
A Genetic Algorithm Based Double Layer Neural Network for Solving
Quadratic Bilevel Programming Problem

Jingru Li
Graduate School of Information,

Production and System,
Waseda University, Kitakyushu

808-0135 Japan
Email: jingruli@fuji.waseda.jp

Junzo Watada
Graduate School of Information,

Production and System,
Waseda University, Kitakyushu

808-0135 Japan
Email: junzow@osb.att.ne.jp

Shamshul Bahar Yaakob
Graduate School of Information,

Production and System,
Waseda University, Kitakyushu

808-0135 Japan
Email: shamshulbahar@gmail.com

Abstract—In this paper, an intelligent genetic algorithm (IGA)
and a double layer neural network (NN) are integrated into
a hybrid intelligent algorithm for solving the quadratic bilevel
programming problem. The intelligent genetic algorithm is used
to select a set of potential solution combinations from the
entire generated combinations of the upper level. Then a meta-
controlled Boltzmann machine, which is formulated by compris-
ing the Hopfield model (HM) and the Boltzmann machine (BM), is
used to effectively and efficiently determine the optimal solution of
the lower level. Numerical experiments on examples show that the
genetic algorithm based double layer neural network enables us
to efficiently and effectively solve quadratic bilevel programming
problems.

I. INTRODUCTION

Bilevel programming problem (BLPP) has been increas-
ingly addressed in the literature. The problem involves two
optimization problems where the constraint region of the upper
level problem is implicitly determined by another lower level
optimization problem [1], [2]. This mathematical programming
model arises when two independent decision makers, ordered
within a hierarchical structure, have conflicting objectives [1],
[3]. A decision maker at the lower level has to optimize
its own objective function under the given parameters from
an upper level decision maker, who in return, with complete
information on the possible reactions of the lower level, selects
the parameters so as to optimize its own objective function [1].

The bilevel programming model is extremely useful to the
fields like government policies, economic systems, finance,
power systems, transportation and network designs, and is
particularly suitable for conflict resolution [4], [5], [6]. How-
ever, due to its inherent non-convexity and non-differentiated
properties, bilevel programming problem is hard to solve,
even the simplest case—Linear BLPP—has been proved to
be a NP-hard problem [1], [2]. A conventional approach to
solve the bilevel programming problem is to transform the
original two level problems into a single level one by replacing
the lower level optimization problem with its Karush-Kuhn-
Tuchker (KKT) optimization conditions. Branch-and Bound
method [7], [8], [9], decent algorithms [10], [11], and evo-
lutionary method [12], [13] have been proposed for solving
the bilevel programming problems based on this reformulation.
Compared with classical optimization approaches, the promi-
nent advantage of neural network is that it can converge to the
equilibrium point (optimal solution) rapidly, and this advantage

has been attracting researchers to solve bilevel programming
problem using neural network approach. Shih [14] and Lan
[15] recently proposed a neural network for solving the linear
bilevel programming problem. But it deserves pointing out that
there are still quite few reports on solving bilevel programming
problem by using neural network, especially for the quadratic
bilevel programming problem.

In this study, we formulate a double layer neural network
comprising an intelligent genetic algorithm, a Hopfield net-
work, and a Boltzmann machine in order to effectively and
efficiently solve quadratic bilevel programming problem. The
improved genetic algorithm is used to select a set of potential
solution combinations from the entire generated combinations
of the upper level problem. In the lower level problem, a
Hopfield network and a Boltzmann machine are interconnected
together as a double layer neural network. This network will
first generate its structure by selecting a limited number of
units, and then it will converge to the optimal solution/units
from those units, thus constitutes an effective problem solving
method [18]. Since the Hopfield neural network [16] itself
will easily terminate at a local minimum of the describing
energy function, the interconnected Boltzmann machine [17]
which we also apply a structural learning method is possible
to improve the performance by using probabilities to update
both the state of a neuron and its energy function, such that
the network will rarely trap in a local minimum.

