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Abstract—Dimensionality reduction is a key preprocessing
step for many applications. Until our knowledge, unsupervised
approaches such as PCA and ICA do not take label information
of the original data into account, so a supervised approach such
as Linear discriminant analysis (LDA) performs better on many
classification tasks. Unfortunately, the classical LDA approach
has shortcomings, such as the well-known small size problem,
the heteroscedastic problem and the (C-1) low rank problem. The
(C-1) low rank problem greatly limits the dimension of the
extracted features. In addition, the calculation of the between-
class and within-class scatter matrices in the classical LDA
approach actually only takes account of the Mahalanobis distance
like covariance distance of data centers and each data class, so if
the dataset has very few classes or the data distribution of each
class is not Gaussian-like but has some spatial structure in the
feature space instead, classical LDA does not work well. In this
paper we propose a dimensionality reduction approach which
avoids the limitations of classical LDA and improves handling
of the between-class scatter matrix. Our approach approach
takes the distribution of data in each class into consideration to
calculate the projection matrix. It does not assume that the data
distribution of each class approximates Gaussian; each can have
its own spatial structure. Experiments show that our method
can obtain better projection directions than the classical LDA
approach and greatly improve the classification accuracy. In
addition, our approach is able to reconstruct the original signal
well, while the classical LDA approach ignores the reconstruction
property.

I. INTRODUCTION

Since in data mining, machine learning and bioinformatics
applications raw data such as EEG, ECG, FMRI and CT is
usually represented in a very high dimension space, dimen-
sionality reduction is important to characterize the features
of the data. This is sometimes called the curse of dimen-
sionality problem[1][2]. A feature selection method selects a
subset from the original feature vector which gives the most
discrimination between classes with the extracted dimensions.
Approaches include max-dependency, max-relevancy and min-
redundancy[3].

There has also been considerable research on a more flexible
feature transformation method which seeks a transformation
to project the original feature set onto a subspace to get
coefficients to use as the final feature vector. Approaches
based on linear transformations include principal component
analysis (PCA)[4], independent component analysis (ICA)[5]
and linear discriminant analysis (LDA)[2]. The main principle

of PCA is to find a projection with the least information loss
during the dimension reduction process. PCA aims to find a
set of projection vectors which minimize reconstruction error
in the least squares sense. ICA is quite similar to PCA but
it takes the independent properties of the transformed signal
using the kurtosis and negative entropy to measure the degree
to which the data is non-Gaussian to find independent signal
components. The LDA approach aims to find the optimal dis-
criminant vectors by maximizing the ratio of the between-class
distance to the within-class distance to achieve the maximum
class discrimination. These approaches are based on linear
transformations. There are also some nonlinear approaches
such as the extended version of PCA-Kernel PCA[6], and
manifold learning techniques such as locally linear embedding
(LLE)[7], Hessian LLE, Laplacian eigenmaps, and LTSA[8].

Some approaches, such as PCA and LDA, have been
extended to a high dimensional version,for example 2dPCA[9],
2dLDA[10], tensor PCA[11] and tensor LDA[12]. These can
effectively reduce the computing cost, restore original structure
information and improve the performance.

For the classification problem, there are two main groups of
methods, unsupervised approaches and supervised approach-
es. Unsupervised approaches such as PCA and ICA do not
consider the class label of data while LDA, as a supervised
approach, calculates the projection vector with the class label
information to maximize the separation between classes and
maintain the highly-aggregated characteristics of each class.

However the classical LDA approach has several shortcom-
ings. The most critical issue is the under-sampling problem
also known as the singularity problem and high-dimensional
problem[13]. In this case, the within-class scatter matrix is
singular, and the projection matrix cannot be calculated with
the generalized eigenvalue method or Cholesky decompo-
sition. Approaches to solve this problem include subspace
LDA (PCA+LDA)[14], null space LDA[15] and regularized
LDA[16]. Subspace LDA just adopts a PCA dimension re-
duction approach before the LDA is applied. Null space
LDA limits the search to the null space of the within-class
scatter matrix, which is effective when the null space contains
enough information. Regularized LDA adds a diagonal matrix
to the standard within-class scatter matrix making the matrix
invertible.

Another well-known problem of classical LDA is the het-
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eroscedastic problem[17]. The classical LDA approach as-
sumes the data in each class has a Gaussian distribution with
the same covariance matrix. Some heteroscedastic LDA[17]
approaches have been studied. In addition, classical LDA
can obtain only (C-1) optimal projections of multivariate
data[18][19] which is the (C-1) low rank problem. Jose and
Antonio proposed a complementary space LDA approach
which searches for the next projection vector in the subspace
orthogonal to the space spanned by the achieved projection
vectors[18][19].

In this paper we propose an improved method for LDA
which tackles the problems mentioned above. In addition, our
approach improves the unreasonable design of the between-
class scatter matrix. It takes the non-Gaussian distribution of
the data for each class into consideration for calculating the
projection matrix. Experiment shows that the projection matrix
achieved by our method is better than that of the classical LDA
approach. In real data classification, the classification accuracy
of our method is greatly improved. In addition, our method can
make a reconstruction process to get the original signal with
the coefficients which classical LDA cannot do.

