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Abstract— In this paper, an improved Levenberg-Marquardt-
based feedforward neural network, with variable weight decay,
is suggested. Furthermore, parallel implementation of the net-
work on graphics processing unit is presented. Parallelization
of the network is achieved on two different levels. First level
of parallelism is data set level, where parallelization is possible
due to inherently parallel structure of the feedforward neural
networks. Second level of parallelism is Jacobian computation
level. Third level of parallelism, i.e. parallelization of optimiza-
tion search steps, is not implemented due to the variable weight
decay, which makes third level of parallelism redundant. Sug-
gested weight decay variation enables the compromise between
higher accuracy with oscillations on one side and stable, but
slower convergence on the other. To improve learning speed
and efficiency, modification of random weight initialization is
included. Testing of proposed algorithm is performed on two
real domain benchmark problems. The results obtained and
presented in this paper show effectiveness of proposed algorithm
implementation.

I. INTRODUCTION

ARTIFICIAL NEURAL NETWORKS (NN) are non-
parametric mathematical models of their biological

counterparts. Due to their capability to learn and to generalize
on previously unseen data, NNs are used in a wide variety of
applications. Although there are many different NNs reported
in the literature, the most widely used are feedforward NNs,
due to their simple structure and ability to perform nonlinear
mapping of any given input to any desired output.

Feedforward NNs use the so-called error back propaga-
tion mechanism to adjust learning parameters until stopping
criterion is met. Learning parameters can be changed in
many different ways, depending on whether local or global
information on error surface is used, as well as whether
information on error surface curvature is used or not. Most
widely used learning algorithm has long time been simple
gradient descent (GD), whose poor convergence rates were
significantly improved [1] by introducing different modifica-
tions, including momentum and adaptive learning coefficients
[2][3][4]. Nonetheless, it has been shown that methods of
second order, such as Gauss-Newton (GN) method, result
in much faster convergence rate since those methods take
into account information on error surface as well [5]. One
method that gained particular interest in solving non-linear
least square problems is Levenberg-Marquardt method (LM),
which interpolates between GD and GN methods. In this way,
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LM takes good properties of both methods - fast convergence
of GN and stable convergence of GD method.

Although the idea behind LM algorithm seems promising
in theory, it has a serious drawback in practice. When used on
a small-scale problems, this method proves to have very fast
convergence rates, but when it comes to large-scale problems,
LM becomes very inefficient due to computational complex-
ity, memory requirements and error oscillations [5][6]. In
order to tackle these problems, different approaches have
been suggested in the literature. Works on the reduction
of memory demands and computational complexity can be
found in [7][8][9]. Another approach was suggested in [6],
where variable weight decay rate was introduced in order
to decrease error oscillations of standard LM algorithm.
Some researchers succesfully implemented online version
of LM algorithm as well [10][11], where Hessian matrix
is approximated recursivelly, depending on current objective
function estimate using current input-output pair.

Due to advances in computer architecture and inherently
parallel nature of feedforward NNs, parallelization of NNs is
yet another approach suggested in the literature. In the case of
batch learning mode, objective function is simply a sum of all
its local values, which correspond to each input-output learn-
ing pair. Therefore, it is possible to parallelize evaluation of
the objective function and its partial derivatives using simple
data-parallel decomposition [12]. Similar approach was sug-
gested in [13], where MPI on .NET platform was used. Suri
et. al. [14], on the other hand, suggested parallel LM-based
NNs using MPI with two levels of parallelism. One level of
parallelism was data-parallelism, whereas another one was
parallelization of Jacobian row block computation. Three
levels of parallelization, using clusters, are suggested in [15],
where authors showed implementation of parallelization on
data sets, parallelization of the Jacobian computation and
parallelization of search steps.

Parallel implementation of NNs can be also obtained by
using Graphics Processing Unit (GPU). In recent years,
GPUs have evolved from configurable graphics processors
to programmable, massivelly parallel many-core multiproces-
sors used for many general applications (GPGPU - General
Purpose GPU). To our knowledge, only few implementations
of parallel NNs on GPU have been proposed in the literature
so far. Moreover, proposed implementations are based on
one-level, data-parallelism only [16][17].

