
Abstract—Anomalous patterns are observations that lie far 
away from the fitting function deduced from the bulk of the 
given observations. This work addresses the research issue to 
effectively identify anomalous patterns in both contexts of 
resistant learning, where there is no assumption about the 
fitting function form, and of changing environments. The 
resistant learning means that the learning procedure is not 
impacted significantly by the outlying observations. In literature, 
there is the resistant learning with searching a near-perfect 
fitting function for identifying the bulk of the majority of 
observations. However, the learning algorithm with searching a 
near-perfect fitting function suffers from time inefficiency. To 
effectively identify anomalous patterns in both contexts of 
resistant learning and changing environments, this study 
proposes a new resistant learning algorithm with envelope 
module that learns to evolve a nonlinear fitting function 
wrapped with a constant-width envelope for containing the 
majority of observations and thus identifying anomalous 
patterns. An illustrative experiment is set up to justify the 
effectiveness of the envelope module and the experimental result 
shows the positive promise. 

I. INTRODUCTION

In certain applications for which the input-output 
relationship is believed to be non-linear but is unknown, there 
can be occasional anomalous patterns that lie far from the 
bulk of the vast number of observations in input-output space. 
And the outlier detection is the key issue. Furthermore, the 
data nature is not only spatial dependent but also 
non-stationary and concept drifting. Thus the outlier detection 
usually relies on incremental learning techniques to 
constantly adjust the boundaries for identifying the majority 
that are evolved throughout the time and thus to recognize the 
anomalous ones. However, there are challenges to derive an 
algorithm for such detection of anomalous patterns. 

Agyemang et al. [1] point out that outlier detection is a 

very complex task that is similar to finding a needle in a 
haystack. Chandola et al. [4] provide a comprehensive 
overview of the existing outlier detection techniques by 
classifying them along different dimensions. They mention 
that a key observation of outlier detection is that it is not a 
well-formulated problem. They conclude that every unique 
problem formulation entails a different approach, resulting in 
a huge literature on outlier detection techniques. Ngai et al. 
[16] state that, in the case of financial fraud detection, the 
detection of a fraud case could be regarded as recognizing 
outliers from the healthy majority, and data mining 
techniques for outlier detection have seen only limited use.  

In practice, even given the independent variables, the 
function’s form is usually unknown, and the conventional 
outlier detection studies do not appear to generalize to the 
resistant learning problems. Tsaih and Cheng [23] propose an 
outlier detection algorithm which can cope with the context of 
resistant learning; however, the algorithm is rather 
complicated and time-consuming when both sizes of the 
reference pool and the input dimensionality are large. 
Furthermore, the algorithm cannot directly cope with the 
outlier detection problem whose data nature is non-stationary 
and concept drifting. 

T deal with the outlier detection problem in both contexts 
of resistant learning and changing environments, this study 
proposes a new resistant learning algorithm with the envelope 
module that is derived from changing the algorithm proposed 
by Tsaih and Cheng [23] by replacing a tiny pre-specified 
tolerance value of the envelope module with a non-tiny 
value that evolves a nonlinear fitting function f wrapped with 
an envelope whose width is 2 .

This envelope module is distinct from the idea of Tsaih 
and Cheng, who want to evolve the fitting function to almost 
precisely fit all of the reference observations (because the 
corresponding  value is tiny). Furthermore, the proposed 
envelope module can help to identify the anomalous patterns 
with less computational effort compared with the algorithm 
of Tsaih and Cheng. The envelope module helps to deal with 
the outlier detection problem in both contexts of resistant 
learning and changing environments. 