The proposed approach is applied to ECG data analysis, al-
though it is not limited to that, so related work on ECG feature
extraction and classification will be discussed. There has been
a lot of work on ECG feature extraction and classification.
Some work decomposed the signal with a series of wavelet
bases using projection coefficients as the feature vector[20].
Others decompose the ECG signal with the ICA components
from the original signals with the FASTICA approach, which
achieves quite high classification accuracy[21][22].

The paper is organized as follows, we first give a brief
introduction to classical LDA based on the geometric meaning
(Section 2.1). Then the limitations of classical LDA are intro-
duced in Section 2.2-2.6. After that, we introduce some im-
provements based on the maximum scatter difference (MSD)
corresponding to the several limitations of the classical LDA
approach (Section 3). In Section 4, we show the effectiveness
of our approach through several experiments. To validate the
performance of the developed method, we compare with six
other approaches. First, they are tested with UCI datasets
(Section 4.1), and then they are applied to hospital ECG
data analysis (Section 4.2). Finally the conclusion is given
in Section 5.
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II. LIMITATIONS OF CLASSICAL LINEAR DISCRIMINANT

ANALYSIS

In this section, we first briefly introduce the clear geometric
meaning of LDA and then review its limitations, including the
small size problem, the low rank problem, the heteroscedastic
problem, unreasonable between-class scatter matrix, unconsid-
ered distribution structure between classes and its inability to
support reconstruction.

A. Geometric understanding of Classical LDA

Classical LDA computes a linear projection matrix G that
maps each data point 𝑎𝑗 ∈ ℝ

𝑚 in the m-dimensional space to
a vector 𝑦𝑖 in l-dimensional space. It is actually the result of
three equivalent optimization problems[1].

𝑅 (𝑥) =
𝑥𝑇𝑆𝑏𝑥

𝑥𝑇𝑆𝑤𝑥
, 𝑅 (𝑥) =

𝑥𝑇𝑆𝑏𝑥

𝑥𝑇𝑆𝑡𝑥
, 𝑅 (𝑥) =

𝑥𝑇𝑆𝑤𝑥

𝑥𝑇𝑆𝑡𝑥
(1)

𝑆𝑤,𝑆𝑏 and 𝑆𝑡 are the within-class scatter matrix, the
between-class scatter matrix and the total scatter matrix. The
matrix can be expressed as

𝑆𝑤 =
1

𝑛

𝑘∑

𝑖=1

∑

𝑥∈𝐴𝑖
(𝑥− 𝑐(𝑖))(𝑥− 𝑐(𝑖))

𝑇

𝑆𝑏 =
1

𝑛

𝑘∑

𝑖=1

∑

𝑥∈𝐴𝑖
(𝑐(𝑖) − 𝑐)(𝑐(𝑖) − 𝑐)

𝑇

=
1

𝑛

𝑘∑

𝑖=1

𝑛𝑖(𝑐
(𝑖) − 𝑐)(𝑐(𝑖) − 𝑐)

𝑇

𝑆𝑡 =
1

𝑛

𝑘∑

𝑗=1

(𝑥𝑗 −𝑐)
𝑇
(𝑥𝑗 −𝑐)

(2)

Here 𝐴𝑖 means class 𝑖. 𝑛𝑖 means the point count of class
𝑖. It is easy to understand that 𝑆𝑤 is the sum of each class’s
covariance matrix. 𝑆𝑏 is a weighted sum of the covariance
matrix where the weight is the number in each data class. And
𝑆𝑡 is the covariance matrix of all the points. It is easy to get
the equation that 𝑆𝑡 = 𝑆𝑤 + 𝑆𝑏(notice the 𝑛𝑖 in 𝑆𝑏). So 𝑆𝑡 is
named the total scatter matrix. The definition of Mahalanobis
distance is as follows.

𝑑(−→𝑥 ,−→𝑦 ) =

√
(−→𝑥 −−→𝑦 )

𝑇
𝑆−1(−→𝑥 −−→𝑦 ) (3)

It is easy to understand that inversion of the covariance
matrix changes its eigenvalue to the reciprocal. The classical
LDA approach uses the original covariance matrix so it gives
a high weight to directions with high fluctuation. Actually the
weight is the variance in this direction. The covariance matrix
is a real symmetric matrix, and each real symmetric matrix
has a orthogonal decomposition which can be expressed as
the following form:

𝐵 = 𝑃

⎛

⎜
⎜
⎜
⎝

𝜆1

𝜆2

. . .
𝜆𝑛

⎞

⎟
⎟
⎟
⎠

𝑃𝑇

𝑃 = [𝑣1, 𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑛]

(4)

In this equation, 𝑣𝑖 is the eigenvector of the covariance
matrix, and 𝜆𝑖 is the corresponding eigenvalue. It is obvious
𝑃 is a orthogonal matrix. 𝑉𝑖 forms a basis series. So each
signal can be expressed as:
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𝑥 =
𝑛∑