In order to overcome drawbacks of LM algorithm and,
at the same time, utilize huge potential of GPUs, which
are nowadays easily accessible, parallel GPU implementation
of the feedforward NN with LM algorithm is suggested
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and evaluated. As mentioned above, such networks can be
parallelized on three levels, but in this paper, only two levels
of parallelization are implemented, namely parallelization
across data set and parallelization of Jacobian computation.
Third level of parallelization, i.e. parallelization accross the
optimization search steps, is made redundant by introducing
variable weight decay rate, which decreases the number of
unsuccessful trials and makes the algorithm to converge
not only faster, but also finding better local minimum. The
results of case studies show effectiveness of proposed parallel
implementation of NN with LM algorithm.

The remaining of the paper is organized as follows. Section
II gives description of standard, sequential LM algorithm,
whilst Section III discusses problems caused by fixed weight
decay and presents suggested function for varying it. Section
IV describes our parallel implementation of NN with LM
algorithm on the GPU. In Section V simulation results are
given, whereas Section VI contains concluding remarks and
future work.

II. LEVENBERG-MARQUARDT ALGORITHM

The goal of the learning process of a multilayer feedfor-
ward NN is minimization of the objective function through
learning parameter optimization. Usually, learning is not
stopped until the value of the objective function becomes
smaller than some predefined value. In this paper, prede-
fined number of learning iterations is chosen as a stopping
criterion.

Given a set of input-output learning pairs, NN’s learning
problem is formulated as follows:

θ = argmin
θ

VN(θ), (1)

where VN(θ) is objective function to be minimized, given as

VN(θ) = eT (θ) ⋅ e(θ), (2)

where e(θ) = [(D1−O1)
T (D2−O2)

T . . . (DN −ON)
T ]T

denotes error vector, whilst Dn and On denote desired and
actual output vector, respectively, with n = 1,2, . . . ,N. Num-
ber of input-output learning pairs is denoted by N, while θ
denotes learning parameter. This way, NN’s learning process
comes down to non-linear least squares problem.

Iterative optimization procedure, which is used to find θ
(1), is given in general form as

θ k+1 = θ k−μkdk, (3)

where μ is step lenght that guarantees a decrease of the
criterion (2) in each iteration. Step direction dk is given by

dk = R−1
k ∇VN(θ k), (4)

where Rk is a matrix that modifies the search direction
obtained by gradient descent, given as

∇VN(θ k) = e′T (θ) ⋅ e(θ) = JT (θ) ⋅ e(θ), (5)

where J(θ) denotes Jacobian matrix, defined as

J(θ) =
[

∂ek

∂θ j

]

, 1≤ k ≤ N, 1≤ j ≤ p, (6)

with p being a total number of learning parameters.
When NNs are trained with LM algorithm, which is

possible due to a modification of backpropagation given in
[5], parameter μ is set to 1, while matrix Rk is given as

Rk = JT
k ⋅Jk +λkdiag(JT

k ⋅Jk). (7)

Term JT
k ⋅ Jk is used to approximate Hessian matrix and as

such, it is valid only near-linearity of the objective function
(i.e. where residuals are small or can be approximated by
linear funtion).

Pseudo-code of sequential LM algorithm is given as fol-
lows:

1) initialize all learning parameters and set λ to some
small value, e.g. λ = 0.01

2) compute objective function
3) compute Jacobians
4) compute new learning parameters using (3)
5) recompute objective function using new learning pa-

rameters
IF VN(θ +Δθ)<VN(θ) in Step 2

θ = θ +Δθ
λ = λ ⋅β (β = 0.1)
go to Step 2

ELSE
λ = λ/β
go to Step 4

END IF

Starting from some initial set of learning parameters θ0,
LM algorithm iteratively proceeds down the slope of the
objective (error) function, ultimately finding some local min-
imum of that function. This is achieved by trying different
sets of learning parameters generated by altering parameter
λ . If increase in the objective function is observed, quadratic
approximation of the error curve is unsatisfactory and λ
needs to be increased by a factor 1/β , thus bringing the
algorithm closer to the GD direction in the adaptation of
learning parameters. If, on the other hand, decrease in the
objective function is observed, quadratic approximation is
good and λ needs to be decreased by a weight decay β , thus
bringing the algorithm closer to GN algorithm, which then
becomes dominant in learning parameters adaptation. An
iteration is finished after the first set of learning parameters,
that leads to decrease in the objective function, is found.
Learning parameters that led to decrease in the objective
function are set to be the new set of parameters, which will
be used as the initial set in the next iteration of the algorithm.