The remainder of this paper is organized as follows: the 
literature reviews are introduced in Sections II and III, 
respectively. The proposed envelope module and its 
justification are introduced in Sections IV and V. An 
illustrative experiment is presented in Section VI. Finally, 
conclusions and future research directions are presented in 
Section VII. 
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II. THE DETECTION OF ANOMALOUS PATTERNS

In literature, there is an application in which DNA 
microarray technology is used to simultaneously probe 
thousands of gene expression profiles for disease 
classification, to identify outlier genes that are overexpressed 
in only a small number of disease samples. Tomlins et al. [22] 
propose cancer outlier profile analysis (COPA) to identify 
outlier genes. The COPA approach standardizes gene 
expression by centering at the median and scaling by the 
absolute deviation of the median. A kth percentile of the 
standardized expression value is then used as a cut-off point 
to identify the outlier gene. Tibshirani and Hastie [21] 
propose the outlier-sum statistic to improve on the COPA 
method. Compared to the traditional t-statistic, 
outlier-associated methods have the potential to detect a 
larger number of differentially expressed genes in 
heterogeneous data sets, at a lower false discovery rate [5]. 
However, these methods are less powerful than the 
approaches based on t-statistics when the differential 
expression is presented throughout the distribution or is 
concentrated at the center of the distribution as opposed to 
being concentrated in the tails [24]. 

Another issue of outlier detection is that fitting the 
observations with outliers could decrease the effectiveness of 
the fitting function because the outliers might have a large 
influence on model estimation, with their unusual high fitting 
deviances. Therefore, removing the outliers before the 
model-building process can help to fix this problem. For 
example, Connor and Martin [7] propose a robust learning 
algorithm that attempts to filter outliers from the training data 
first and then estimates the parameters from the filtered data. 
Windham [25] proposes a procedure to robustify any model 
fitting process by using weights from a parametric family 
from which the model is to be chosen, which is referred to as 
“robust model fitting.” Methods for model selection and/or 
variable selection in the presence of outliers have been 
discussed in Hoeting et al. [8] and Atkinson and Riani [3]. 
Knorr and Ng [10][11] and Knorr et al. [12] focus on the 
development of algorithms for identifying the distance-based 
outliers in large data sets. Chuang et al. [6] propose a robust 
support vector regression method for the problem of function 
approximation with outliers. Sluban et al. [20] aim at 
detecting noisy instances for improved data understanding, 
data cleaning and outlier identification by presenting an 
ensemble-based noise ranking methodology for explicit noise 
and outlier identification. Specifically, they develop a 
methodology enabling the detection of noisy instances to be 
inspected by human experts in the phase of data cleaning, data 
understanding and outlier identification. 

All of these methods are based on a family of parametric 
models or a given model form with several independent 
variables. Still, a substantial number of factors, such as the 
selection of variables and the function’s form, make the 
identification of outliers very difficult because the outliers are 
model dependent. Even though the explanatory variables are 
known, the outlier detection is still a study issue.  

III. THE RESISTANT LEARNING

From a statistics perspective, outlier detection research can 
be conducted in either the context of model estimation or the 
context of resistant learning [23]. In the context of model 
estimation, the response y is modeled as f(x, w) + , where w
is the parameter vector and  is the error term. The function 
form of the fitting function f is predetermined and fixed 
during the process of deriving values for its associated w from 
a set of N given observations {(x1, y1), , (xN, yN)}, with yc

being the observed response corresponding to the cth 
observation with explanatory variables xc. The least squares 
estimator (LSE) is one of the most popular methods for 
performing the estimation. The generalized delta rule 
proposed by Rumelhart et al. [19] is a kind of nonlinear LSE. 

If ŵ denotes an estimate of w, then LSE is defined to be 

the ŵ  that minimizes 
N

c 1
(ec)2, in which 

ec = yc - f(xc, w).       (1) 

Intuitively, outliers are those observations with large error
ec and far away from the fitting function f.  Of course, the 
errors depend on the fitting function, i.e., model-dependent, 
while the LSE, on the other hand, is very sensitive to outliers. 
In practice, the fitting function form and identification of 
outliers interact with each other which complicate identifying 
the true outliers. 