The rest of this paper is organized as follows: Section
II lists notations we will use in this paper. Section III de-
rives an formulation of bilevel programming problem, which
will be transformed into a form that can be solved by the
neural network. Section IV introduces the Hopfield network
and Boltzmann machine, then we will discuss about how
to improve those networks. After that, we will present the
hybrid intelligent double layer neural network for solving
the quadratic bilevel programming problem. Simulation results
are presented in Section V to show its performance. Finally,
Section VI concludes the paper.

II. NOTATIONS

At first, we will list out the notations that we used in the
following explanations.

x: upper level variable vector ∈ Rn1 ,
y: lower level variable vector ∈ Rn2 ,
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F : upper level objective function ∈ Rn1 × Rn2 →
R1,

f : lower level objective function ∈ Rn1×Rn2 → R1,
G: vector-valued function of upper level constraints

∈ Rn1 ×Rn2 → Rm1 ,
g: vector-valued function of lower level constraints

∈ Rn1 ×Rn2 → Rm2 ,
a, c: vector ∈ Rn1 ,
b,d: vector ∈ Rn2 ,
A: matrix ∈ Rm1×n1 ,
B: matrix ∈ Rm1×n2 ,
C: matrix ∈ Rm2×n1 ,
D: matrix ∈ Rm2×n2 ,
r1: vector ∈ Rm1 ,
r2: vector ∈ Rm2 ,
P: n1 + n2 dimension positive-definite symmetrical

matrix,
Q: n1 + n2 dimension positive-definite symmetrical

matrix,
Q0: matrix ∈ Rn2 ×Rn2 ,
Q1: matrix ∈ Rn2 ×Rn1 ,
Q2: matrix ∈ Rn1 ×Rn1 ,
E: energy function of the neural network,
wij : weight between neuron i and neuron j,
θi: the threshold of neuron i.

III. BILEVEL PROGRAMMING PROBLEM

Mathematically, the bilevel programming problem can be
represented as

min
x

F (x,y)

s.t. G(x,y) ≤ 0

min
y

f(x,y)

s.t. g(x,y) ≤ 0

(1)

where x ∈ Rn1 and y ∈ Rn2 are the upper level variables
and lower level variables respectively. Similarly, the functions
F :∈ Rn1 × Rn2 → R1 and f :∈ Rn1 × Rn2 → R1

are the upper level and lower level objective functions, while
the vector-valued functions G :∈ Rn1 × Rn2 → Rm1 and
g :∈ Rn1 × Rn2 → Rm2 are called the upper level and
lower level constraints. More specifically, the quadratic bilevel
programming can be formulated as a matrix form as

min
x

F (x,y) =
[
xT yT

]
P

[
x
y

]
+
[
aT bT

] [x
y

]
s.t. Ax + By ≤ r1

min
y

f(x,y) =
[
xT yT

]
Q

[
x
y

]
+
[
cT dT

] [x
y

]
s.t. Cx + Dy ≤ r2

(2)

where a, c ∈ Rn1 and b,d ∈ Rn2 , A ∈ Rm1×n1 , B ∈
Rm1×n2 , C ∈ Rm2×n1 , D ∈ Rm2×n2 , r1 ∈ Rm1 , r2 ∈ Rm2 .
P and Q are n1 + n2 dimension symmetrical matrix.

Then, this quadratic bilevel programming problem follows
definitions below [1], [2]

Definition 1: The constraint region of problem (2) is
denoted as

Ω = {(x,y) : Ax + By ≤ r1, Cx + Dy ≤ r2}

Definition 2: The projection of Ω onto the upper level
decision space is

I = {x : ∃y, such that (x,y) ∈ Ω}

Definition 3: The lower level rational reaction set for x ∈ I
is defined as

R(x) = {y : arg min {f(x,y) : Cx + Dy ≤ r2}}

Definition 4: The induced region of quadratic bilevel pro-
gramming problem is

IR = {(x,y) : (x,y) ∈ Ω ,y ∈ R(x)}

A point (x,y) is called to be feasible if (x,y) ∈ IR.
In order to ensure that problem (2) is well posed, we make
assumptions that Ω is nonempty and compact, P is positive-
definite.