III. VARIABLE WEIGHT DECAY RATE

An iteration of LM algorithm, unlike iterations of other
commonly used algorithms, such as GD, conjugate gradient,
resillient bacpropagation, just to name few, always results
in objective function decrease. This distinctive property, as
much as it is desirable, can also lead to heavy computational
load. This is due to the fact that the algorithm, before moving
on to the next iteration, will do as many trials with new
parameters as neccessary, until it finds a set of parameters
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that lead to objective function decrease. The number of
unsuccessful trials is directly related to weight decay β , since
parameter λ , which determines step size and direction, is a
function of weight decay, i.e. λ = λ (β ).

Initial suggestion by Marquardt [18] to use the same
weight decay in both cases, i.e. regardless whether objective
function is decreased or increased (with reciprocal value
of weight decay used in latter case), was used by many
researchers [14][15][19], but this strategy didn’t give good
results. Another strategy was proposed in [1], where different
weight decay was used depending on whether objective
function increase or decrease was observed. Although better
results were obtained, number of unsuccessful trials was still
significant, resulting in slow learning process in a case of a
large learning problem.

Another approach is considered in [6]. In their paper, au-
thors showed that the speed of convergence of LM algorithm
slows down as the algorithm approaches required accuracy
due to many oscillations in error. Authors also showed that,
by fixing weight decay to some value (usually 0.1), LM
algorithm exhibits many oscillations in λ , which implies that
many trials in decreasing λ by multiplying β would not lead
to reduction in error, but cause unexpected ascend of error
and therefore, waste time.

Led by above mentioned observations, authors suggested
log-linear function as a rule of varying weight decay β
after an iteration. Their heuristic function was based on
the reasoning that, at the beginning of a learning process,
when objective function value is much greater than desired
accuracy, repeated trials with decreasing λ by multiplying
β = 0.1 should be performed. On the other hand, at sub-
sequent stages of learning, as objective function approaches
the neighborhood of minimum, λ should be decreased by
multiplying 0.1 < β < 0.9, because at this stage stable
convergence is needed to avoid oscillations.

In this paper, we suggest different heuristic rule of varying
weight decay, as follows:

βdec = B1−B2 ⋅ e−ρΔEs , (8)

with ΔEs given as

ΔEs =
E−Emin

E0−Emin
, (9)

where E0 and E are first calculated and reduced error, respec-
tively, and Emin is the required training accuracy. Parameters
B1 and B2 should be chosen in the interval [0.1,0.9], to keep
LM algorithm converge. Choosing different values of B1 and
B2 allows for compromise between oscillations and higher
accuracy on one side and stable, but slower convergence on
the other. In this paper, in order to achieve high efficiency
learning, all the test were carried out with B1 = 0.9, B2 = 0.8
and ρ = 100. Fig. 1 shows suggested weight decay rule
graphically.

The idea behind above suggested rule comes from the fact
that LM algorithm can be seen as GN algorithm using a
trust region approach. Since the GN algorithm relies on a
quadratic Taylor expansion of VN(θ) at θ , which is good

Fig. 1. Rule of weight decay variation

only in the neighborhood of θ , LM algorithm will converge
well only if the size of that region, which is known as trust
region, is changed in optimal way. A way to change trust
region size is to alter parameter λ .

At the beginning of a learning process, while network is
far from minimum, parameter λ should be changed slowly,
since it is unlikely that objective function is quadratic at that
stage. This can be achieved by multiplying λ by β ≤ 0.9,
thus slowly moving LM algorithm towards GN algorithm. As
learning process proceeds and network approaches minimum,
it is more likely that quadratic approximation of objective
function will be satisfactory, so at that stage parameter
λ , which determines to which extent will gradient descent
direction be altered, should be changed faster. This is done by
multiplying it by 0.1≤ β < 0.9, thus moving LM algorithm
more and more towards GN algorithm. Such strategy will not
significantly decrease network oscillations compared to the
case of network with fixed weight decay, but it will improve
network’s performance at the earlier stages of learning. This
proves to be sufficient for the proposed LM algorithm to
outperform other modifications of sequential LM algorithm.

It should also be noted that, in this paper, different decay
rate is used in the case of error decrease and increase. When
error was decreased, λ was multiplied by suggested variable
βdec (8). On the other hand, when error was increased, λ
was multiplied by fixed βinc = 10, which ensures much faster
convergence than when 1/βdec is used.