𝑖=1

𝑎𝑖𝑥𝑖 (5)

Through the above equation, the quadratic calculation of the
covariance matrix can be expressed as the following form:

𝑥𝐻𝐵𝑥 =
(∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖

)𝐻
𝐵
(∑𝑛

𝑗=1 𝑎𝑗𝑥𝑗

)

=
∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑎𝑗𝑥

𝐻
𝑖 𝐵𝑥𝑗

=
∑𝑛
𝑖=1 𝜆𝑖∣𝑎𝑖∣2

(6)

So actually the main principle of the classical LDA approach
is to maximize the ratio of the between-class covariance
distance to the within-class covariance distance to achieve the
maximum class discrimination.

B. Small size problem

In the classical LDA approach, the calculation of the ratio
of the between-class covariance distance to the within-class
covariance distance is actually a generalized Rayleigh quotient
problem. Take the most widely used optimization problem
which is the second optimization problem in Equation 1 as
an example.

There are two approaches to solve the problem. The first is
the method of Lagrange multipliers. It is clear from Equation
1 that 𝑥 has infinite number of solutions. When the 𝑥 is
multiplied by a constant, 𝑅 (𝑥) always keeps the same value
(Offset the numerator and denominator). So the length of 𝑥 is
always restricted to make the denominator be 1. The restriction
is used as a condition for the Lagrange method. The solution
of this problem is to maximize the equation.

𝑐(𝑥) = 𝑥𝑇𝑆𝑏𝑥− 𝜆(𝑥𝑇𝑆𝑤𝑥− 1)

⇒ 𝑑𝑐

𝑑𝑥
= 2𝑆𝑏𝑥− 2𝜆𝑆𝑤𝑥 = 0

⇒ 𝑆𝑏𝑥 = 𝜆𝑆𝑤𝑥

(7)

The equation above is a typical generalized eigenvalue
problem. If the within-class scatter matrix 𝑆𝑤 is invertible, this
problem can be converted to a ordinary eigenvalue problem to
calculate the result.

𝑆𝑤
−1𝑆𝑏𝑥 = 𝜆𝑥 (8)

The within-class scatter matrix is the sum of each class’s
covariance matrix, and 𝑟𝑎𝑛𝑘(𝐶) ≤ 𝑟𝑎𝑛𝑘(𝐴) + 𝑟𝑎𝑛𝑘(𝐵), so
the rank of the within-class scatter matrix is at most C (number
of classes) less than the sample number.

For most application cases, such as image processing, video
analysis, FMRI and CT, the dimension of the original signal is
very high. Sometimes the training set is not that large and the
number of cases is less than the dimension count. So in this
case, the application of LDA is limited. Some modifications
are needed in order to solve the problem.

C. (C-1) low rank problem

The classical LDA approach calculates the between-class
scatter matrix by computing the covariance matrix of each
class data’s center. 𝐻𝑏 can also be expressed in this form:

𝐻𝑏 =
1√
𝑛
[𝐶(1), 𝐶(2), ⋅ ⋅ ⋅ , 𝐶(𝑖), ⋅ ⋅ ⋅ , 𝐶(𝐶)]

𝐶(𝑖) = [(𝑐
(𝑖)
1 − 𝑐), (𝑐

(𝑖)
2 − 𝑐), ⋅ ⋅ ⋅ , (𝑐

(𝑖)
𝑛𝑖 − 𝑐)]

(9)

The vectors of each class are the same, so their rank is 1.
Because each column of the matrix is reduced by the average
of all columns, the weighted average is 0. In other words, they
are linearly correlated.

𝑐∑

𝑖=1

𝑛𝑖(𝑐
(1) − 𝑐) = 0 (10)

Here 𝑛𝑖 is the number of points in class i. Generally
speaking, the centers of each class are linearly independent
so the rank of 𝐻𝑏 is (𝐶−1). Here C is the number of classes
as before. Using the lemma below, it is easy to get that the
rank of the between-class scatter matrix is (C-1).

lemma 1:for any m n matrix A 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐴′) =
𝑟𝑎𝑛𝑘(𝐴𝐴′) = 𝑟𝑎𝑛𝑘(𝐴′𝐴).

Through the lemma above, it is easy to get the conclusion
that the rank of 𝑆𝑏 and 𝐻𝑏 is the same, one less than the
number of classes C. Although the C-1 is a upper bound, the
actual value is quite close to this value. The rank of 𝑆𝑏 is less
than the upper bound 𝐶 − 1 only if the centers of different
classes are on the same line linking to the origin.But for real
data, this is rare so in most cases the rank of 𝑆𝑏 is close to
C-1.

So there is a paradox in classical LDA. If the number
of classes is high, the accuracy of the results will be low,
but if the number is comparatively low then the dimension
extracted by LDA will be very low. Especially when using an
SVM classifier, because multiclass LDA does not give good
performance, the one to one, one to rest or directed acyclic
graph strategy must be used. In this case, there are two classes
in use for calculating the projection matrix. In other words, no
matter how high the original data dimension, the calculated
reduced dimension can only be 1. So in this condition, the
classification result will be greatly affected.