Then, let Q =

[
Q2 QT

1
Q1 Q0

]
, where Q0 ∈ Rn2×Rn2 ,Q1 ∈

Rn2 ×Rn1 , Q2 ∈ Rn1 ×Rn1 , and Q is also positive-definite.
The lower level programming problem of problem (2) will be
strictly convex quadratic programming problem in y for each
fixed x, and then there exists a unique optimal solution for
each x. Implying that R(x) is single-valued and the induced
region could be replaced by a unique response function. In
addition, P is a positive-definite matrix, namely, F (x,y) is
strictly convex in (x,y), so the solution to problem (2) is
guaranteed to exist [3].

With the definition of Q, the lower level problem is
transferred into

f(x,y) = cTx + xTQ2x + (d + 2Q1x)Ty + yTQ0y

Note that cTx + xTQ2x is a constant for each fixed x0 ∈
Ω(x0,y), we can assume c = 0, Q2 = 0 to ignore those terms
without loss of generality when solving the lower level pro-
gramming problem. Thus the quadratic bilevel programming
problem can be formulated finally as

min
x

F (x,y) =
1

2

[
xT yT

]
2P

[
x
y

]
+
[
aT bT

] [x
y

]
s.t. Ax + By ≤ r1

min
y

f(x,y) = yTQ0y + (d + 2Q1x)Ty

s.t. Cx + Dy ≤ r2

(3)

In this study, a genetic algorithm based hybrid double layer
neural network method is employed to solve the quadratic
bilevel programming model of problem (3).
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IV. AN INTELLIGENT GENETIC ALGORITHM AND HYBRID
DOUBLE LAYER NEURAL NETWORKS

Conventionally, the number of units is decided on the
basis of expert experience. In order to solve this problem,
we formulate a hybrid intelligent algorithm consisting of both
Hopfield and Boltzmann machine neural networks called meta-
controlled Boltzmann machine and hybrid with an improved
genetic algorithm. This hybrid intelligent algorithm can be
employed to the quadratic bilevel programming problems. In
the upper level of bilevel programming problem, we proposed
an intelligent genetic algorithm that is effective in global
searching to find a set of possible feasible x values. This
set of feasible x will be substituted into lower level, which
will generate a set of quadratic programming problems of
variable y. Then these problems will be solved by using meta-
controlled Boltzmann machine to get optimal (x∗,y∗).

A. Intelligent genetic algorithm for upper level

Genetic algorithm operates on a population of trial solu-
tions that are initially generated at random. The GA seeks
to maximize the fitness of the population by selecting the
fittest individuals from the population and using their genetic
information in mating operations to create a new population
of solutions. Genetic algorithms have many advantages over
the traditional optimization methods. In particular, GAs do not
require function derivatives and work on function evaluations
alone; they have a better possibility of locating the global
optimum because they search a population of points rather
than a single point and they allow for consideration of design
spaces consisting of a mix of continuous and discrete variables.
In addition, GAs provide the decision-makers with a set of
acceptable optimal solutions (rather than a single solution)
from which they can select the most appropriate one.

Many variations of the fundamental GA have been devel-
oped, but the algorithm implemented here is an intelligent GA
with search directions by considering both the feasible region
and the infeasible region of the bilevel programming problem.
The probabilistic nature of GA helps to avoid convergence
to false optimal. However, due to its randomness, genetic
algorithm techniques alone may not be able to find the global
optimal for the bilevel programming problem, and even the
global optimal could be found, the convergence would be slow.
To improve this portion, we proposed the intelligent genetic
algorithm below.