IV. PARALLELIZATION OF LEVENBERG-MARQUARDT

ALGORITHM

As mentioned before, LM-based NN was parallelized on
two levels - across data sets and in Jacobian computation.
Since NNs tested in this paper are trained in batch mode,
it is possible to decompose objective function in such a
way that each GPU unit calculates objective function for
one input-output learning pair. In other words, it is possible
to separate learning patterns into disjoint sets and then
perform all necessary operations on each learning pattern in
parallel. This type of parallelism is known as SIMD (Single
Instruction Multiple Data). After obtaining outputs for each
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learning pattern and calculating local objective functions in
parallel, local errors are gathered and summed up, after
which algorithm continues with execution of the subsequent
operations.

The second level of parallelism is within the calculation
of Jacobian matrices. Three different Jacobians need to be
calculated - one for hidden weights, one for output weights
and one for sigmoidal activation function slope. Sizes of
Jacobians are, respectively, [N × (Nin ⋅Nhn)], [N ×Nhn] and
[N × (Nhn − 1)], where Nin and Nhn denote number of in-
put and hidden layer neurons (including bias), respectively.
Since, in this paper, NNs have only one output, each row
in Jacobian matrix (10) corresponds to one input-output
learning pair and is calculated in parallel and stored into
appropriate matrix. After all learning patterns are processed,
Jacobians are used to approximate Hessians (7).

J(θ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂e1

∂θ1

∂e1

∂θ2
. . .

∂e1

∂θp
∂e2

∂θ1

∂e2

∂θ2
. . .

∂e2

∂θp
...

...
...

∂eN

∂θ1

∂eN

∂θ2
. . .

∂eN

∂θp

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

Calculation of Hessian is not done in parallel since i)
it involves only matrix-matrix multiplication, an operation
performed extremely fast on the GPU and ii) our algorithm
is implemented in Matlab, which is known to give much
better results when using vectorized code. Two levels of par-
allelization suggested in this paper were accomplished using
Accelereyes Jacket, platform that enables single-threaded M-
code to be transformed to GPU-enabled applications.

Third level of parallelization, i.e. parallelization of the
search step, suggested in [15], is not implemented. Initial
LM algorithm with fixed weight decay [18] often performs
many unsuccessful optimization search steps, which signif-
icantly slow down convergence. If decay rate is given as
an exponential function of an error, number of unsuccessful
search steps can be controlled by changing parameters B1

and B2, ranging from no oscillations to a non-negligible
number of oscillations, but still smaller than in the case of
standard LM algorithm. Good property of suggested weight
decay is that the oscillations only start when the network
is already close to minimum and starts overfitting, so they
don’t influence learning capability. In such scenario, third
level of parallelization becomes unnecessary since it makes
algorithm GPU implementation more complex, without im-
proving learning capability.

V. CASE STUDIES

All tests are carried out using 3-layered feedforward NN.
Number of input and output layer neurons depends on the
benchmark problem, while number of hidden layer neurons
is arbitrary. Learning process was carried out using 2000
steps during which network was validated after every 10
steps, for there is no guarantee that the validation error

will have strictly decreasing manner as learning proceeds.
If validation error decreased compared to a previous one,
learning parameters were saved. Otherwise, they were not
considered.

In order to improve learning process, a modification of
random learning parameters initialization is used [20]:

θ0 = 0.7H
1
M (−1+2 ⋅ rand()), (11)

where H and M denote the number of neurons in layers
connected with parameter θ , former refering to succeeding
and latter to preceding layer.

Effectivness of algorithms - ALG1 being LM algorithm
with exponential weight decay and ALG2 being LM algo-
rithm with lin-log weight decay - is compared at two different
levels. First, NNs were tested using CPU only and results of
their accuracy, efficiency and relative speed of convergence
are given in tables. Second, a comparison of CPU and GPU
implementations of NNs with both algorithms is given using
speedup measure. Speedup shows computational advantage
gained by using GPU over the amount of computation needed
by the same algorithm on the CPU. Speedup S can be
calculated as follows:

S =
TCPU

TGPU
, (12)

where TCPU denotes execution time on the CPU and TGPU

denotes execution time on the GPU.
In order to compare learning algorithm’s quality, an error

measure needs to be defined. In this paper, all error measures
are reported using non-dimensional Normalized Root Mean
Square (NRMS) error index [1]. In all the tables, NRMSval

denotes validation set error, NRMSti denotes i-th test error,
with i=1,2,3, while NoT denotes number of trials needed to
reach the smallest validation error.