D. Heteroscedastic Problem

Classical LDA assumes the distribution of data in each class
is Gaussian. And here:

𝑆𝑤 =
1

𝑛

𝑘∑

𝑖=1
𝑆𝑤𝑖

𝑆𝑤𝑖 =
∑

𝑥∈𝐴𝑖
(𝑥− 𝑐(𝑖))(𝑥− 𝑐(𝑖))

𝑇

(11)

This approach assumes that the distribution of data in each
class approximates a Gaussian distribution and the covariance
matrices of all classes are similar. Actually for much real
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data, this assumption cannot be the case. They may have
some type of structure in the feature space or not have a
good clustering structure. Data for different classes may be not
linearly separable, or even not nonlinearly separable. Different
class’s data can overlap with each other.

E. Unreasonable between-class scatter matrix

In the traditional LDA approach, the design of the between-
class scatter matrix is unreasonable as 𝑆𝑏 in equation 2.

Section 2.1 explained the geometric meaning; it actually
calculates the between-class covariance distance of class data
centers. This approach seems simple and effective but has
some problems. It assumes the centers of each class as a
whole approximate a Gaussian distribution. This is often not
the case for real data. On the other hand, if the number of
classes is small, the data centers can be very sparse. In this
situation, even if they actually have a Gaussian distribution, the
calculated axis direction can have a large error because data
is sparse. Besides this, it also makes the calculation difficult.
Actually the low rank problem of dimension (C-1) is caused
by this design.

F. Reconstructability problem

In general signal decomposition, the reconstructability of the
signal can be very important. With wavelet decomposition or
Fourier decomposition the original signal can be reconstructed
from the decomposition coefficients. As for the PCA approach,
because the basis achieved is normalized and orthogonal, the
result of multiplying the projection matrix and the original
signal is the coefficients in the new coordinate space which
can be directly used for reconstruction. But for the classical
LDA approach, the achieved basis is not orthogonal and cannot
be directly used for reconstruction.

For the generalized eigenvalue problem in equation 11, 𝑆𝑤
and 𝑆𝑏 are real symmetric positive definite matrices because
(𝐴(−1))′ = (𝐴′)(−1) = 𝐴(−1). so 𝑆𝑤

−1 is a symmetric
matrix. When 𝐴 and 𝐵 are both symmetric, the necessary
and sufficient condition for 𝐴𝐵 to be a symmetric matrix is
𝐴𝐵 = 𝐵𝐴. So generally 𝑆𝑤

−1𝑆𝑏 is not a symmetric matrix
so the eigenvector obtained by calculating the Eigenvalue
problem is not orthogonal.

Or consider this issue with another solution, Cholesky de-
composition. Here, 𝐺−1𝑆𝑏(𝐺

−1)𝐻 is real and symmetric. Its
eigenvectors are orthogonal. Orthogonal eigenvectors should
be adopted with a transformation 𝐺𝐻𝑥 = 𝑦. 𝑆𝑤 = 𝐺𝐺𝐻

actually the G is:

[𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛]

⎛

⎜
⎜
⎜
⎝

√
𝜆1 √

𝜆2

. . . √
𝜆𝑛

⎞

⎟
⎟
⎟
⎠

(12)

So it is not an orthogonal matrix. The projection vector 𝑥
after the transformation is not an orthogonal projection vector.

Reconstuctability is important, because the LDA approach
also can be used to automatically find the characteristic of each

type, or find the most discriminative characteristic between
different types. In the application of ECG analysis, it can be
used to find the discriminative waveform between confusing
diseases and the typical waveforms of each heart disease.

III. IMPROVED METHODS

For the above-mentioned problems, we propose a series of
improvements. Each of the improvements removes at least
one limitation of the classical LDA approach. Each individual
improvement as a method can be used separately.

A. Pairs of classes as a whole

As mentioned above, classical LDA regards the centers
of classes as a whole to calculate the axis direction while
calculating the between-class scatter matrix. It has not taken
the distribution of each class into consideration. It is quite
possible that the centers of classes are scattered or have high
variance but the data overlaps with other classes. In this case,
the projection matrix cannot achieve good dimension reduction
performance. Here we propose a method to take data for each
pair of classes to extract the projection direction.

𝑅 (x) = 𝑥𝑇𝑆𝑏𝑥+𝑤𝑥
𝑇𝑆11𝑥

𝑥𝑇𝑆𝑤𝑥

𝑆11 =
∑
𝑖,𝑗 𝑤𝑖𝑗

∑
𝑥∈{𝑐𝑖,𝑐𝑗} (𝑥− 𝑐(𝑖𝑗))(𝑥− 𝑐(𝑖𝑗))

𝑇
𝑖 ∕= 𝑗
(13)

here 𝑐(𝑖𝑗) is the average of two centers 𝑐𝑖, 𝑐𝑗 . This approach
also deals with the (C-1) low rank problem. So a better method
is to take all the data of each class into consideration but not
the connection of the two classes’ centers. So here we consider
not only the centers of each class as in classical LDA but also
each point of each pair of classes.