Now we present the improved GA for problem (3) as
follows.

Step 0 Parameter setting

Choose feasible population size M and infeasible
population size M ′, probability of crossover pc,
probability of mutation pm, the maximal number
of generations MaxGen, Initialize the current
generation: k = 0.

Step 1 Initialization

Define the feasible solution set feaX and infea-

sible solution set infeX as

feaX = {x : x ∈ Ω(x)}
infeX = {x : x /∈ Ω(x)} (4)

where Ω(x) is the upper level constraint
region of the bilevel programming problem.
Randomly initialize feasible solution fea xi(k)
and infeasible solution infe xj(k), where
i = 1, 2, · · ·,M and j = 1, 2, · · ·,M ′. Then, put
them into feaX and infeX respectively.

Step 2 Crossover operation

Step 2.1 During the ith crossover, this algorithm
generates a random number λi ∈ (0, 1). For
each chromosome fea xi(k), generate a random
number r. If r < pc, then choose this chromosome
as one of the parents for crossover operation
and the corresponding infeasible chromosome as
another parents.

Step 2.2 After getting a couple of chromosomes
(fea xi(k)) and (infe xi(k)), we make two
offsprings as ui(k) and vi(k) following the
crossover rules:

ui(k) = λ · fea xi(k) + (1− λ) · infe xi(k)

vi(k) = (1− λ) · fea xi(k) + λ · infe xi(k)
(5)

Step 2.3 Put two offsprings ui(k) and vi(k) into feaX
and infeX by following rules:

{
put ui(k) into feaX, if ui(k) ∈ Ω(x)

put ui(k) into infeX, otherwise
(6)

{
put vi(k) into feaX, if vi(k) ∈ Ω(x)

put vi(k) into infeX, otherwise
(7)

After this crossover operation, we will get N1 new
feasible elements and N ′1 new infeasible elements.

Step 3 Mutation operation

Step 3.1 Choose a chromosome from feasible set
feaX and infeasible set infeX randomly with
probability pm, mutation is operated to this
chromosome.

Step 3.2 Randomly generating γ ∈ (−1, 1), add this γ
to the chosen chromosome, and we get a new
chromosome.

Step 3.3 Put the new chromosome into feaX or infeX
according to rule (11).

Step 3.4 When Step 3.1 to Step 3.3 go through feaX
and infeX , count the total number of the feasible
mutation offsprings
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and the infeasible mutation offsprings, denoted
by N2 and N ′2 respectively.

Step 4 Calculation operation

For each element in feaX and infeX , substitute
it into the lower level of problem (3), then we can
execute them with meta-controlled Boltzmann
machine. We will obtain optimal ȳ of the lower
level corresponding to each element, which
can be denoted as pair (xi(k), ȳi(k)) where
xi(k) ∈ feaX ∪ infeX . The upper level value
Fi(k) can be calculated for each (xi(k), ȳi(k)).
Such pairs and values will be processed during
the selection operation.

Step 5 Selection operation

Finally, the size of feaX and infeX are
M + N1 + N2 and M ′ + N ′1 + N ′2, that means
we have M + N1 + N2 feasible chromosomes
and M ′ + N ′1 + N ′2 infeasible chromosomes
in total. In order to ensure convergence to
the global optimal solution, sort the fitness
values in the increasing order among parents
and all offspring chromosomes and select M
and M ′ chromosomes as the next generation.
Elitist selection is also used to save the best
chromosome.

Step 6 Stopping criterion

If the algorithm is executed to the maximal num-
ber of generations MaxGen, then the algorithm
should stop executing, and output the best chro-
mosome, the optimal solution, and the optimal
value of problem (3). Otherwise, set k = k + 1,
and return to Step 2.