A. Nonlinear chaotic system prediction

In their paper on nonlinear signal processing, Lapedes and
Farber [21] suggested Glass-Mackey chaotic system as a NN
benchmark problem, due to its simple definition but hard to
predict behavior. Glass-Mackey system is given in discrete
time as

x(n) =
1

1+b

[

x(n−1)+
a ⋅ x(n− τ)

1+ x10(n− τ)

]

. (13)

In this paper, a = 0.2 and b = 0.1. Sampling time T0 is set
to one second, and time delay τ to 30 seconds.

The goal of NN with LM algorithm is to predict behavior
of chaotic system in P-th point in the future, based on m past
points and the current one. Standard method for this kind of
prediction is to determine mapping function f (⋅) as follows:

x(n+P) = f (x(n),x(n−Δ), . . . ,x(n−mΔ)). (14)

In this paper, P = Δ = 6 and m = 4, which results in the
following mapping function:

x(n+6) = f (x(n),x(n−6), . . . ,x(n−24)). (15)

Fig. 2 shows Glass-Mackey time series of 1000 time
steps for chosen τ (time is in units of τ). First 500 time
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steps of time series were used in learning process, while
500 remaining time steps were used for validation of an
algorithm.

100 200 300 400 500 600 700 800 900 1000 1100
0,2

0,4

0,6

0,8

1

1,2

1,4

n

x(
n)

Fig. 2. Glass-Mackey time series

Task of a NN is to predict a single value of a system based
on five known signal values, so the network has 6− 13−
1 structure (bias neuron is added to both input and hidden
layer). Number of hidden layer neurons, which is chosen to
be 13, is arbitrary, i.e. is chosen based on author’s experience.

Table I shows validation and test accuracies of predic-
tion problem, when networks were trained fixed number of
epochs on the CPU. Both algorithms were benchmarked
5 times, each time with different set of initial weights,
generated by using (11). First row for each benchmark
shows results obtained by network with ALG1 (NN ALG1),
whereas second row shows results obtained by network with
ALG2 (NN ALG2). It can be seen that, when it comes to
accuracy, NN ALG1 performed similarly or better than NN
ALG2 on all validation tests and additional 3 tests, which
were performed on previously unseen data. When it comes to
speed of convergence, NN ALG1 usually needs much more
trials to reach minimum validation error than NN ALG2.

TABLE I

PREDICTION OF GLASS-MACKEY TIME SERIES - ACCURACY

NRMSval NoT NRMSt1 NRMSt2 NRMSt3

Exper1
0.0790 2689 0.1145 0.1064 0.2964
0.0820 624 0.1096 0.0951 0.2865

Exper2
0.0760 804 0.1091 0.1334 0.2896
0.0771 704 0.1348 0.1652 0.2946

Exper3
0.0767 1975 0.1208 0.1553 0.2896
0.0783 1083 0.2238 0.3134 0.3221

Exper4
0.0752 978 0.1142 0.1039 0.2877
0.0802 606 0.1125 0.0987 0.2900

Exper5
0.0775 530 0.1173 0.1159 0.2882
0.0793 426 0.1097 0.1109 0.2884

In order to directly compare both algorithms, the best
accuracy, i.e. the lowest validation error achieved by a poorer
performance algorithm, was used as a reference point of
comparison. Table II shows number of trials and accuracy ob-
tained by both algorithms, when trained to achieve reference
validation error. It can be seen that, when both algorithms
were trained to reach the same validation error, number of

trials of ALG1 became similar or significantly smaller than
the number of trials of ALG2, while keeping similar accuracy
as in the case of fixed epochs training. Fig. 3 shows the best
test result, obtained with NN ALG1.