𝑆11 =
∑

𝑖,𝑗

𝑤𝑖𝑗
∑

𝑥∈𝐴𝑖𝐴𝑗
(𝑥− 𝑐(𝑖𝑗))(𝑥− 𝑐(𝑖𝑗))

𝑇
𝑖 ∕= 𝑗 (14)

here 𝑐(𝑖𝑗) is the mean of all the data of class 𝐴𝑖𝐴𝑗 . Here 𝑤𝑖𝑗 is
the weight. It can be determined by the total number of points
in each class pair, the experimental similarity or importance.
Such as the following equation:

𝑤𝑖𝑗 =
𝑛𝑖+𝑛𝑗

𝑛
(15)

Here 𝑛𝑖 is points number of class i, and n means points
number of all classes. A data class with more data points than
the others or a class vulnerable to confusion in classification
or a class with significant importance, all these cases should
be assigned a higher weight than the others.

The geometric explanation of these two approaches is as
follows. The first improved method is similar to the original
LDA with only two classes of data. The calculation of the
between-class scatter matrix with only two classes is as
follows:
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𝐵 = 𝑃

⎛

⎜
⎜
⎜
⎝

𝜆
0

. . .
0

⎞

⎟
⎟
⎟
⎠

𝑃𝑇

𝑃 = [𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛]

(16)

𝑥𝐻 𝐵𝑥 = ∣𝑥∣ cos 𝜃𝜆 cos 𝜃 ∣𝑥∣
= ∣𝑥∣2 cos 𝜃2 𝜆

(17)

Whether the projection direction for the between class scat-
ter matrix is good depends on the angle between the projection
direction and the connection of the two class centers.

And our first improved method is quite similar to this
condition. It takes the direction of the center connection of
each class pair into consideration. So its projection direction
depends on the sum of all the center connections of each class
pair. Its equation is as follows:

𝑥𝐻𝑆11𝑥 =
∑

𝑖∕=𝑗,𝑖𝑗=𝑐𝑖 𝑐𝑗
∣𝑥∣ cos 𝜃𝑖𝑗 𝜆𝑖𝑗 cos 𝜃𝑖𝑗 ∣𝑥∣

=
∑

𝑖∕=𝑗,𝑖𝑗=𝑐𝑖 𝑐𝑗
∣𝑥∣2 cos 𝜃2𝑖𝑗 𝜆𝑖𝑗

(18)

As for the first improved method, the rank of every singular
matrix is 1. According to the lemma: matrix A and matrix B
are all 𝑆 ∗ 𝑁 matrix, 𝐴 + 𝐵 come to matrix C, 𝑟𝑎𝑛𝑘(𝐶) ≤
𝑟𝑎𝑛𝑘(𝐴) + 𝑟𝑎𝑛𝑘(𝐵). There are 𝐶2

𝑛 class pairs, so the final
rank is less than the number of combinations 𝐶2

𝑛.

𝑟𝑎𝑛𝑘(𝑆11) ≤ 𝐶2
𝑛 (19)

In this case, the low rank problem is eased, but not that
much. This problem still exists.

As for the second improved method, every matrix is not
like the classical LDA, It consider each point of each pair of
classes as a whole. Now the rank of a single matrix is one
less than the sum of the number of points in the two classes.
The rank of the sum of the 𝐶2

𝑛 matrices is less than sum of
the rank of each matrix:

𝑟𝑎𝑛𝑘(𝑆11) ≤
∑

𝑖∕=𝑗
𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑖) + 𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑗)− 1 (20)

The condition here is similar to the problem discussed in
the section about the C-1 low rank problem. Although it is
an upper bound, the actual value is close to this upper bound.
The relation of these three upper bounds is as follows:

𝐶 − 1 ≤ 𝐶2
𝑛 ≤

∑

𝑖∕=𝑗
𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑖) + 𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑗)− 1 (21)

The second improved method further eases the C-1 low rank
problem but this approach still has a limitation; it assumes that
the distribution of each pair of classes as a whole is Gaussian.

To summarize, the first approach can enhance the rationality
but the number of total projection vectors cannot be increased

that much. The second approach not only takes the distribution
of each class into consideration but also solves the (C-1)
limitation of dimension. If the dataset is large enough, the
signal can have enough dimensions to be reconstructed.

B. Pairs of points in pairs of classes

Although the two methods mentioned above, to some extent,
solve two limitations of LDA, they still have some problems.
They calculate the between-class covariance distance, regard-
ing each class as a whole as having a Gaussian distribution
and calculating its axis direction. But each class of data has
some spatial structure. The direction with big variance of the
two classes of data may not be a good projection direction.
It may not give a good separation plane. We make another
improvement based on the previous approach.