B. Hopfield and Bolzmann Machine

Studies on mutually connected network behavior started
around 1948. Simply speaking, it is difficult to select the
required number of units that will minimize the corresponding
energy function. This problem cannot be solved by either
Hopfield or Boltzmann neural networks. In 1982, Hopfield [16]
combined several previous ideas concerning recurrent neural
networks, accompanied by a complete mathematical analysis.
Currently, this type of network is generally referred to as
Hopfield network. Although the Hopfield network is not appro-
priate for all applications, it nevertheless warrants a review in
terms of its structure and internal mechanisms. This will lead
to a modification, by incorporating mutual connections in the
form of the Boltzmann machine, to overcome its drawbacks.
The Hopfield network is a fully connected, recurrent neural
network, which uses a form of the generalized Hebb’s rule to
store boolean vectors in its memory. Each unit neuron, which
is represented by n, has a state value denoted by sn. In any
situation, combining the states of all units leads to a global
state for the network. This global state is the input, which is
stored, together with other prototypes, in the weighting matrix
by Hebb’s postulate, formulated as

wij =
1

2

∑
p

xipxjp (8)

where p = 1 ... N , wij is the weight of the connection from
neuron i to neuron j, N is the dimension of the vector, p is
the number of training patterns, and xip is the pth input for
neuron i. In other words, using Hebb’s postulate, we create
a weighting matrix that stores the entire prototype that we
want the network to remember. Because of these features,
it is sometimes referred to as an auto-associative memory.
However, it is worth noting that the maximum number of
prototypes that a Hopfield network can store is only 0.15 times
more than the total number of units in the network [16].

One application of the Hopfield network is as an energy
minimizer. This application is relevant because of the ability
of Hopfield networks to minimize an energy function during
its operation. The simplest form of energy function is given
by the following:

E =
1

2

N∑
i=1

N∑
j=1

wijsisj (9)

Here, wij denotes the strength of the influence of neuron i
on neuron j. The wij values are created using Hebb’s postulate
as mentioned above, and they belong to a symmetric matrix
with the main diagonal containing only zeroes (which means
that there are no self-feedback connections). Because of this
useful property, the Hopfield network can be used to solve
combinatorial optimization problems. However, Hopfield net-
works suffer from a major disadvantage in that they sometimes
converge to a local rather than a global minimum, which
usually happens when dealing with noisy inputs. To overcome
this problem, a modification was made to the Boltzmann
machine [17].

The Boltzmann machine is an interconnected neural net-
work and a modification of the Hopfield network, which helps
it escape local minima. The main idea is to employ simulated
annealing, a technique derived from the metallurgy industry.
The term annealing comes from the technique of hardening
a metal (i.e., finding a crystalline lattice state that is highly
packed) by hammering it while it is initially very hot and then
again at a succession of decreasing temperatures. Simulated
annealing is an optimization technique. In Hopfield networks,
local minima are used in a positive way, but in optimization
problems, local minima are undesirable; one must have a
way of escaping them. When optimizing a very large and
complex system (i.e., a system with many degrees of freedom),
instead of always going downhill, we try to go downhill most
of the time. Initially, the probability of not going downhill
should be relatively high (high temperature), but as time
(the number of iterations) progresses, this probability should
decrease (with the temperature decreasing according to an
annealing schedule). The convergence time of a Boltzmann
machine is usually extremely long, depending on the number
of units employed. According to the annealing schedule, where
T0 is a critical system parameter that represents the initial
value of the temperature. If T0 is very large, then a strategy
is pursued whereby neurons are flipped on and off at random,
totally ignoring incoming information. If T0 is close to zero,
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the network behaves deterministically, i.e., like a network
of McCulloch-Pitts neurons. Although the way in which a
Boltzmann machine works is similar to a Hopfield network,
we cannot use Hebb’s postulate to create the weighting matrix
representing the correlations between units. Instead, we use
a training (learning) algorithm one based on the Metropolis
algorithm. The Boltzmann machine can be viewed as a stochas-
tic, generative counterpart of the Hopfield network. In the
Boltzmann machine, probability rules are employed to update
the states of the neurons and the energy function as follows:
If Vi(t + 1) is the output of neuron i in the subsequent time
iteration t+ 1, Vi(t+ 1) is 1 with probability P and Vi(t+ 1)
is 0 with probability 1− P , where