TABLE II

PREDICTION OF GLASS-MACKEY TIME SERIES - ACCURACY (2)

NRMSval NoT NRMSt1 NRMSt2 NRMSt3

Exper1 0.0820
770 0.1194 0.0988 0.2865
624 0.1096 0.0951 0.2865

Exper2 0.0771
715 0.1111 0.1475 0.2886
704 0.1348 0.1652 0.2946

Exper3 0.0783
753 0.1178 0.1504 0.2883
1083 0.2238 0.3134 0.3221

Exper4 0.0802
319 0.1152 0.0883 0.2877
606 0.1125 0.0987 0.2900

Exper5 0.0793
430 0.1123 0.1090 0.2881
426 0.1097 0.1109 0.2884

100 200 300 400 500 600

0.5

1

1.5

n

x(
n+

6)

Reference
SNN

Fig. 3. Prediction of GM time series using NN ALG1

Table III shows efficiency of both algorithms, calculated as
ratio of desired number of iterations and actually performed
trials (efficiency of LM algorithm with fixed weight decay is
around 50%). Although NN ALG2 shows higher efficiency
than NN ALG1, other results show that this doesn’t necessar-
ily lead to better performance of the network, since most of
the oscillations occur after the network had already reached
validation minimum and started overfitting training data.

TABLE III

PREDICTION OF GLASS-MACKEY TIME SERIES - EFFICIENCY

Exper1 Exper2 Exper3 Exper4 Exper5
ALG1 eff.(%) 68 72 69 68 74
ALG2 eff.(%) 75 77 77 76 77

Table IV shows speedups, as given in (12), achieved by
networks with both algorithms when running them on the
GPU, instead of on the CPU. It can be seen that networks
with both parallel implementations of algorithms show simi-
lar speedups when compared to their sequential counterpart,
although in all cases, NN ALG2 proves to be slighty more
GPU-prone then NN ALG1.
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TABLE IV

GLASS-MACKEY SYSTEM SPEEDUPS

Exper1 Exper2 Exper3 Exper4 Exper5
ALG1 3.04 3.15 2.83 2.98 3.03
ALG2 3.17 3.38 3.31 3.13 3.46

B. Filtration of estimated tool wear curves

Machine tool wear estimation is of a high importance in
machining processes, since every fifth machine downtime is
caused by an unexpected tool wear. To fulfill high demands
on reliability and robustness, a new tool wear regulation
model is proposed in [22]. Data used therein for testing
proposed model, which was obtained experimentally, will be
used in this paper as well.

Simulated flank wear curves, used in NN’s learning pro-
cess, are shown in Fig. 4. In real conditions, estimation error
is influenced by different disturbances that can occur during
machining process. In order to capture real conditions, white
noise is added to simulated model outputs.
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Fig. 4. Flank wear curves

Fig. 5. shows simulated (V Bid), estimated ( ˜V BE ) and
filtrated ( ˜V B) curve. Filtrated curve represents desired output
of a NN, so the goal of a NN is to generate an output similar
to that curve, based on four previous values obtained from
the estimator. Learning process was carried out using 2352
input-output pairs, whereas size of tests ranged from 278 to
835 input-output pairs.

Validation and test accuracies of filtration problem, ob-
tained when network was trained fixed number of epochs
on the CPU, are shown in Table V. Both algorithms were
benchmarked 5 times. When it comes to accuracy, NN ALG1
outperformed NN ALG2 on all but one validation test and
most of the additional 6 tests, performed on previously
unseen data. When it comes to the speed of convergence,
unlike in the case of a prediction problem, NN ALG1 reaches
its minimum validation error much faster then NN ALG2. In
Table V and Table VI, NN ALG1 is denoted by 1*, whereas

0 5 10 15 20 25 27
0

0.05

0.1

0.15

0.2

0.25

tt, min

VB
, m

m

VBid   
   
   E
VB
VB

0,25

0,2

0,15

0,1

0,05

Fig. 5. Model and desired NN output

NN ALG2 is denoted by 2*.

TABLE V

FILTRATION OF ESTIMATED TOOL WEAR CURVES - ACCURACY

Exper1 Exper2 Exper3 Exper4 Exper5

1*

NRMSval 0.2694 0.2725 0.2657 0.2642 0.2647
NoT 578 166 616 421 370

NRMSt1 0.2700 0.2714 0.2724 0.2649 0.2758
NRMSt2 0.2621 0.2602 0.2749 0.2675 0.2471
NRMSt3 0.2282 0.2306 0.2236 0.2220 0.2194
NRMSt4 0.2377 0.2402 0.2332 0.2306 0.2301
NRMSt5 0.2214 0.2295 0.2141 0.2158 0.2119
NRMSt6 0.2338 0.2521 0.2293 0.2267 0.2277