In the context of resistant learning, the function form of f is 
adaptable during the process of derivation of its associated w
from a set of N given observations {(x1, y1), , (xN, yN)}. 
Here, “resistant” is equivalent to “robust.” The terms “robust” 
and “resistant” are often used interchangeably in the 
statistical literature, but sometimes have specific meanings 
[9]. Robust procedures are those whose results are not 
impacted significantly by violations of the model 
assumptions (such as when the errors are normally 
distributed). Resistant procedures are those whose numerical 
results are not impacted significantly by outlying 
observations. 

Tsaih and Cheng [23] propose an algorithm with a tiny 
pre-specified  value (say, 10-6) that can deduce a proper 
nonlinear function form f and ŵ such that |yc - )ˆ,( wxcf | ,
for all c. These authors adopt both robustness analysis and 
deletion diagnostics to address the presence of outliers. 
Robustness analysis entails adopting the idea of a C-step [18] 
for deriving an (initial) subset of m+1 reference observations 
to fit the linear regression model, ordering the residuals of all 
N observations at each stage and then augmenting the 
reference subset gradually based upon the smallest trimmed 
sum of squared residuals principle. At the same time, the 
weight-tuning mechanism, the recruiting mechanism, and the 
reasoning mechanism allow the single-hidden layer 
feed-forward neural networks (SLFN) to adapt dynamically 
during the process and to be able to explore an acceptable 
nonlinear relationship between explanatory variables and the 
response in the presence of outliers. The deletion diagnostic 

3304



approach is employed with the diagnostic quantity as the 
number of pruned hidden nodes when one observation is 
excluded from the reference pool. This diagnostic quantity 
indicates whether the SLFN is stable. 

IV. THE CONCEPT OF ENVELOPE MODULE

This study changes the algorithm proposed by Tsaih and 
Cheng [23], which uses a tiny  value, into the envelope 
module with a non-tiny  value that evolves a nonlinear fitting 
function f wrapped with an envelope whose width is 2 . The 
setting of the  value depends on the user’s perception of the 
data and its associated outliers. For example, the perceptions 
are that the error is normally distributed, with a mean of 0 and 
a variance of 1, and the outliers are the points that have 
residuals that are greater than 1.96 (when the absolute value is 
taken). These perceptions are similar to the setting in the 
regression analysis that corresponds to a 5% significance 
level. Given that the error terms follow the normal 
distribution. Then, the user can set the  value of the proposed 
envelope module to 1.96 and define the outliers as the points 
that have residuals that are greater than * * , where  is the 
standard deviation of the residuals of the current reference 
observations and  is a constant that is equal to or greater than 
1.0, depending on the user’s stringency in the outlier 
detection. The larger the  value is, the more stern is the 
outlier detection. 

The idea behind taking a larger rejection bound * *  is 
similar to the main concept in Repeated Significance Tests 
[15] and Group Sequential Tests [17]. Because we search for 
potential outliers sequentially (i.e., the problem of multiple 
testing), a type-I error will definitely increase, and we must 
re-adjust the significance level. 

V. THE JUSTIFICATION OF ENVELOPE MODULE

We shall first define the notations that are used to describe 
the proposed approach. The SLFN is defined in (2) and (3), 

where tanh(x)
xx

xx

ee
ee ; m is the number of explanatory 

variables xj’s; x (x1, x2, …, xm)T; p is the number of adopted 
hidden nodes; H

iw 0  is the bias value of the ith hidden node; the 
superscript H throughout the paper refers to quantities related 
to the hidden layer; H

ijw  is the weight between the jth

explanatory variable xj and the ith hidden node; ow0  is the bias 
value of the output node; the superscript o throughout the 
paper refers to quantities related to the output layer; and o

iw
is the weight between the ith hidden node and the output node. 
In this article, a character in bold represents a column vector, 
a matrix, or a set, and the superscript T indicates the 
transposition. 

ai(x)  tanh( H
iw 0 +

m

j 1

H
ijw xj).            (2) 

f(x) ow0 +
p

i 1

o
iw tanh( H

iw 0 +
m

j 1

H
ijw xj).           (3) 

Furthermore, let H
iw  ( H

iw 0 , H
iw 1 , H

iw 2 , …, H
imw )T; wo

( ow0 , ow1 , ow 2 , …, o
pw )T; wH

H
p

H

H

w

w
w

2

1

; and w
o

H

w
w .