P [Vi(t+ 1)] = f(
ui(t)

T
) (10)

Here, f(·) is the sigmoid function, ui(t) is the total input to
neuron i, as shown in equation (14), and T is the network
temperature.

ui(t) =
∑
j=1

wijVi(t) + θi (11)

Here, wij is a weight between neurons i and j, θi is the
threshold of neuron i, and Vi is the state of unit i. The energy
function, E, proposed by Hopfield, is written as

E =
1

2

N∑
i=1

N∑
j=1

wijViVj −
N∑
i=1

θiVi (12)

Hopfield has shown that those energy functions decrease
monotonically with learning [16]. Therefore, it is likely that
this energy function converges to a local minimum. However,
in the case of the Boltzmann machine, the energy function can
increase with some minute probability. Therefore, the energy
function will be unlikely to fall into a local minimum. Thus, the
combination of a Hopfield network and a Boltzmann machine
offers a solution to overcome the problem of finding the
optimal number of units in the neural network. Accordingly,
this study proposes a meta-controlled Boltzmann machine,
which we will discuss in detail next.

C. Meta-Controlled Boltzmann Machine for lower level

The meta-controlled Boltzmann machine is a neural net-
work model, as proposed by Watanabe and Watada [18]. This
model deletes the units of the lower layer that are not selected
in the meta-controlling layer in its execution. Then, the lower
layer is restructured using the selected units. Because of this
feature, the meta-controlled Boltzmann machine converges
more efficiently than a conventional BM. This is an efficient
method for solving selection problem with a large data set
by transforming objective function into the energy function,
because the Hopfield network and the Boltzmann machine
converge at the minimum point of the energy function. The
meta-controlled Boltzmann machine described above converts
the objective functions into the energy functions of two com-
ponents, namely, the meta-controlling layer (Hopfield network)
Eu and the lower layer (Boltzmann machine) El, as described
below.

Meta-controlling layer

E = −1

2

N∑
i=1

N∑
j=1

σijxixj +Ku

N∑
i=1

µixi (13)

Lower layer

E = −1

2
(

N∑
i=1

N∑
j=1

σijyiyj + 2
N∑
i=1

N∑
j=1

yiyj)

+ 2
N∑
i=1

yi +Kl

N∑
i=1

µiyi

(14)

Here, Ku and Kl are the meta controlling parameters of this
double layer neural network, respectively, and xi is the output
of the ith unit of the meta-controlling layer. The double-
layered Boltzmann machine was tuned such that the upper
layer influences the lower layer with an iteration ratio of
1 − ε(t) and that the lower layer influences the upper layer
with probability ε(t). Here, ε(t) is a monotonically decreasing
function with time t. Thus, the double-layered Boltzmann
machine was iterated with

Yi(t) = (1− ε(t))yi + ε(t)xi (15)

for the upper layer and

Xi(t) = xi[(1− ε(t))yi + ε(t)] (16)

for the lower layer, where Yi is a value transferred to the
corresponding nodes in the upper layer, Xi is a value trans-
ferred to corresponding nodes in the lower layer, yi is the
value of the present state at node i in the upper layer, and
xi is the value of the present state at node i in the lower
layer. The expression for Xi means that its value is influenced
by of the value of node i in the upper layer. When yi is 1,
Xi = xi; otherwise, when yi is 0, only of xi is transferred to
the corresponding nodes. In turn, Yi has an influence from the
lower layer. Therefore, even if the upper layer converges to a
local minimum, the perturbation from the lower layer allows
the upper layer to escape from this local minimum. If the local
minimum possesses a large barrier, dynamic optimization may
be used, i.e., by dynamically changing and in a manner similar
to simulated annealing.