𝑅 (x) = 𝑥𝑇𝑆𝑏𝑥+𝑤1𝑥
𝑇𝑆11𝑥+𝑤2𝑥

𝑇𝑆𝑜𝑜𝑥
𝑥𝑇𝑆𝑤𝑥

𝑆𝑜𝑜 =
∑
𝑖,𝑗 𝑤𝑖𝑗

∑
𝑥∈𝐴𝑖,𝑦∈𝐴𝑗 𝑆𝑥𝑦 𝑖 ∕= 𝑗

𝑆𝑥𝑦 = (𝑥− 𝑐(𝑖𝑗))(𝑥− 𝑐(𝑖𝑗))𝑇 + (𝑦 − 𝑐(𝑖𝑗))(𝑦 − 𝑐(𝑖𝑗))𝑇

(22)
The matrix used here with only two vectors is quite similar

to the special case with only two classes of data centers.
Its rank is one. Its eigenvector corresponding to the nonzero
eigenvalue is the connection of two points.

This approach takes each pair of points from the two classes
into consideration. The final projection direction is the sum of
the angle between the direction and the connection for each
pair of points. This approach also solves the (C-1) dimension
limitation. But here each point has the same impact on the
final result. It may not be the best choice.

To give a geometric explanation, it determines the projection
direction according to the angle between it and each pair of
points of different classes. It is as follows:

𝑥𝐻𝑆𝑜𝑜𝑥 =
∑

𝑖∕=𝑗,𝑖𝑗∈𝐴𝑖 𝐴𝑗
∣𝑥∣ cos 𝜃𝑖𝑗 𝜆𝑖𝑗 cos 𝜃𝑖𝑗 ∣𝑥∣

=
∑

𝑖∕=𝑗,𝑖𝑗∈𝐴𝑖 𝐴𝑗
∣𝑥∣2 cos 𝜃2𝑖𝑗 𝜆𝑖𝑗

(23)

The rank of it is as follows:

𝑟𝑎𝑛𝑘(𝑆𝑜𝑜) ≤
∑

𝑖∕=𝑗
𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑖) ∗ 𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑗) (24)

The relation of different improved methods’ rank is as
follows:

𝐶 − 1 ≤ 𝐶2
𝑛 ≤

∑

𝑖∕=𝑗
𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑖) + 𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑗)− 1

≤ ∑
𝑖∕=𝑗

𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑖) ∗ 𝑛𝑢𝑚(𝑑𝑎𝑡𝑎𝑗)
(25)

For the low rank problem, this is better than the previous
two approaches.
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Here the rank is still a upper bound. But only when data
points are on the same line passing the origin will the rank
be affected. For real data, this condition is rare so the rank of
the matrix is close to the upper bound.

This approach fully considers the distribution of each class
or between classes. At the same time, the C-1 low rank
problem is also eased. Also this approach has flexibility for
the further extension of adding weight to each data point pair
which have significant importance for performance improve-
ment.

C. Considering distribution structure between classes

It is obvious, features in the feature space have a distribu-
tion which may be very scattered. The above method which
calculates pairs of points from pairs of classes considers the
spatial distribution of each class. It is better than the LDA
approach which only considers the centers of each class. On
the other hand, a better classification plane is determined more
by the closer point pairs. So a natural extension of the above
method is to assign a weight to each point depending on its
position.

𝑆𝑜𝑜 =
∑

𝑖,𝑗

𝑤𝑖𝑗
∑

𝑥∈𝐴𝑖,𝑦∈𝐴𝑗
𝑤(𝑑𝑥𝑦)𝑆𝑥𝑦 𝑖 ∕= 𝑗 (26)

The easiest way of determining a weight is to use the
reciprocal of distance ( 1

𝑑𝑥𝑦
),

w(𝑑xy) = 𝑑xy
−𝑛

or in the following form:

w(𝑑xy) ={
= 1 if𝑑xy ∈ (𝑁% ∼𝑀%)(𝑀𝑎𝑥(𝑑𝑥𝑖𝑦𝑗 )−𝑀𝑖𝑛(𝑑𝑥𝑖𝑦𝑗 ))
= 0 if𝑑xy /∈ (𝑁% ∼𝑀%)(𝑀𝑎𝑥(𝑑𝑥𝑖𝑦𝑗 )−𝑀𝑖𝑛(𝑑𝑥𝑖𝑦𝑗 ))

(27)
For example, we can assign 1 or 𝑑𝑥𝑦

−1 to the point
pairs whose distance is between the range (2% ∼
10%)(𝑀𝑎𝑥(𝑑𝑥𝑖𝑦𝑗 ) − 𝑀𝑖𝑛(𝑑𝑥𝑖𝑦𝑗 )). Because data points of
different classes may overlap with each other to some extent
we add a weight added on the a interval which depends on
the distance between the data pair of different type. So our
approach adds nonzero weight to data pairs close to each other
but not the most near to each other and excludes the data pairs
far from each other. In the experiment, this approach gives
extremely good performance. In this way, a more reasonable
classification plane and projection direction can be achieved.