Here, we assume that wo and wH are non-zero variable 
vectors and p is an integer variable that is always positive. 
Note that because the value of p is adjustable, the (nonlinear) 
function form of f is adaptable, and the hyperbolic tangent 
function is used here as the base of f.

Through this SLFN, the input information x is first 
transformed into a (a1, a2, …, ap)T, and the corresponding 
value of f is generated by a rather than x. In other words, 
given the observation x, all of the corresponding values of 
hidden nodes are first calculated with ia = tanh( H

iw 0 +
m

j 1

H
ijw jx ) for all i and the corresponding value f(x) is then 

calculated as f(x) = g(a) ow0 +
p

i 1

o
iw ia .

Table I presents the proposed envelope module. Assume 
that there is a total of N observations, N m+1, and xi xj

when i j. Let I(N) be the set of indices of all of the 
observations. Let the nth stage of the corresponding process, N

n > m+1, be the stage of handling n reference observations, 
which are the observations with the smallest n squared 
residuals among N squared residuals, and let I(n) be the set of 
indices of these reference observations. At the nth stage, we 
look for an acceptable SLFN estimate that leads to a set of 
{(xc, yc): c )(ˆ nI } with (ec)2 2 for all c )(ˆ nI  and I(n)

)(ˆ nI , where ec is defined in (1) and 2  is equal to the 

pre-specified width of the envelope. At the nth stage, )(ˆ nI  is 
the set of indices of the observations that are contained in the 
obtained envelope. | )(ˆ nI | n because I(n) )(ˆ nI . In other 
words, at the end of the nth stage, the acceptable SLFN 
estimate presents a fitting function f around an envelope that 
contains at least n observations in {(xc, yc): c )(ˆ nI }. Let 

)(nI  be the set of indices of (xc, yc) that have the smallest n
squared residuals among N squared residuals at the end of the 
nth stage. )(nI )(ˆ nI , and )(nI  may not be equal to I(n).

TABLE I. 
THE PROPOSED ENVELOPE MODULE

Step 1: Arbitrarily obtain the initial m+1 reference observations. 
Let I(m+1) be the set of indices of these observations. 
Set up an acceptable SLFN estimate with one hidden 
node regarding the reference observations {(xc, yc): c
I(m+1)}. Set n = m+2. 
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Step 2: If n > N, STOP. 
Step 3: Present the n reference observations (xc, yc) that are the 

ones with the smallest n squared residuals among the 
current N squared residuals. Let I(n) be the set of indices 
of these observations. 

Step 4: If 
2

22
2

)1(
)1()(

N
nec c I(n), go to Step 7. 

Step 5: Assume I(n), 
2

22
2

)1(
)1()(

N
ne , and 

2

22
2

)1(
)1()(

N
nec

c I(n)-{ }. Set w~  = w.
Step 6: Apply the gradient descent mechanism to adjust weights 

w until one of the following two cases occurs: 
(1) If the deduced envelope (with the width * ) contains at 

least n observations, then go to Step 7. 
(2) If the deduced envelope does not contain at least n

observations, then set w = w~  and apply the 
augmenting mechanism to add extra hidden nodes to 
obtain an acceptable SLFN estimate. 

Step 7: Implement the pruning mechanism to delete all of the 
potentially irrelevant hidden nodes; n + 1 n; go to Step 
2.

The proposed envelope module in Table I executes the 
following two procedures: (i) the ordering procedure 
implemented by Step 3 that determines the input sequence of 
reference observations and (ii) the modeling procedure 
implemented by Step 6 and Step 7 that adjusts the number of 
hidden nodes adopted in the SLFN estimate and the 
associated w to evolve the fitting function f and its envelope 
to contain at least n observations at the nth stage. The details 
are explained as follows. 