D. Hybrid intelligent algorithm

In order to solve the quadratic bilevel programming prob-
lem of problem (3), we need to transform the objective function
of the lower level into the energy function form of meta-
controlled Boltzmann machine:

(d + 2Q2x)Ty = 2y + (d + 2Q2x− 2h)Ty

= 2hTy +Kl(
d + 2Q2x− 2h

Kl
)Ty

= 2hTy +Klµ
Ty

(17)

where µ is a n2 dimension vector of [µ1, µ2, ..., µn2]T and h
is a n2 dimension vector of all 1s and:
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yTQ1y = yT (Q1 + H)y − yTHy

= −1

2
(yT (−2Q1 − 2H)y + 2yTHy)

= −1

2
(yTσy + 2yTHy)

(18)

where H is a n2 × n2 dimension matrix of all 1s and σ is a
symmetric matrix of n2 × n2 dimension that σij = (−2Q1 −
2H)ij . Thus, we got the parameters for the energy function of
meta-controlled Boltzmann machine as equation (13)(14) for
the lower level of the bilevel programming problem. Then we
can get the solution by using our hybrid intelligent algorithm.

The proposed algorithm is summarized as follows and is
shown in Fig. 1:

Step 0. Start with a series randomly generated combi-
nations. Then using the proposed IGA to select
a set of potential solution combinations for the
upper level of the quadratic bilevel programming
problem.

Step 1. Set each parameter to its initial value for meta-
controlled Boltzmann machine.

Step 2. Input Ku and Kl.
Step 3. Execute the meta-controlling layer of the net-

work.
Step 4. If the output value of a unit in the meta-

controlling layer is 1, add some amount of this
value to the corresponding unit in the lower layer.
Execute the lower layer.

Step 5. After executing the lower layer at a constant
frequency, decrease the temperature.

Step 6. If the output value of a unit in the lower layer is
large enough, add some amount of values to the
corresponding unit in the meta-controlling layer.

Step 7. Iterate Step 3 to Step 6 until the temperature
reaches the restructuring temperature.

Step 8. Restructure the lower layer using the units se-
lected in the meta-controlling layer.

Step 9. Execute the lower layer until the termination
condition is reached.

Step 10. After finding the optimal f∗ for this iteration,
store (x∗, y∗) and get the best F ∗ of this iteration
for upper level problem. Then using the IGA to
select another set of potential solution combina-
tions for next interation.

By above steps, the meta-controlled Boltzmann machine
can effectively and efficiently select units from those available
units to find the optimal solution. The Hopfield network
works in the meta-controlling layer to delete the lower layer
Boltzmann machine units, which are not selected in the upper
layer during execution. This is achieved in Steps 3 through 6
of this algorithm. Then, the lower layer is restructured with
those selected units. The Boltzmann machine is employed as
the lower layer to find the optimal units from the units selected
by the meta-controlling layer.

V. NUMERICAL EXAMPLE

In this section we will present two examples provided in
[19] to make comparison. The examples are as follows:

Fig. 1. Hybrid double layer neural network for solving the quadratic bilevel
programming problem

Example 1

min
x

F = x2 − 4x+ y21 + y22

s.t. 0 ≤ x ≤ 2

min
y

f = y21 + 0.5y22 + y1y2 + (1− 3x)y1 + (1 + x)y2

s.t. y1, y2 ≥ 0

2y1 + y2 − 2x ≤ 1

Example 2

min
x

F = −7x1 + 4x2 + y21 + y23 − y1y3 − 4y2

s.t. x1, x2 ≥ 0

x1 + x2 ≤ 1

min
y

f = (1−3x1)y1+(1+x2)y2+y21 +0.5y22 +0.5y23 +y1y2

s.t. y1, y2, y3 ≥ 0

x1 − 2x2 + 2y1 + y2 − y3 + 2 ≤ 0
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The important parameters for Example 1. are as follows:

P =

[
1 0 0
0 1 0
0 0 1

]
, A =

[
1
−1

]
, B = 0

a = [−4] , b = 0, c = 0, d =

[
1
1

]
, r1 =

[
2
0

]

Q0 =

[
1 0.5

0.5 0.5

]
, Q1 =

[
−1.5
0.5

]
, Q2 = 0

C =

[
0
0
−2

]
, D =

[−1 0
0 −1
2 1

]
, r2 =

[
0
0
1

]
and the important parameters for Example 2. are as follows:

P =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −0.5
0 0 0 0 0
0 0 −0.5 0 1

 , A =

[−1 0
0 −1
1 1

]
, B = 0

a =

[
−7
4

]
, b =

[
0
−4
0

]
, c = 0, d =

[
1
1
0

]
, r1 =

[
0
0
1

]

Q0 =

[
1 0.5 0

0.5 0.5 0
0 0 0.5

]
, Q1 =

[−1.5 0
0 0.5
0 0

]
, Q2 = 0

C =

0 0
0 0
0 0
1 −2

 , D =

−1 0 0
0 −1 0
0 0 −1
2 1 −1

 , r2 =

 0
0
0
−2


We execute the proposed algorithm on each of the above

2 problems using the MATLAB 7.14. During the simulations,
we adopted values for the following parameters as: feasible
population size: 20, infeasible population size: 20, crossover
probability: pc = 0.7, mutation probability: pm = 0.2,
maximal number of generations: MaxGen = 5, and the K
for the meta-controlled Boltzmann machine is 0.3.

Table I shows that the results found by the proposed
algorithm are better than or equal to those compared algorithms
in the literature. For Examples 1, the proposed algorithm can
find much better solution. For Example 2, the results are the
same. Fig 2. and Fig. 3 show the transient behavior of upper
level value of Example 1 and Example 2 respectively. We can
see from those figures, by using the IGA, the upper level value
will be searched in a very wide range, which will effectively
avoid in sticking into local optimal. On the other hand, by
using the meta-controlled Boltzmann machine, the proposed
method performs pretty well in terms of the resulting solution
accuracy, as well as efficiency of the global convergence.

VI. CONCLUSIONS

This paper presents an improved genetic algorithm based
double layer neural network for solving quadratic bilevel pro-

TABLE I. COMPARISONS OF THE RESULTS BY THE PROPOSED
ALGORITHM AND THE RESULTS IN THE REFERENCES

Example literature Result by the proposed algorithm
(x∗,y∗) F (x∗,y∗) f(x∗,y∗)

Example 1 (0.8402, 0.7603, 0) −2.0768 −0.5781

Example 2 (0.6100, 0.3900, 0.6389 1.6744
0, 0, 1.83)

Example literature Result in the reference [19]
(x∗,y∗) F (x∗,y∗) f(x∗,y∗)

Example 1 (1.0, 0, 1.0) −2 2.5

Example 2 (0.6100, 0.3900, 0.6389 1.6744
0, 0, 1.83)
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Fig. 2. The transient behavior of upper level value in Exampe 1.
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Fig. 3. The transient behavior of upper level value in Exampe 2.

gramming problem. In the upper level of bilevel programming
problem, we proposed an intelligent genetic algorithm that
is effective in global searching, and we transform the lower
level into the energy function of meta-controlled Boltzmann
machine which converges very efficiently. The proposed hybrid
intelligent algorithm is showed to be very efficient from
computational point of view and quality of solutions. By using
the token, we could conclude that proposed method is capable
of solving the quadratic bilevel programming problem. Further
more, the approach is easy to use and has universal applica-
bility to solve such bilevel programming problem. Simulation
results also show that the proposed method is very efficient
and robust in terms of computational cost, quality of solutions
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and success rate.
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