The geometric meaning of this approach is to fully consider
the distribution of data points of different classes which are
close to each other and exclude the influence of data points
which are far from the classification plane.

D. Extension to maximum scatter difference problem

The above method has solved the (C-1) low rank problem,
heteroscedastic problem, the problem of the unreasonable
between-class scatter matrix, and the problem of the data
distribution between classes not being considered. But the

small size problem still has not been solved. Actually classical
LDA is a multi-objective optimization problem. It is about
simultaneously optimizing the following equation:

argmax
𝑥
{𝑥𝑇𝑆𝑏𝑥} argmin

𝑥
{𝑥𝑇𝑆𝑤𝑥} (28)

A multi-objective optimization problem can be solved by
optimizing several equations simultaneously, or by combining
multiple optimization targets into one. Classical LDA com-
bines the maximization and minimization problem into one
by dividing the first one by the second one, which actually
leads to the small size problem. So the 𝑆𝑤 must be full rank.
But if we just change the division to subtraction:

argmax
𝑥
{𝑥𝑇 𝑆𝑏 𝑥+𝑤1𝑥𝑇 𝑆11 𝑥+𝑤2𝑥𝑇 𝑆11𝑜 𝑥−𝑤3𝑥𝑇 𝑆𝑤 𝑥}

(29)
In this way, the problem can be easily solved. We can use

the similar method for classical LDA and Maximum Scatter
Difference Discriminant Analysis. We just do Eigenvalue
decomposition for the following matrix.

𝑆𝑏 + 𝑤1𝑆11 + 𝑤2𝑆11𝑜 − 𝑤3𝑆𝑤 (30)

Then we order the eigenvectors by its corresponding eigen-
values. Then the ordered eigenvectors is the projection vec-
tor we wanted which actually is our solution for the ob-
jective function. Some work has been done with a similar
idea[23][24].

E. Reconstructability

The first three improvements above still retain a form
similar to classical LDA. From the above discussion, it is
clear multiple projection vectors are not orthogonal to each
other. If using this basis to transform the original dataset, the
coefficients cannot be used to reconstruct the signal, so the
coefficients should be adjusted.

For example, we set the projection vector{x1, . . . ,x𝑘}, to
get a set of coefficients p = 𝛼1x1 + ⋅ ⋅ ⋅ + 𝛼𝑘x𝑘, 𝛼𝑖 is
determined by the orthogonality condition: x𝑇𝑖 (z−p) = 0, 𝑖 =
1, . . . , 𝑘. let 𝑛× 𝑘 Order matrix 𝑋 =

[
x1 ⋅ ⋅ ⋅ x𝑘

]
, The p

written as p = 𝑋𝛼, 𝛼 = (𝛼1, . . . , 𝛼𝑘), the k equations can be
expressed as a matrix form, as follows:

⎡

⎢
⎣

x𝑇1
...
x𝑇𝑘

⎤

⎥
⎦ (z−𝑋𝛼) = 𝑋𝑇 (z−𝑋𝛼) = 0 (31)

To get 𝑋𝑇𝑋𝛼 = 𝑋𝑇 z. Row vector of X is linearly indepen-
dent, rank𝑋 = 𝑘, use nature of matrix rank rank(𝑋𝑇𝑋) =
rank𝑋 = 𝑘, To know 𝑋𝑇𝑋 is a k-order reversible square
matrix, 𝛼 has a unique solution:

𝛼 = (𝑋𝑇𝑋)−1𝑋𝑇 z (32)

So the orthogonal projection amount is obtained

p = 𝑋𝛼 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 z (33)
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The projection vectors for the extended maximum scatter
difference problem are orthogonal to each other. In other
words, (𝑋𝑇𝑋) = 𝐼 so

𝛼 = (𝑋𝑇𝑋)−1𝑋𝑇 z = 𝑋𝑇 z (34)

This signal can be used to find the discriminative charac-
teristic of an ECG waveform.

IV. EXPERIMENTS

In our experiments, to demonstrate the applicability of
our approach, we compare the performance of our method
with other methods on 11 datasets from the UCI database.
Finally, we use real data, specifically ECG signals, to test the
effectiveness of our approach. We compare our method with
other dimension reduction methods. ICA, PCA, classical LDA
and complement space LDA approaches are tested with the
same dataset.

A. UCI datasets analysis

Although we mainly focus on ECG analysis, and compare
our work with other approaches for ECG feature extraction,
our approach is not confined to the field of ECG analysis.
To demonstrate the effectiveness of our approach, we test
on eleven datasets from the UCI database and compare the
classification accuracy of projected features with different
approaches. The selected datasets are Car Evaluation, Connect-
4, Image Segmentation, Letter Recognition, Nursery, Statlog
(Shuttle), Steel Plates Faults, MiniBooNE particle identifi-
cation, Wall-Following Robot Navigation Data, and a Wine
Quality and Yeast dataset. Each dataset has more than 4
types. We divide large datasets into training data and test
data with a ratio of 1:10, and small datasets with a ratio
of 1:2. The dimension of the original data is reduced to
about half of the original dimension to be tested. The final
results are listed in Table 1. The best two results for each
dataset are in italics and bold. It is very clear that our
approach is significantly superior to other methods for almost
all datasets. This is enough to prove the effectiveness of our
method-Reconstructable Generalized Maximum Scatter Dif-
ference Discriminant Analysis(RGMSDDA or in short RGM).