In Step 1, we arbitrarily obtain the initial m+1 reference 
observations {(xc, yc): c I(m+1)}. The number m+1 is also 

the number of the associated H
1w  and Hw10 . We can use the 

data set {(xc, tanh-1(
2minmax

1min

)()(

)(
c

Nc

c

Nc

c

Nc

c

yy

yy

II

I )): c I(m+1)} to set 

up the system (4), which is a system of m+1 linear equations 
in m+1 unknowns. Then, the values of ow0  and ow1  are 
assigned as 1min

)(

c

Nc
y

I
 and 2minmax

)()(

c

Nc

c

Nc
yy

II
,

respectively. Step 1 uses the weight values Hw10  and H
1w  that 

were obtained from solving system (4) and the assigned 
values of ow0  and ow1  to set up an acceptable SLFN estimate 

that renders (ec)2 = 0 
2

22

)1(N
m =

2

22

)1(
)11(

N
m , for all c

I(m+1).

Hw10 +
m

j 1

H
jw1

c
jx = tanh-1(

2minmax

1min

)()(

)(
c

Nc

c

Nc

c

Nc

c

yy

yy

II

I ) for all c I(m+1).

                                        (4) 

At the nth stage, Step 3 presents the n reference 
observations {(xc, yc): c I(n)}, which are the observations 
with the smallest n squared residuals among the current N

squared residuals and are used to evolve the fitting function. 
Step 3 adopts the concept of forward selection [2], ordering 
the residuals of all N observations and then augmenting the 
reference subset gradually by including extra observations 
one by one to determine the input sequence of the reference 
observations. However, )(nI  might not equal I(n).
Specifically, some of the reference observations at the early 
stages might not stay in the set of reference observations at 
the later stages, although most of them will. 

Note that, at the end of the n-1th stage, the ones in {(xc, yc): 
c )1(nI } are the smallest n-1 squared residuals among N

squared residuals, and 
2

22
2

)1(
)2()(

N
nec  for all c )1(nI .

Thus, at Step 3, {(xc, yc): c I(n)} = {(xc, yc): c )1(nI }

{(x , y )}, where
2

22
2

)1(
)1()(

N
nec  for all c )1(nI  and (x ,

y ) is the observation with the nth smallest squared residuals 
among the N squared residuals at the beginning of the nth

stage. (x , y ) is named as the next point at the nth stage. 
Therefore, at Step 4, to check if 

2

22
2

)1(
)1()(

N
nec  for all c I(n)

is the same as checking if 
2

22
2

)1(
)1()(

N
ne . If 

2

22
2

)1(
)1()(

N
ne ,

then
2

22
2

)1(
)1()(

N
nec  for all c I(n); only the pruning 

mechanism of Step 7 is involved, and the next stage can be 
implemented. If 

2

22
2

)1(
)1()(

N
ne , then we still have 

2

22
2

)1(
)1()(

N
nec  for all c I(n)-{ }, and Step 6 is executed. 

The modeling procedure implemented by Step 6 to Step 7 
requires proper values of w and p so that the obtained 
envelope contains at least n observations at the end of the nth

stage. Specifically, at the beginning of Step 6, the gradient 
descent mechanism is applied to adjust the weights w. One of 
the gradient descent mechanisms proposed in the literature is 
the weight-tuning mechanism [23] for )(min w

w nE
)(nc I
( ow0

+
p

i 1

o
iw tanh( H

iw 0 +
m

j 1

H
ijw

c
jx ) - yc)2 + 1||w||2. However, a 

result of implementing the gradient descent mechanism might 
be getting stuck in a local optimum. Another possible 
scenario of getting stuck in a local optimum is when the 
SLFN estimate obtained at the previous stage is defective 
regarding the modeling job of the current stage, i.e., the 
current number of hidden nodes is not sufficient for the SLFN 
estimate to work well for the modeling job of the current stage. 
Both scenarios lead to an unacceptable SLFN estimate 
regarding the reference observations, and unfortunately, at 
present, there is no perfect optimization mechanism to 
simultaneously cope with both scenarios. 