2*

NRMSval 0.2686 0.2728 0.2709 0.2744 0.2664
NoT 2098 250 1170 1287 1135

NRMSt1 0.2746 0.2726 0.2730 0.2740 0.2774
NRMSt2 0.2707 0.2623 0.2665 0.2733 0.2521
NRMSt3 0.2263 0.2307 0.2313 0.2297 0.2216
NRMSt4 0.2357 0.2407 0.2380 0.2381 0.2311
NRMSt5 0.2188 0.2292 0.2246 0.2284 0.2154
NRMSt6 0.2351 0.2497 0.2366 0.2429 0.2313

Table VI shows number of trials and accuracy obtained by
both algorithms, when trained to achieve reference validation
error. It can be seen that, when both algorithms were trained
to reach the same validation error, number of trials of ALG1
was further decreased and thus ALG1 became even more
faster compared to ALG2, while keeping similar accuracy as
in the case of fixed epochs training. Fig. 6 shows the best
test result, obtained with NN ALG1.
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Fig. 6. Filtration of estimated tool wear curves using NN ALG1

Table VII shows efficiency of both algorithms (efficiency
of LM algorithm with fixed weight decay is again around
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TABLE VI

FILTRATION OF ESTIMATED TOOL WEAR CURVES - ACCURACY (2)

Exper1 Exper2 Exper3 Exper4 Exper5
NRMSval 0.2694 0.2728 0.2709 0.2744 0.2664

1*

NoT 578 111 451 216 357
NRMSt1 0.2700 0.2729 0.2743 0.2708 0.2772
NRMSt2 0.2621 0.2639 0.2695 0.2643 0.2501
NRMSt3 0.2282 0.2330 0.2265 0.2303 0.2209
NRMSt4 0.2377 0.2426 0.2377 0.2384 0.2313
NRMSt5 0.2214 0.2324 0.2221 0.2291 0.2137
NRMSt6 0.2338 0.2570 0.2379 0.2434 0.2302

2*

NoT 1923 250 1170 1287 1135
NRMSt1 0.2712 0.2726 0.2730 0.2740 0.2774
NRMSt2 0.2658 0.2623 0.2665 0.2733 0.2521
NRMSt3 0.2263 0.2307 0.2313 0.2297 0.2216
NRMSt4 0.2358 0.2407 0.2380 0.2381 0.2311
NRMSt5 0.2196 0.2292 0.2246 0.2284 0.2154
NRMSt6 0.2363 0.2497 0.2366 0.2429 0.2313

50%). Similar to the case of a prediction problem, NN ALG2
shows higher efficiency than NN ALG1, but since this is
not necessary condition for better performance, NN ALG2
doesn’t outperform NN ALG1 on any criteria.

TABLE VII

FILTRATION OF ESTIMATED TOOL WEAR CURVES - EFFICIENCY

Exper1 Exper2 Exper3 Exper4 Exper5
ALG1 eff.(%) 59 72 66 56 66
ALG2 eff.(%) 78 80 79 78 79

Table VIII shows speedups achieved by networks with
both algorithms when running NNs on the GPU, instead of
on the CPU. Again, both algorithms show similar speedups
and NN ALG2 proves to be slighty more GPU-prone then
NN ALG1. Speedups are here significanly bigger than in the
case of a prediction problem, due to the size and complexity
of a problem that was used for testing.

TABLE VIII

FILTRATION PROBLEM SPEEDUPS

Exper1 Exper2 Exper3 Exper4 Exper5
ALG1 12.55 13.40 12.60 13.17 10.11
ALG2 12.97 13.72 12.96 12.79 10.53

VI. CONCLUSIONS

GPU-based, parallel implementation of the feedforward
NN, with modified LM algorithm, is proposed. Algorithm
is modified by introducing exponential weight decay and its
effectiveness is compared to lin-log weight decay, suggested
in the literature. Parallelization of the NN is achieved on
two different levels - parallelization accross data set and
parallelization of Jacobian computation. Third level of paral-
lelization, suggested in the literature, is made redundant by
introducing exponential weight decay.

Simulations are carried out on two real domain benchmark
problems and results obtained show the effectiveness of
proposed algorithm modification. Our modification works

especially well, both on the CPU and the GPU, when
learning problems become bigger, which is an important
property since LM algorithm’s main drawback are large-scale
problems.

Future work will be oriented towards CUDA implemen-
tation of parallel NN with LM algorithm, as well as paral-
lelization of Hessian matrix inversion, which proves to be
main bottleneck of proposed implementation. Also, bigger
in size benchmark problems will be used for further testing.
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