TABLE I
COMPARISONS OF DIFFERENT APPROACHES’ CLASSIFICATION ACCURACY

FOR 11 UCI DATABASES

apps(%) ICA PCA LDA LDAc RGM
car 75.75 74.54 91.15 90.91 93.40
connect 65.84 66.39 66.33 66.07 67.32
image 94.48 89.05 65.86 85.00 94.67
letter 93.69 92.10 95.26 96.29 95.65
nursery 86.77 79.39 93.81 92.88 95.08
statlog 98.89 98.29 97.76 99.29 99.74
steel 71.25 78.26 73.88 64.40 100
mini 83.40 83.01 89.43 90.20 89.01
wall 73.35 80.21 87.07 84.40 87.15
wine 79.21 75.99 79.20 53.84 79.50
yeast 50.54 60.92 57.82 57.41 61.59

B. Hospital ECG data analysis

To evaluate the performance of our method, we test it on
a large dataset which we get from our local hospital. The
dataset consists of 3000 pieces high quality 12-leads ECG
records. Each piece includes about 10 to 25 beats and there
are 65,716 beats in total. These records are detected from a
wide range of people: men and women, young and old, healthy
and unhealthy. The doctors’ conclusion are taken as the label
for the beats, which is one of the following 6 types(Symbol
in parenthesis): Normal beat(N), Left bundle branch block
beat(L), Right bundle branch block beat(R), Left ventricu-
lar hypertrophy(V), Sinus bradycardia(S),Electrical axis left
side(E). After the preprocess step for the raw ECG signal, we
get the following single heartbeat segments: 19400 of N type,
7056 of L type, 10080 of R type, 6720 of V type, 14540 of S
type, 7920 of E type. Next we split the dataset into two parts:
the train part and the test part. We use the train part to get the
projection vectors. And then we use the train part for SVM
model training. The model are then use for the classification
of testing dataset. We split the original dataset into two parts
randomly: the train part consists of 20000 beats, the test part
consists of 45716 beats.

TABLE II
ECG DATASET USED FOR EXPERIMENT(TRAIN AND TEST SET)

Type N L R V S E
Train 5397 2445 3164 2256 4694 2044
Test 14003 4611 6916 4464 9846 5876

The detail of the dataset we use is listed in Table 2. At
first, the divided ECG beats is aligned by the R peak and then
normalized to same length. Then each beats is processed with
short time Fourier transform to transform the original signal
into time and frequency domain. Because valuable diagnosis
feature may be obvious in the time and frequency domain
but not in the time domain only. Then different dimension
reduction methods which are shown in Fig 1 are adopted to
reduce the dimension of the original signal and extract valuable
features. At last, we use SVM with RBF kernel to compare
the classification accuracy of these features. Figure 1 compares
the classification accuracy of different feature dimensions. It
is obvious that the classification accuracy increase smoothly
with dimension for our method RGMSDDA. On the whole,
the RGMSDDA is with best performance compared with other
methods.

The Table 3 has listed out all the accuracy value for each
class of ECG beats. It is shown that Our method is the best for
each ECG beat type compared with other dimension reduction
methods.

V. CONCLUSIONS

From the geometric meaning of the LDA, our paper analyses
problems and design flaws of classical LDA and suggests a se-
ries of improvements. Our approach solves the under sampling
problem, the (C-1) low rank problem, and the heteroscedastic
problem of classical LDA. At the same time, the problem that
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Fig. 1. Cross validation comparison for different models

TABLE III
COMPARISON WITH OTHER VECTOR-BASED ALGORITHM

Model N L R V S E
ICA 96.5 85.5 94.5 94.1 95.6 96.1
PCA 97.4 93.3 96.0 97.2 97.6 95.7
LDA 91.7 72.7 78.5 90.4 82.9 82.7
LDAc 86.0 10.8 48.7 81.5 97.1 61.3
RGM 99.5 94.3 97.6 94.5 98.0 96.5

the original LDA method does not fully consider the spatial
distribution of each class and the spatial relations between
classes has been improved by our approach. Besides this, a
weight is assigned to each point on the distance between
points of different classes to increase the impact of closer
points which greatly improves the performance. In compar-
isons between cardiology features, PCA, ICA, LDA, comple-
mentary space LDA, RGMSDDA, our approaches RGMSDDA
outperform others. They find more effective projection vectors
and greatly improve the classification accuracy. Besides this,
our approach also solves the reconstructability problem. It
can reconstruct the original signal from the coefficients after
dimension reduction. Good performance on 11 UCI datasets
proves that our method is not limited to ECG analysis but can
also be used for other types of data.
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