Step 6.2 restores the w~  that is stored in Step 5. Thus, we 
return to the previous SLFN estimate, which renders 
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2

22
2

)1(
)1()(

N
ne  and 

2

22
2

)1(
)1()(

N
nec  for all c I(n)-{ }.

Then, the augmenting mechanism should recruit extra hidden 
nodes to render 

2

22
2

)1(
)1()(

N
nec  for all c I(n). One of the 

augmenting mechanisms proposed in the literature is the 
recruiting mechanism of Tsaih and Cheng [23], which adds 
two extra hidden nodes to the previous SLFN estimate to 
render 

2

22
2

)1(
)1()(

N
nec  for all c I(n).

To decrease the complexity of the fitting function f, the 
pruning mechanism is proposed in Step 7 to delete potentially 
irrelevant hidden nodes. At the nth stage, a hidden node is 
potentially irrelevant if it is deleted, and the application of the 
gradient descent mechanism can accomplish the goal that the 
obtained envelope contains at least n observations. A 
defective SLFN estimate triggers the augmenting mechanism 
in Step 6.2, but the situation of leading to an undesired local 
minimum also triggers the augmenting mechanism. Thus, the 
augmenting mechanism could recruit excess hidden nodes 
that later become irrelevant. The irrelevant hidden nodes are 
useless with respect to the learning goal, and they could result 
in the overfitting likelihood of the fitting function f. One of 
the pruning mechanisms proposed in the literature is a 
reasoning mechanism given in [23]. 

Although Steps 4 to 7 presented in this study are similar to 
the steps presented by Tsaih and Cheng, the  value adopted 
here is much larger than the value in Tsaih and Cheng [23]. 
Specifically, the proposed envelope module wants to evolve 
the fitting function around an envelope, to contain at least n
observations at the nth stage. This approach is distinct from 
the idea of Tsaih and Cheng, which attempts to evolve the 
fitting function to almost precisely fit all of the reference 
observations {(xc, yc): c I(n)} at the nth stage (because the 
corresponding  value is tiny). 

The proposed module would result in a fitting function 
with an envelope that includes all of the observations, and we 
would expect that the outliers will be included at later stages. 
In addition, we use the deviance information as the extra 
information to define the outliers. Specifically, here we adopt 
both the deviance information and the order information to 
identify the outliers. Regarding the deviance information for 
identifying the outliers, at Step 3 of the nth stage, we further 
calculate the standard deviation of (ec)2 of {(xc, yc): c

)1(nI } and the deviation of the next point (x , y ) from the 
current fitting function f. Here, we define the diagnostic
quantity for the outlier as the ratio of the residual of the next 
point in absolute value to the standard deviation of (ec)2 of 
{(xc, yc): c )1(nI }, assuming that the errors follow a 
normal distribution N(0, 2) and the outliers are the points 
that have residuals greater than (in absolute value). Thus, if 
the diagnostic quantity is greater than * , then the next point 
is treated as a potential outlier. Here,  is a constant that is 
equal to or greater than one, depending on how stringent the 
threshold is for the outliers. 

Regarding the order information for identifying the outliers, 
we propose two approaches, fixed and flexible. The fixed 
approach is to treat the last 5% of the observations as potential 
outliers. Namely, if n  0.95N AND the diagnostic quantity is 
greater than * , then the next point is recorded as the 
identified outlier. 

However, the flexible approach assumes that we know the 
number of outliers, say k, and treat the last k observations as 
potential outliers. Specifically, regarding the flexible 
approach, if n N-k AND the diagnostic quantity is greater 
than * , then the next point is recorded as the identified
outlier.

VI. AN ILLUSTRATIVE EXPERIMENT

A. The experiment design and the result  
We apply the proposed envelope module to 100 simulation 

runs to evaluate the effectiveness of detecting the outliers. For 
each simulation run, we use the nonlinear model stated in (5) 
to generate a set of 100 observations for which the 
explanatory variable X is equally spaced from 0.0 to 20.0 and 
the error is normally distributed, with a mean of 0 and a 
variance of 1. Here, the theoretical fitting function f is the 
function stated in (5), and the theoretical outliers are the 
points with residuals, as compared to (5), that are greater than 
1.96 in absolute value. This definition is similar to the setting 
in the regression analysis that corresponds to a 5% 
significance level given the normal distribution.

