducing the number of
bits emerges as an appealing procedure to decrease the

1The smartphone is equipped with a Li-Ion 1650 mAh battery, with up
to 610 hours of stand-by operation time, and mounts Android Gingerbread
v2.3.4 operating system.
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complexity of the hypothesis space while, however, main-
taining the capability of the trained models to generalize
well on new and previously unseen data. The use of Local
Rademacher Complexity plays a central role, as it allows to
exclude from the hypothesis space those functions that will
not be chosen by the learning procedure as the final model.
The possibility, offered by the proposed approach, of more
accurately shaping and designing the class of functions leads
to remarkable positive outcomes when dealing with model
accuracy, prediction rate, and battery lifespan in resource-
limited devices like smartphones.
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