Y=0.5 + 0.4*X + 0.8*Exp(-X) + Error.          (5)

Here, we set the  value of the proposed envelope module 
to 3, which is smaller than but close to 1.96, the threshold 
for the theoretical outliers. With a stringent threshold for the 
outlier in mind, the  value of the proposed envelope module 
is set such that 3*  is equal to 2.5. The idea behind taking a 
larger rejection bound of 2.5 is similar to that in the Repeated 
Significance Tests [15] and Group Sequential Tests [17]. 

Table II shows the number of theoretical outliers in 100 
simulated data sets. For example, there are 16 simulation runs, 
each of which has 3 theoretical outliers, and there are 14 runs 
that have 4 theoretical outliers. On average, there are 4.97 
theoretical outliers in each observation set. As shown in Table 
II, there are 60 runs with 5 or fewer than 5 theoretical outliers. 
Among the data sets of these 60 runs, on average, there are 
3.55 theoretical outliers. At the same time, there are 40 runs 
that have at least 6 theoretical outliers, and on average, there 
are 7.1 theoretical outliers. Note that the error terms were 
generated using the freeware R, version 2.12.0.

TABLE II. 
NUMBER OF THEORETICAL OUTLIERS IN 100 SIMULATION DATA SETS

Number of theoretical outliers Number of simulation runs 
1 2 
2 11 
3 16 
4 14 
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5 17 
6 21 
7 7 
8 5 
9 4 
11 3 

Without losing generality, the 10th data set shown in Fig. 1 
is used to illustrate the model fitting and the outlier detection 
for using the proposed envelope module. Among 100 
observations in the 10th data set, there are six theoretical 
outliers, marked with the red square shown in Fig. 1. 

Apparently, these outliers are located outside of the bulk of 
the majority of 100 observations. 

Fig. 2 shows the graphs of {(xc, yc): c )1(nI } and the 
corresponding next point (x , y ) obtained at Step 3 of the 71st,
72nd, 96th, 98th, and 100th stage, as well as the graph of the 
final fitting function and its envelope regarding the 10th

simulation run. The round circle denotes the next point. As 
shown in Fig. 2, the proposed algorithm evolves the fitting 
function and its envelope accordingly, to contain the 
corresponding next point (x , y ).

Fig. 1. The graph of {(xc, yc)} of the 10th data set.

Fig. 2. The graphs of {(xc, yc): c )1(nI } and the corresponding next point (x , y ) obtained in Step 3 of the 71st, 72nd, 96th, 98th, and 100th stage 
and the graph of the final fitting function and its envelope regarding the 10th data set. 

B. The evaluation 
We use the non-linear regression method associated with 

the function form of equation (5) as the benchmark for 
evaluating the performance on outlier detection of our 
proposed algorithm. 

 The following two error measurements are also adopted to 
evaluate the performance of outlier detection: Type I and 
Type II errors. The Type I error is defined as the proportion of 
theoretical non-outliers that were mis-specified as identified 
outliers, and the Type II error is the proportion of theoretical 

-5

-3

-1

1

3

5

7

9

11

0 5 10 15 20

Y

X

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the 71st stage

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the 72nd stage

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the 96th stage

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the 98th stage

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the 100th stage

(5)

(3)

(1)

1

3

5

7

9

11

0 5 10 15 20

Y

X

the final result

3308



outliers that were mis-specified as identified non-outliers. In 
many applications, such as medical diagnosis, other criteria 
similar to these two errors are also used, as in Lalkhen and 
McCluskey [13] and Loong [14]. For example, Specificity 
and Sensitivity are two frequently used criteria, where 
Specificity = 1  Type I error and Sensitivity = 1  Type II 
error. 

Table III lists the mean and standard deviation of Type I 
and II errors of the outlier detection regarding the envelope 
module and the benchmark. The last column indicates that 
99.53% of the non-outliers are identified correctly and 
80.49% of the outliers are identified correctly with respect to 
the benchmark. Surprisingly, the Type II error for the 
benchmark is fairly large. Approximately 20% of the outliers 
cannot be identified, even though we know the relationship 
between the response variable Y and the exploratory variable 
X.

TABLE III. 
TYPE I AND II ERRORS.

Envelope module 
Benchmark 

Flexible Fixed 
Type I error 1.19% 1.22% 0.47% 
Type II error 52.52% 54.53% 19.51% 

The type II errors regarding the envelope module with the 
flexible and fixed approaches are 52.52% and 54.53%, 
respectively. Note that, if we perform the outlier detection 
randomly without the knowledge of the fitting function form, 
the Type I and Type II errors are approximately 5% and 95%, 
respectively, because on average, there are 4.97 outliers in 
each set of 100 observations. In other words, the envelope 
module with the flexible approach contributes a 42.48% (= 
95%  52.52%) effect on the outlier detection, which is 
significantly large. This result is a large improvement on 
having no information, although the errors of the proposed 
module are still larger than those of the benchmark. 

VII. DISCUSSION AND FUTURE RESEARCH

This study proposes an envelope module which adopts 
both the deviance information and the order information to 
identify the outliers. The proposed envelope module is based 
on data. In other words, at the nth stage, the envelope has 
evolved to contain the reference observations of {(xc, yc): c

)1(nI }  {(x , y )}, and the identified outlier is the next 
point (x , y ), whose deviation from the fitting function f is 
greater than * * , where  is the standard deviation of the 
residuals of {(xc, yc): c )1(nI }.

In contrast with the algorithm proposed by Tsaih and 
Cheng [23], the envelope module uses a non-tiny  value 
instead of a tiny  value that results in a nonlinear fitting 
function f around the envelope whose width is 2 . Also, the 
envelope should contain at least n observations at the nth stage. 
This is different from the concept of searching the fitting 
functions of all the n reference observations at the nth stage, 
which tends to result in overfitting to the noisy data. 

In summary, this study has fulfilled the following two 
objectives: (1) Revise the algorithm of Tsaih and Cheng [23] 
to form an effective way of identifying outliers in the context 
of resistant learning. (2) Set up an illustrative experiment to 
justify the effectiveness of the envelope module in identifying 
outliers in the context of resistant learning. 

Because of the complexity of outlier detection in the 
context of resistant learning, this study is the first study to 
derive an effective module for outlier detection. To deal with 
the outlier detection problem in both contexts of resistant 
learning and changing environments, future goals of this 
study are as follows: 
(1) Integrate the moving window strategy with the envelope 

module into an outlier detection algorithm that can work 
in both contexts of resistant learning and changing 
environments. For instance, the new resistant learning 
algorithm is applied to the daily S&P 500 stock index 
futures price data from year 1984 to year 1993 for the 
outlier detection. The moving window strategy is as 
follows: the envelope module is applied to the 4-year 
daily data, from year 1984 to year 1987, to construct a 
proper envelope. This envelope is then applied to the 
outlier detection in year 1988. We replicate this strategy 
throughout the period from year 1989 to year 1993. In 
other words, the period of outlier detection in the 
simulation is from year 1988 to year 1993. 

(2) Set up a real-world experiment (regarding security 
applications) to explore the effectiveness of the derived 
outlier detection algorithm. 

(3) Explore the reality of identified outliers in a real-world 
experiment. In other words, we would like to explore 
some of the following questions: Are some of the 
identified outliers the real outliers? Are there any further 
analyses that can help to understand the method of 
detecting them and assessing their real-world impact? 

(4) Apply the outlier detection algorithm to a real-work 
problem such as the detection of abnormal network 
behaviors and zero-day attacks. 
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